Lecture 1

Ada Boralevi

Third Research Schools on Commutative Algebra and Algebraic Geometry, Applied Algebraic Geometry @ IASBS, Zanjan
August 17-29, 2019

Lecture plan

- Lecture 1: introduction, compression spaces, primitive spaces.
- Lecture 2: spaces of matrices of constant and bounded rank, sheaves and vector bundles; dimension bounds.
- Lectures 3 \& 4: the cases of symmetric and skew-symmetric matrices; applications to differential geometry and PDEs.
- Lecture 5: applications to numerical analysis: uniform determinantal representations and compression spaces.

Introduction

Definition (Spaces of matrices of constant and bounded rank)

Let V and W be two complex vector spaces, and consider a $d+1$-dimensional vector subspace

$$
A \subseteq \operatorname{Hom}(V, W) \simeq V^{\vee} \otimes W
$$

A is a space of matrices of constant rank (respectively bounded rank) if all its non-zero elements have the same rank r (respectively rank $\leq r$).

Remark. Given a complex vector space V, we denote by $V^{\vee}=\operatorname{Hom}(V, \mathbb{C})$ its dual, and we fix a determinant form so that $V \simeq V^{\vee}$. Most of what we will see holds over any field $\boldsymbol{k}=\overline{\boldsymbol{k}}, \operatorname{char}(\boldsymbol{k}) \neq 2$.

The interest for this kind of matrices, founded on classical work, bears to different contexts: linear algebra, algebraic geometry (vector bundles, varieties with degenerate dual), differential geometry, PDEs, numerical analysis...

Among the main questions, often still open, we identify three main goals:

- Search for maximal value of $\operatorname{dim} A$, and for relations among the values of the parameters $\operatorname{dim} V, \operatorname{dim} W$, constant or bounded rank $r, \operatorname{dim} A$.
- Classification of spaces for fixed values of the parameters.
- Construction of explicit examples.

Remark. Recall the Segre variety

$$
\operatorname{Seg}=\operatorname{Seg}\left(\mathbb{P} V^{\vee} \times \mathbb{P} W\right) \hookrightarrow \mathbb{P}\left(V^{\vee} \otimes W\right)
$$

that, being defined by the 2×2 minors of a generic matrix, corresponds to the variety of rank 1 matrices inside $\mathbb{P}\left(V^{\vee} \otimes W\right)$.

Its r-th secant variety $\sigma_{r}(\mathrm{Seg})$ is by definition the closure of the union of linear spans of all the r-tuples of independent points lying on Seg. It corresponds to matrices of rank at most r, and its singular locus is the variety $\sigma_{r-1}(\mathrm{Seg})$ of matrices of rank at most $r-1$.

Therefore a space of matrices of bounded or constant rank r is a linear space contained in the secant variety $\sigma_{r}(\mathrm{Seg})$, or in the stratum $\sigma_{r} \backslash \sigma_{r-1}$ respectively.

When one studies these vector spaces, algebraic geometry appears as a natural tool, as perhaps first observed in
[J. Sylvester, On the dimension of spaces of linear transformations satisfying rank conditions, Linear Algebra and its Applications, 78 (1986)].

For instance, vector bundles and their characteristic classes prove to be very useful: we will elaborate on this in the next lecture.

In this lecture we study the classification of spaces of low (that is, ≤ 3) bounded rank, following the paper
[D. Eisenbud and J. Harris Vector spaces of matrices of low rank, Advances in Mathematics, 70 (1988)].

Some of these results had already appeared in
[M. D. Atkinson, Primitive spaces of matrices of bounded rank, II, Journal of the Australian Mathematical Society, 34 (1983)],
but the point of view in Eisenbud-Harris is slightly more general and uses interesting algebraic geometry tools.

In fact the description of these spaces for $d+1=\operatorname{dim} A \leq 2$ (pencils of linear forms) is classical, see for example
[F.R. Gantmacher, The Theory of Matrices Vol. 2, Chelsea, Publishing Company, New York 1959].

Eisenbud-Harris' paper

As usual when trying to classify infinite families of mathematical objects, we first need a notion of "equivalence".

Definition

Two spaces of matrices $A, A^{\prime} \subseteq \operatorname{Hom}(V, W)$ are called equivalent if they correspond under a change of bases.

Remark. In the definition above there is an action of a group taken into account! More precisely, if $\operatorname{dim} V=m$ and $\operatorname{dim} W=n$, then the group $G=\mathrm{GL}_{n} \times \mathrm{GL}_{m}$ acts on A by $g A h^{-1}$ for any pair $(g, h) \in G$.

Classification of spaces of matrices of bounded rank 1

The description of such spaces is classical; if all elements of A have rank ≤ 1, they must necessarily have

- or else a common image $W^{\prime} \subset W$ of
dimension 1 , so that A is equivalent to a subspace of the space of matrices of the form

$$
\left(\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 0 \\
* & * & \cdots & *
\end{array}\right) .
$$

- either a common kernel $V^{\prime} \subset V$ of codimension 1 , so that A is equivalent to a subspace of the space of matrices of the form

$$
\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & * \\
0 & 0 & \cdots & 0 & * \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & 0 & *
\end{array}\right)
$$

Both these situations occurring for bounded rank 1 can be generalized to bounded rank r :

- the first one corresponds to the case when all elements of A have kernels containing a fixed subspace $V^{\prime} \subset V$ of codimension r.
- Similarly, the second situation corresponds to all elements of A having image contained in a fixed r-dimensional subspace $W^{\prime} \subset W$.

Clearly these cases above are "not interesting" in our classification: this motivates the following

Definition

A space of matrices A is nondegenerate if the kernels of the elements of A intersect in $\left\{0_{v}\right\}$, and the images of the elements of A generate W.

From now on, we will assume that A is nondegenerate: in other words, we don't consider spaces of matrices equivalent to ones whose elements all have rows or columns of zeros in common.

There is a different and more interesting generalization of the situations described above.

Definition (Compression spaces)

If there exist subspaces $V^{\prime} \subset V$ of codimension r_{1} and $W^{\prime} \subset W$ of dimension r_{2} such that
$11 r=r_{1}+r_{2}$, and
[2] every element of A maps V^{\prime} into W^{\prime}, then A is called a compression space.

In fact if the second condition holds and an element $\phi \in A$ map V^{\prime} into W^{\prime}, then necessarily

$$
r \leq r_{1}+r_{2}
$$

when equality holds, the elements of A "compress" V^{\prime} into W^{\prime}.

Example

When $r=2$, taking $r_{1}=r_{2}=1$ we get a compression space equivalent to the vector space of matrices of the form

$$
\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & * \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & 0 & * \\
* & * & \cdots & * & *
\end{array}\right) .
$$

Example

In general, a compression space of bounded rank r is equivalent to a space of $(\operatorname{dim} V) \times(\operatorname{dim} W)$ matrices having a common $v^{\prime} \times w^{\prime}$ block of zeros with $\left(\operatorname{dim} V-v^{\prime}\right)+\left(\operatorname{dim} W-w^{\prime}\right)=r$, the largest possible value.

As a corollary of the description of all spaces of matrices of rank ≤ 1 we get:

Theorem of classification of spaces of matrices of bounded rank 1

Every space of matrices of bounded rank 1 is a compression space.
! This is only true for $r=1$! Indeed, the space of 3×3 skew-symmetric matrices is a space of bounded rank 2 that is NOT a compression space.

There is one more uninteresting case that we need to rule out before we go on with our classification.

Let $V^{\prime} \subset V$ of codimension r_{1} and $W^{\prime} \subset W$ of dimension r_{2} be two subspaces, and consider $A^{\prime} \subset \operatorname{Hom}\left(V^{\prime}, W / W^{\prime}\right)$ a space of matrices of bounded rank r^{\prime}; then the space $A \subset \operatorname{Hom}(V, W)$ of matrices inducing the elements of A^{\prime} via the composition:

$$
V^{\prime} \hookrightarrow V \rightarrow W \rightarrow W / W^{\prime}
$$

has rank bounded above by

$$
r^{\prime}+r_{1}+r_{2} .
$$

Let us call $\pi: \operatorname{Hom}(V, W) \rightarrow \operatorname{Hom}\left(V^{\prime}, W / W^{\prime}\right)$ this projection.

In other words, from a space of matrices of a given bounded rank, one can cook up matrices of higher rank by adding some rows or columns of arbitrary entries.

This motivates the following

Definition

- A space of matrices $A \subset \operatorname{Hom}(V, W)$ is primitive if there do not exist subspaces $V^{\prime} \subset V$ and $W^{\prime} \subset W$ with $\left(V^{\prime}, W^{\prime}\right) \neq(V, W)$ such that the upper bound of the rank of A is the same as the one of $\pi^{-1}(\pi(A))$.
- If A is not primitive, there exist subspaces V^{\prime} and W^{\prime} satisfying the condition above such that $A^{\prime}=\pi(A)$ is primitive; A^{\prime} is called a primitive part of A. (Which, in general, is not unique.)

Remark that a compression space is exactly a space whose primitive part is zero; in particular, there are no primitive spaces of bounded rank 1.

A projection map π corresponds, in terms of suitable bases, to taking submatrices. Thus A fails to be primitive if A is equivalent to a vector space of matrices in such a way that some space of submatrices A accounts entirely for the low rank of A; that is, A is a subspace of a vector space \tilde{A} of matrices having the same rank as A and looking like

$$
\tilde{A}=\left[\begin{array}{lllllll}
* & * & * & * & * & * & * \\
* & * & & & & & \\
* & * & & A^{\prime} & & \\
* & * & & & & &
\end{array}\right]
$$

Examples/exercises:

- Show that the space of skew-symmetric 3×3 matrices is primitive.
- Show that the space

$$
\left(\begin{array}{cccc}
d & 0 & 0 & 0 \\
0 & c & d & 0 \\
0 & -b & 0 & d \\
-a & 0 & -b & -c
\end{array}\right)
$$

is not primitive (because the rank of the family corresponding to the last three columns is 2).

Theorem of classification of spaces of matrices of bounded rank 2

A space of matrices of bounded rank 2 is either a compression space or is primitive, in which case it is the space of 3×3 skew-symmetric matrices.
\ Eisenbud-Harris' proofs for this and the next results relies on the theory of sheaves and vector bundles and their syzygies; we will see some ideas tomorrow.

In bounded rank 3 there are two complications: projections of the following space appear:

$$
\left(\begin{array}{cccccc}
b & c & d & 0 & 0 & 0 \\
-a & 0 & 0 & c & d & 0 \\
0 & -a & 0 & -b & 0 & d \\
0 & 0 & -a & 0 & -b & -c
\end{array}\right)
$$

and there are imprimitive spaces which are not compression spaces.

Theorem of classification of spaces of matrices of bounded rank 3

A nondegenerate space of matrices of bounded rank 3 is either a compression space, or primitive, or it has bounded rank 3 and its primitive part is the space of 3×3 skew-symmetric matrices, so that it is of the form

$$
\left(\begin{array}{cccc}
0 & a & b & * \\
-a & 0 & c & * \\
-b & -c & 0 & * \\
0 & 0 & 0 & 0
\end{array}\right)
$$

or its transpose.

The primitive spaces themselves can be classified:

Theorem of classification of primitive spaces of bounded rank 3

A primitive space of matrices of bounded rank 3 is equivalent either to

$$
\left(\begin{array}{cccccc}
b & c & d & 0 & 0 & 0 \\
-a & 0 & 0 & c & d & 0 \\
0 & -a & 0 & -b & 0 & d \\
0 & 0 & -a & 0 & -b & -c
\end{array}\right)
$$

or its transpose or to one of the following four projections of (\star) and their transposes, which are themselves primitive and pairwise inequivalent:

$$
\begin{aligned}
\left(\begin{array}{ccccc}
-b & -c & -d & 0 & 0 \\
a & 0 & 0 & -c & -d \\
-d & a & 0 & b & 0 \\
c & 0 & a & 0 & b
\end{array}\right), & \left(\begin{array}{ccccc}
-b & -c & -d & 0 & 0 \\
a & 0 & 0 & -c & -d \\
0 & a & 0 & b & 0 \\
0 & 0 & a & 0 & b
\end{array}\right), \\
\left(\begin{array}{cccc}
c & d & 0 & 0 \\
0 & 0 & c & d \\
-a & 0 & -b & 0 \\
0 & -a & 0 & -b
\end{array}\right), & \left(\begin{array}{cccc}
-b & -d & 0 & 0 \\
a & 0 & -c & -d \\
-d & 0 & b & 0 \\
c & a & 0 & b
\end{array}\right) .
\end{aligned}
$$

To conclude, remark that the classification for rank 2 and 3 gives in particular a complete classification of inclusion-maximal singular matrix spaces of size $2,3,4$ (including degenerate cases).

For $n=2$, every singular matrix space is a compression space, hence conjugate to a subspace of one of the two spaces

$$
\left\{\left(\begin{array}{cc}
* & * \\
0 & 0
\end{array}\right)\right\}, \quad\left\{\left(\begin{array}{ll}
0 & * \\
0 & *
\end{array}\right)\right\} .
$$

For $n=3$, there are four conjugacy classes of inclusion-maximal singular matrix spaces, represented by the three maximal compression spaces

$$
\left\{\left(\begin{array}{lll}
0 & * & * \\
0 & * & * \\
0 & * & *
\end{array}\right)\right\},\left\{\left(\begin{array}{ccc}
0 & 0 & 0 \\
* & * & * \\
* & * & *
\end{array}\right)\right\},\left\{\left(\begin{array}{ccc}
0 & 0 & * \\
0 & 0 & * \\
* & * & *
\end{array}\right)\right\},
$$

together with the space of skew-symmetric 3×3 matrices.

Unfortunately for large size it seems impossible to classify these spaces.
For $n=4$, there are still finitely many (namely, 10) conjugacy classes of inclusion-maximal singular matrix spaces (see [Eisenbud-Harris] and
[P. Fillmore, C. Laurie, and H. Radjavi, On matrix spaces with zero determinant, Linear and Multilinear Algebra, 18 (1985)]),
but this is not true for $n \geq 5$.
There are other evidences: for instance, for infinitely many n there exists a maximal singular matrix space in $K^{n \times n}$ of constant dimension 8, at least if we assume that the field K has characteristic 0 , see
[J. Draisma, Small maximal spaces of non-invertible matrices, Bulletin of the London Mathematical Society, 38 (2006)].

