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Lecture plan (tentative!)

Lecture 1: introduction, compression spaces, primitive spaces.

Lecture 2: spaces of matrices of constant and bounded rank, sheaves and
vector bundles; dimension bounds.

Lecture 3: spaces of matrices and minimal free resolution of graded
modules

Lecture 4: the cases of symmetric and skew-symmetric matrices;
applications to differential geometry and PDEs.

Lecture 5: applications to numerical analysis: uniform determinantal
representations and compression spaces.
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In this lecture, we will see how one can use vector bundles (algebraic
geometry) and truncations of graded modules (commutative algebra) to
construct explicit examples of spaces of matrices of constant rank.

This is what we did in the joint project

[A.B., D. Faenzi, and P.Lella, Truncated modules and linear presentations of
vector bundles, International Mathematics Research Notices, 17 (2018)].

We will also see these results “in action” in next week’s tutorial with the
computer software Macaulay2.
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We first need some preliminary concepts from commutative algebra.

Two very good references are the books:

[I. Peeva, Graded syzygies, Algebra and Applications, vol. 14,
Springer-Verlag London, Ltd., London, 2011],

[D. Eisenbud, Introduction to commutative algebra with a view towards
algebraic geometry, Springer-Verlag, New York, 1995].
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Let R = k[x0, . . . , xn] be a homogeneous polynomial ring in n + 1 variables over
a field k , k = k , char(k) 6= 2.

The ring R comes with a natural grading

R =
⊕
i

Ri ,

with R0 = k ; moreover R generated by R1 as a k-algebra.

Let M be a finitely generated graded R-module, that is, M is a finitely
generated R-module endowed with a direct sum decomposition M =

⊕
p Mp

such that Ri ·Mp ⊆Mp+i .
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If M is a finitely generated graded R-module, and p, q ∈ Z, we denote by

Mp the p-th graded component of M , and by

M(q) the q-th shift of M , defined by the formula M(q)p = Mp+q.

A module M is free if M '
⊕

i R(qi ) for suitable qi .

Remark. Given any other finitely generated graded R-module N , HomR(M ,N)
is the set of homogeneous maps of all degrees, which is again a graded module,
graded by the degrees of the maps.
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For any R-module M , we denote by βi ,j(M) the graded Betti numbers of the
minimal free resolution of M , i.e.

· · · →
⊕
ji

R(−ji )βi,ji → · · · →
⊕
j1

R(−j1)β1,j1 →
⊕
j0

R(−j0)β0,j0 →M → 0.

Definition
The (Castelnuovo-Mumford) regularity of a module is denoted by reg(M) and
can be computed from the Betti numbers as max{j − i | βi ,j 6= 0}.

Remark. In a Betti diagram, we see the regularity as the label of the bottom row
in which we have a non-zero Betti number. Thus, the regularity is the width of
the Betti diagram.
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Definition
We say that M has m-linear resolution over R if the minimal graded free
resolution of M reads:

· · · → R(−m − 2)β2,m+2 → R(−m − 1)β1,m+1 → R(−m)β0,m →M → 0

for suitable integers βi ,m+i .

In the case where only the first k maps are matrices of linear forms then M is
called m-linearly presented up to order k , or just linearly presented when k = 1.

In other words, M has a m-linear resolution if:

1 M r = 0 for r < m,

2 M is generated by Mm, and

3 M has a resolution where all maps are matrices of linear forms.
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Definition
The module

M≥m =
⊕
p≥m

Mp

is the truncation of M at degree m.

Example
Let T = (a3, b3, c3, ab, ac) in the ring R = k[a, b, c]. We have that

T≥3 = (a3, b3, c3, abc, a2b, ab2, a2c , ac2).

Theorem
The truncation M≥reg(M) always has m-linear resolution.
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Recall that we are looking for a way to construct linear matrices starting from a
vector bundle.

Let E be a vector bundle on Pn = Proj(R), R = C[x0, . . . , xn].

First idea: look at its minimal free resolution. Even better, resolve its module
of sections:

E = H0
∗(E ) =

⊕
t∈Z

H0(E (t)),

a graded R-module with graded Betti numbers βi ,j and minimal free resolution:

· · · →
⊕
j1

R(−j1)β1,j1 →
⊕
j0

R(−j0)β0,j0 → E .
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This is of course too naïve. The resolution is in general not linear!

We can get around the non-linearity of the resolution of E by truncating the
graded module “in the right spot” , namely its regularity.

Indeed, we saw that if E =
⊕

t∈Z E t , then E≥m =
⊕

t≥Z E t and E≥reg(E)

always has m-linear resolution.

So we obtained linearity, but we still need something a bit more sophisticated!
To begin with, we lost control over the size of the matrix.

(Vague) idea: “cut off a piece” of the linear matrix from the linear resolution of
E≥reg(E), without modifying the rank.
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Let E and G be f.g. graded R-modules with minimal graded free resolutions:

· · · // E 1 e1 // E 0 e0 // E

· · · // G 1
g1
// G 0

g0
// G
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Let E and G be f.g. graded R-modules with minimal graded free resolutions:

A morphism µ : E → G induces
maps µi : E i → G i , determined up
to chain homotopy.

(If E and G are linearly presented
up to order j , then the µi ’s are
uniquely determined for i ≤ j − 1.)

· · · // E 1

µ1

��

e1 // E 0

µ0

��

e0 // E
µ

��
· · · // G 1

g1
// G 0

g0
// G
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Let E and G be f.g. graded R-modules with minimal graded free resolutions:

A morphism µ : E → G induces
maps µi : E i → G i , determined up
to chain homotopy.

(If E and G are linearly presented
up to order j , then the µi ’s are
uniquely determined for i ≤ j − 1.)

· · · // ? // ? // F_�

��
· · · // E 1

µ1

��

e1 // E 0

µ0

��

e0 // E
µ

��
· · · // G 1

g1
// G 0

g0
// G

What can we say about the resolution of the kernel F?
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Theorem
Let E and G be two m-linearly presented R-modules, respectively up to order 1
and 2. Suppose that there is a surjective morphism µ : E � G , and let µi ’s be
the induced maps.

Then F = ker(µ) is generated in deg m and m + 1, and moreover:
1. if µ1 is surjective, F is generated in deg m and has linear and quadratic

syzygies, and β0,m(F ) = β0,m(E )− β0,m(G );

2. if moreover µ2 is surjective, F is linearly presented and
β1,m+1(F ) = β1,m+1(E )− β1,m+1(G ).
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Theorem (revisited)
Let E and G be two m-linearly presented R-modules, respectively up to order 1
and 2. Suppose that there is a surjective morphism µ : E � G , and let µi ’s be
the induced maps.

Then F = ker(µ) is generated in deg m and m + 1, and moreover:
1. if µ1 is surjective, F is generated in deg m and has linear and quadratic

syzygies, and β0,m(F ) = β0,m(E )− β0,m(G );
2.

· · · // R(−m − 1)α1−γ1

��

// R(−m)α0−γ0 //

��

F_�

��
· · · // R(−m − 2)α2

µ2
����

// R(−m − 1)α1

µ1
����

// R(−m)α0

µ0
����

// E
µ
����

· · · // R(−m − 2)γ2 // R(−m − 1)γ1 // R(−m)γ0 // G
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Remember once again that our goal is to construct constant rank matrices!
What happens if the sheaves E = Ẽ and G = G̃ are vector bundles?

Theorem
In the assumptions of the previous Theorem, part 1, suppose also that:
(i) E = Ẽ and G = G̃ are v.b. on Pn of rank r and s respectively;
(ii) some extra “technical condition” holds.

Set a = β0,m(E )− β0,m(G ) and b = β1,m+1(E )− β1,m+1(G ).

Then the presentation matrix of F = ker(µ) has a linear part of size a× b and
constant corank r − s.

Moreover F = F̃ is isomorphic to the kernel of µ̃ : E → G .

Remark. µ2 surjective ⇒: technical condition.
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In the applications we consider the case when G = 0, i.e. G Artinian module, so
in particular F = F̃ ' Ẽ = E .

From this construction we get a veritable factory of examples of constant rank
matrices!

Moreover, we can implement the method on a computer (using the package
ConstantRankMatrices implemented using Macaulay2 software), and avoid
cumbersome computations.

You can find the package at http://www.paololella.it/IT/Software.html,
and we will look at it together in next week’s tutorial.
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