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Lecture plan

Lecture 1: introduction, compression spaces, primitive spaces.

Lecture 2: spaces of matrices of constant and bounded rank, sheaves and
vector bundles; dimension bounds.

Lecture 3: spaces of matrices and min. free resolution of graded modules.

Lecture 4: the case of symmetric matrices; applications to diff. geometry.

Lecture 5: the case of skew-symm. matrices; applications to PDEs.

Lecture 6: applications to numerical analysis: uniform determinantal
representations and compression spaces.
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The co-rank 2 case

For both symmetric and skew-symmetric spaces of matrices, the easiest case to
study is that of co-rank 2, simply because of the numerous extra-properties that
rank-2 vector bundles on P2 satisfy.

For example, we have seen that if the space A is symmetric or skew-symmetric
then the kernel bundle K and the cokernel bundle N are linked by the relation
N ' K∨(1).

Now, if F has rank 2, then F∨ ' F (−c1(F )), so that the relation above reads

N ' K (− r
2 + 1).
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In this case Westwick’s bounds on the dimension read:

3 ≤ d(r , r + 2) ≤ 5,

and in fact [Ilic-Landsberg]’s result completely solves the problem for the
symmetric case, where

dsym(r , r + 2) = 3,

the minimal possible value.

The analogous question

what about dskew (r , r + 2)?

is still open.
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The skew-symmetric case, co-rank 2

We will now take a look at the skew-symmetric co-rank 2 case, from partial
results to the state of the art.

Once again, the subject has roots in classical algebraic geometry, since such
spaces of skew-symmetric matrices of rank r = 2s correspond to linear
subspaces in the s − th secant variety of the Grassmannian G(2, n) of
2-dimensional subspaces in an n-dimensional space (or lines in Pn−1 if you prefer
the projective version) that do not meet the s − 1-th secant:

σs(G(2, n)) \ σs−1(G(2, n)).
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A bit of history/references:

[L.Manivel and E.Mezzetti, On linear spaces of skew-symmetric matrices of
constant rank, Manuscripta Mathematica 117 (2005)]

contains a complete classification of spaces of skew-symmetric matrices of
size 6 and constant rank 4, together with a description of the associated
vector bundles. In particular, dskew (4, 6) = 3.

[M.L.Fania and E.Mezzetti, Vector spaces of skew-symmetric matrices of
constant rank, Linear Algebra and its Applications 434 (2011)];

contains a similar (but not complete) classification of spaces of
skew-symmetric matrices of size 8 and constant rank 8, and a description of
the associated vector bundle, and on the immersion of P2 into the a
Grassmannian that they induce. Also in this case, it turns out that
dskew (4, 6) = 3.

Boralevi, Lecture 5, 6/21



The fact that dskew (4, 6) = dskew (6, 8) = 3 is not surprising, since in the paper
[Westwick, 1996] that we already quoted one can find the following

Lemma In the skew-symmetric case of symmetric matrices of constant rank r

and size r + 2, if dim(A) ≥ 4 then r ≥ 8.

In fact Westwick doesn’t just state (and prove) this result, he also exhibits an
explicit example of such a space. Unfortunately he doesn’t add any explanation
on how he found his example, or on what kind of construction he used.

In the next slide you can find Westwick’s mysterious example. You can try to
slightly modify it to try to construct a new example, but it is quite likely that it
will not work.
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“The matrix

W =



0 0 0 0 0 0 0 a b 0
0 0 0 0 0 0 a b 0 c
0 0 0 0 0 −a b 0 c d
0 0 0 0 a b 0 c d 0
0 0 0 −a 0 0 c −d 0 0
0 0 a −b 0 0 d 0 0 0
0 −a −b 0 −c −d 0 0 0 0
−a −b 0 −c d 0 0 0 0 0
−b 0 −c −d 0 0 0 0 0 0
0 −c −d 0 0 0 0 0 0 0


is skew symmetric, has zero determinant and is of rank ≥ 8 when any of a, b, c
or d is nonzero. It therefore represents a 4-dimensional space.” [Westwick 1996]
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In the joint project

[A.B., D. Faenzi, and E. Mezzetti, Linear spaces of matrices of constant rank
and instanton bundles, Advances in Mathematics 248 (2013)];

we provided an interpretation of Westwick’s example in terms of instanton
bundles and the derived category of P3, together with a construction for an
infinite family of the same dimension and rank.

Later, in the other already quoted joint project

[A.B., D. Faenzi, and P.Lella, Truncated modules and linear presentations of
vector bundles, International Mathematics Research Notices, 17 (2018)].

we gave yet another explanation in terms of graded minimal free resolutions of
truncated modules.

The original construction by Westwick remains a mistery.
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There are no known examples of dimension 5. Indeed, for dim(A) ≥ 4 not
just the first, but also the second Chern class of the bundle K is determined by
the size of the matrix:

Lemma
If A is a (d + 1)-dimensional space of skew-symmetric matrices of constant rank
r and size r + 2, and K is the rank-2 kernel bundle, then c1(K ) = r/2. If
moreover d ≥ 3 then c2(K ) = r(r + 1)/12. In particular, K is indecomposable,
i.e. it cannot split as a direct sum of two line bundles.

Indecomposable rank-2 bundles on Pn, n ≥ 4 are notoriously hard to find. It is a
famous long-standing and open conjecture that they do not exist for n ≥ 6.

For this reason, we conjecture that dskew (r + 2, r) = 4.
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A closer look at the case of order 6 and rank 4

Recall that rank 2 matrices correspond to elements of the Grassmannian
G(2, 6) ⊆ P(Λ2C6), and that the sth-secant variety σs(G(2, 6)) corresponds to
skew-symmetric matrices of rank r = 2s.

Since 6× 6 skew-symmetric matrices can only have rank 2, 4, or 6, there is a
simple filtration of GL6-orbits

G(2, 6)︸ ︷︷ ︸
rk=2

⊆ σ2(G(2, 6))︸ ︷︷ ︸
rk≤4

⊆ P(Λ2C6) = P14︸ ︷︷ ︸
rk≤6

.

Notice that elements of G(2, 6) correspond to decomposable skew-symmetric
tensors, and that the locus σ2(G(2, 6)) where the rank is not maximal is defined
by the condition {Pfaffian = 0}, and is therefore a cubic hypersurface.
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Therefore classifying projective planes of matrices of constant rank 4 means
studying planes contained in σ2(G(2, 6)) but not touching G(2, 6).

In fact the geometry is much richer! Remark that the dual variety

G∨(2, 6) ' σ2(G(2, 6)),

hence we can consider linear subspaces of G∨(2, 6); via the Gauss map
γ : G∨(2, 6) 99K G(2, 6) we can in fact reduce to studying linear sections of
G(2, 6).
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Linear sections of Grassmannian of lines are a classical object.

Definition
A linear section of G(2, n) of dimension n − 2 is called a linear congruence.

The classification of linear congruences in P3 and P4 is classical. For higher
dimension it is still missing.

What does the study of linear congruences in P5 look like?
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A linear section of (the 8-dimensional variety) G(2, 6) of dimension 6− 2 = 4 is
of the form

G(2, 6) ∩∆,

where ∆ ⊆ P14 is a 10-dimensional linear space, intersection of four hyperplanes
H1,H2,H3,H4 ∈ (P14)∨.

Let ∆∨ = 〈Hi 〉 be the 3-dimensional space generated by the Hi in (P14)∨.

Classifying linear congruences in P5 corresponds to describing all special
positions of ∆∨ with respect to G∨(2, 6).

In general, the intersection ∆∨ ∩G∨(2, 6) is a cubic surface; in the special case
in which such cubic surface has a plane as irreducible component, this plane is
exactly a plane of skew-symmetric matrices of size 6 and constant rank 4,
which is exactly the object that we want to describe.
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Connections with PDEs

The interest in this type of linear congruences is not just classical!

In the two papers

[S. Agafonov and E. Ferapontov, Systems of conservation laws from the point of view
of the projective theory of congruences, Izv. Ross. Akad. Nauk Ser. Mat. 60 (1996)]

[S. Agafonov and E. Ferapontov, Systems of conservation laws of Temple class,
equations of associativity and linear congruences in P4, Manuscripta Math. 106 (2001)]

an important connection between certain hyperbolic systems of conservation
laws, called of Temple class, and congruences of lines was established.
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In the more recent

[E. Ferapontov and L. Manivel, On a class of spaces of skew-symmetric forms related
to Hamiltonian systems of conservation laws, preprint arXiv:1810.12216 (2018)]

the authors reduce the classification of n-component systems of conservation
laws possessing a third-order Hamiltonian structure to the algebraic problem of
classifying n-planes in Λ2(Vn+2).

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Let us now see some example of 3-dimensional spaces of skew-symmetric
matrices of order 6 and constant rank 4.
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Example (1)

Choose a hyperplane C5 in C6. A plane π5 ⊆ P(Λ2C5) ⊆ P(Λ2C6) has constant
rank 4, and it is of the form

π5 =



0 0 0 a b 0
0 0 a b c 0
0 −a 0 c 0 0
−a −b −c 0 0 0
−b −c 0 0 0 0
0 0 0 0 0 0

 .

The associated kernel bundle K = OP2 ⊕OP2(−2) splits.
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Example (2)

The plane

πg = 〈e0 ∧ e4 − e1 ∧ e3, e0 ∧ e5 − e2 ∧ e3, e1 ∧ e5 − e2 ∧ e4〉

has constant rank 4 and it is of the form

πg =



0 0 0 0 a b
0 0 0 −a 0 c
0 0 0 −b −c 0
0 a b 0 0 0
−a 0 c 0 0 0
−b −c 0 0 0 0

 .

Again, the associated kernel bundle K = OP2(−1)2 splits.
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Example (3)

The plane

πt = 〈e0 ∧ e2 + e1 ∧ e3, e0 ∧ e3 + e1 ∧ e4, e0 ∧ e4 + e1 ∧ e5〉

lies on the tangent space to G(2, 6), has constant rk 4, and it is of the form

πt =



0 0 a b c 0
0 0 0 a b c
−a 0 0 0 0 0
−b −a 0 0 0 0
−c −b 0 0 0 0
0 −c 0 0 0 0


In this case the kernel bundle K doesn’t split, while the image bundle is
E = O2

P2 ⊕OP2(1)2.
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Example (4)

The plane

πp = 〈e0 ∧ e3 + e1 ∧ e2, e0 ∧ e4 + e2 ∧ e3, e0 ∧ e5 + e1 ∧ e3〉

has constant rank 4 and it is of the form

πp =



0 0 0 a b c
0 0 a c 0 0
0 −a 0 b 0 0
−a −c −b 0 0 0
−b 0 0 0 0 0
−c 0 0 0 0 0

 ,

Again, the kernel bundle K doesn’t split, while the image bundle is
E = OP2 ⊕OP2(1)⊕ TP2(−1).
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It turns out that these examples illustrate all possibilities, as proved in the
following

Theorem (Manivel-Mezzetti)
Any projective plane of skew-symmetric matrices of order 6 and constant rank 4
is SL6-equivalent to one of the four examples above.

Theorem (Manivel-Mezzetti)
There exists no P3 of skew-symmetric matrices of order 6 and constant rank 4,
i.e. dskew (4, 6) = 3.

Remark. In the paper [Fania-Mezzetti, 2011] a similar classification can be found
for order 8 and constant rank 6.
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