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Lecture plan (tentative!)

Lecture 1: introduction, compression spaces, primitive spaces.

Lecture 2: spaces of matrices of constant and bounded rank, sheaves and
vector bundles; dimension bounds.

Lecture 3: spaces of matrices and minimal free resolution of graded
modules.

Lecture 4: the cases of symmetric and skew-symmetric matrices;
applications to differential geometry and PDEs.

Lecture 5: applications to numerical analysis: uniform determinantal
representations and compression spaces.
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Symmetric and skew-symmetric matrices

Let us consider the “usual” space of matrices A ⊆ V ⊗W with dimA = d + 1
and all non-zero elements of A have constant rank r .

We already added the hypothesis that W = V (i.e. that we are dealing with
square matrices), so today we exploit the decomposition

V ⊗ V = S2V ⊕ Λ2V ,

and study what happens when the elements of A are either symmetric or
skew-symmetric:

A ⊆ S2V ,Λ2V .
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Again, the space A gives us a long exact sequence of vector bundles on Pd :

0 // K // On
Pd

A // OPd (1)n // N // 0 ,

that splits into two short exact sequences

0 // K // On
Pd

A //

##

OPd (1)n // N // 0

E

88
,

where n = dimV , and where K = Ker(A), N = Coker(A), and E = Im(A) are
vector bundles on Pd of rank n − r , n − r and r respectively.
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The symmetry and skew-symmetry of the matrix A yield a symmetry of
the exact sequence: indeed if we dualize everything:

0 // N∨ // OPd (−1)n
AT

//

''

On
Pd

// K∨ // 0,

E∨

::

and then we tensorize by OPd (1), we re-obtain (almost) the same sequence:

0 // N∨(1) // On
Pd

AT (1) //

%%

OPd (1)n // K∨(1) // 0.

E∨(1)

77
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Since AT = A or −A, we deduce the two isomorphisms:

N ' K∨(1) and E ' E∨(1).

In particular, the two short exact sequences above now reduce to the single
sequence:

0→ K → On
Pd → E → 0, with E ' E∨(1).

Remark that in fact for this reasoning the subspace A needs not be symmetric or
skew-symmetric. For example, it could be the direct sum of symmetric and
skew-symmetric subspaces.
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Now recall the computation of invariants from Lecture 2: we had the equation

c(K )(1 + t)n = c(N),

that allowed us to deduce some bounds on the dimension of our spaces.

This time we can use the extra piece of information that E ' E∨(1), together
with the following two facts, that hold for any F vector bundle of rank r on Pd :

1 The Chern classes of the dual bundle are ck(F∨) = (−1)kck(F ).

2 If L is a line bundle, then ck(F ⊗ L) =
∑k

j=0
(r−j
k−j
)
cj(E )c1(L)k−j .
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All in all, we obtain some linear relations on the Chern classes of E .

Let us now assume that r = rk(E ) ≥ d . If ci (E ) = ei t
i then for 0 ≤ i ≤ d we

have:

ei =
i∑

j=0

(
r − j

i − j

)
(−1)jej .

For odd i , this expresses ei as a linear combination of the ej ’s with j < i .

In particular, if i = 1 and if i = 3 we get, respectively:

e1 =
r

2
and (r − 2)e2 − 2e3 =

r(r − 1)(r − 2)

12
.
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Corollary
A space of n × n symmetric or skew-symmetric matrices of constant rank
necessarily has even rank r = 2s. (Which is obvious for A ⊆ Λ2V , and surprising
for A ⊆ S2V .)

If r ≤ d then it is possible to prove that (r is also even and)

Proposition

If r ≤ d then E ' Or/2
P2 ⊕OP2(1)r/2 or r = d = 2 and E ' TPd (−1).

Remark. For r = d = 2 and n = 3 then K has rank 3− 2 = 1 is a line bundle
and the short exact sequence is the Euler sequence on P2:

0→ OP2(−1)→ O3
P2 → TP2(−1)→ 0.
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The symmetric case

We now wish to concentrate on the symmetric case, when A ⊆ S2V . Our main
references are the articles

[B.Ilic and J.M. Landsberg, On symmetric degeneracy loci, spaces of symmetric
matrices of constant rank and dual varieties, Math. Annalen 314 (1999)]

[J.M. Landsberg, Algebraic geometry and projective differential geometry,
Seoul National University concentrated lecture series, 1997]

As the first title suggests, the authors’ interest in these spaces comes from the
fact that they can be constructed from smooth varieties having degenerate duals.
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Definition
Let X ⊂ PN be a nonsingular projective variety. The dual variety X∨ ⊂ (PN)∨ is
the union of all hyperplanes H such that H is tangent to X , i.e. such that
H ∩ X is singular.

A dimension count shows that one expects the dual variety X∨ to be a
hypersurface in (PN)∨; it is therefore interesting to study the cases when this
fails to occur.

Definition
The defect of X is δ := N − 1− dim(X∨).
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Example

The smooth quadric hypersurface Q2 ⊆ P3 is self dual: Q∨2 ' Q2.

The Segre variety X = Seg(PV × PW ) ⊂ P(V ⊗W ), with
k + 1 = dimV ≥ dimW = `+ 1, has dual variety σ`(Seg(PV ∨ × PW ∨)).
Since the dimensions of these secant varieties are known, it follows that X∨

is degenerate if and only if k > `, with defect δ = k − `.

The Grassmannian Gr(2,V ) ⊆ P(∧2V ) of 2-dimensional subspaces in a
k-dimensional vector space V has dual variety σp(Gr(2,V ∨)), where
p = (k − 2)/2 if k is even and p = (k − 3)/2 if k is odd. Again, since the
dimensions of secants of Grassmannian of lines are known, it follows that
δ = 0 if k is even and δ = 2 if k is odd.
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What do spaces of symmetric matrices of constant rank have to do with
varieties with degenerate duals?

Recall that in Euclidean geometry, the basic measure of how a variety is bending
(that is, moving away from its embedded tangent space to first order) is the
Euclidean second fundamental form.
In projective geometry, there is a projective second fundamental form that can
be defined the same way as its Euclidean analogue.

For details on this, the best reference is the book

[T.A. Ivey and J.M. Landsberg, Cartan for beginners: differential geometry via
moving frames and EDS, American Math. Society, 2003].
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If x ∈ X is a smooth point of our projective variety X , we denote by IIX ,x the
projective second fundamental form of X at x ; it generates a linear system of
quadrics that we denote by |IIX ,x |.

Theorem (Ilic-Landsberg)
Let X ⊆ PN be a smooth variety with degenerate dual variety X∨ with defect
δ ≥ 1, and let H ∈ X∨ be any smooth point. Then |IIX∨,H | is a linear system of
quadrics of projective dimension δ and constant rank n − δ.

In other words, given a smooth variety with degenerate dual variety, this result
allows to construct a δ + 1 dimensional linear subspace of S2CN−1−δ of
constant rank n − δ.
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Some general remarks on this result.

The result by [Ilic-Landsberg] can also be found in the paper
[P. Griffiths and J. Harris, Algebraic geometry and local differential

geometry, Ann. Scient. Ec. Norm. Sup.12(1979)],
even though it is not stated explicitly. Indeed, they had already proved that
linear spaces A ⊆ S2V ∨ of bounded rank r can be constructed from not
necessarily smooth varieties which have degenerate duals.

It also provides a new proof of a theorem of F. Zak, stating that if X ⊆ PN

is a non-singular projective variety, then dim(X∨) ≥ dim(X ).
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From our point of view though the main result is the following:

Theorem (Ilic-Landsberg)
If r ≥ 2 is even, then

dsym(r , n) = max{dimA | A ⊆ S2V is of constant rank r} = n − r + 1.

Remark that if Xr ⊆ P(S2V ) is the projective variety of symmetric matrices of
bounded rank r , corresponding to the r -th secant variety of the Veronese variety
v2(Pn−1), then an elementary dimension count shows that

codim(Xr−1,Xr ) = n − r + 1,

which explains why one expects this bound.

Finally, the result on d(r , n) when r is odd is classical.
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The co-rank 2 case

For both symmetric and skew-symmetric spaces of matrices, the easiest case to
study is that of co-rank 2, simply because of the numerous extra-properties that
rank-2 vector bundles on P2 satisfy.

For example, we have seen that if the space A is symmetric or skew-symmetric
then the kernel bundle K and the cokernel bundle N are linked by the relation
N ' K∨(1).

Now, if F has rank 2, then F∨ ' F (−c1(F )), so that the relation above reads

N ' K (− r
2 + 1).
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In this case Westwick’s bounds on the dimension read:

3 ≤ d(r , r + 2) ≤ 5,

and in fact [Ilic-Landsberg]’s result completely solves the problem for the
symmetric case, where

dsym(r , r + 2) = 3,

the minimal possible value.

What about dskew (r , r + 2)?
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