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Lecture plan

Lecture 1: introduction, compression spaces, primitive spaces.

Lecture 2: spaces of matrices of constant and bounded rank, sheaves and
vector bundles; dimension bounds.

Lectures 3 & 4: the cases of symmetric and skew-symmetric matrices;
applications to differential geometry and PDEs.

Lecture 5: applications to numerical analysis: uniform determinantal
representations and compression spaces.
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Introduction

Definition (Spaces of matrices of constant and bounded rank)
Let V and W be two complex vector spaces, and consider a d + 1-dimensional
vector subspace

A ⊆ Hom(V ,W ) ' V ∨ ⊗W .

A is a space of matrices of constant rank (respectively bounded rank) if all its
non-zero elements have the same rank r (respectively rank ≤ r).

Remark. Given a complex vector space V , we denote by V ∨ = Hom(V ,C) its
dual, and we fix a determinant form so that V ' V ∨. Most of what we will see
holds over any field k = k , char(k) 6= 2.
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The interest for this kind of matrices, founded on classical work, bears to
different contexts: linear algebra, algebraic geometry (vector bundles, varieties
with degenerate dual), differential geometry, PDEs, numerical analysis...

Among the main questions, often still open, we identify three main goals:

Search for maximal value of dimA, and for relations among the values of
the parameters dimV , dimW , constant or bounded rank r , dimA.

Classification of spaces for fixed values of the parameters.

Construction of explicit examples.
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Remark. Recall the Segre variety

Seg = Seg(PV ∨ × PW ) ↪→ P(V ∨ ⊗W ),

that, being defined by the 2× 2 minors of a generic matrix, corresponds to the
variety of rank 1 matrices inside P(V ∨ ⊗W ).

Its r -th secant variety σr (Seg) is by definition the closure of the union of linear
spans of all the r -tuples of independent points lying on Seg . It corresponds to
matrices of rank at most r , and its singular locus is the variety σr−1(Seg) of
matrices of rank at most r − 1.

Therefore a space of matrices of bounded or constant rank r is a linear space
contained in the secant variety σr (Seg), or in the stratum σr \ σr−1 respectively.

Boralevi, Lecture 1, 5/22



When one studies these vector spaces, algebraic geometry appears as a natural
tool, as perhaps first observed in

[J. Sylvester, On the dimension of spaces of linear transformations satisfying
rank conditions, Linear Algebra and its Applications, 78 (1986)].

For instance, vector bundles and their characteristic classes prove to be very
useful: we will elaborate on this in the next lecture.

In this lecture we study the classification of spaces of low (that is, ≤ 3) bounded
rank, following the paper

[D. Eisenbud and J. Harris Vector spaces of matrices of low rank,
Advances in Mathematics, 70 (1988)].
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Some of these results had already appeared in

[M. D. Atkinson, Primitive spaces of matrices of bounded rank, II,
Journal of the Australian Mathematical Society, 34 (1983)],

but the point of view in Eisenbud-Harris is slightly more general and uses
interesting algebraic geometry tools.

In fact the description of these spaces for d + 1 = dimA ≤ 2 (pencils of linear
forms) is classical, see for example

[F.R. Gantmacher, The Theory of Matrices Vol. 2,
Chelsea, Publishing Company, New York 1959].
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Eisenbud-Harris’ paper

As usual when trying to classify infinite families of mathematical objects, we first
need a notion of “equivalence”.

Definition
Two spaces of matrices A,A′ ⊆ Hom(V ,W ) are called equivalent if they
correspond under a change of bases.

Remark. In the definition above there is an action of a group taken into account!
More precisely, if dimV = m and dimW = n, then the group G = GLn×GLm
acts on A by gAh−1 for any pair (g , h) ∈ G .
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Classification of spaces of matrices of bounded rank 1

The description of such spaces is classical; if all elements of A have rank ≤ 1,
they must necessarily have

• either a common kernel V ′ ⊂ V of
codimension 1, so that A is equivalent
to a subspace of the space of matrices
of the form

0 0 · · · 0 ∗
0 0 · · · 0 ∗
...

...
...

...
0 0 · · · 0 ∗

 ,

• or else a common image W ′ ⊂W of
dimension 1, so that A is equivalent to
a subspace of the space of matrices of
the form 

0 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0
∗ ∗ · · · ∗

 .
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Both these situations occurring for bounded rank 1 can be generalized to
bounded rank r :

• the first one corresponds to the case when all elements of A have kernels
containing a fixed subspace V ′ ⊂ V of codimension r .
• Similarly, the second situation corresponds to all elements of A having image
contained in a fixed r -dimensional subspace W ′ ⊂W .

Clearly these cases above are “not interesting” in our classification: this
motivates the following

Definition
A space of matrices A is nondegenerate if the kernels of the elements of A
intersect in {0V }, and the images of the elements of A generate W .
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From now on, we will assume that A is nondegenerate: in other words, we
don’t consider spaces of matrices equivalent to ones whose elements all have
rows or columns of zeros in common.

There is a different and more interesting generalization of the situations
described above.

Definition (Compression spaces)
If there exist subspaces V ′ ⊂ V of codimension r1 and W ′ ⊂W of dimension r2
such that

1 r = r1 + r2, and
2 every element of A maps V ′ into W ′,

then A is called a compression space.
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In fact if the second condition holds and an element φ ∈ A map V ′ into W ′,
then necessarily

r ≤ r1 + r2;

when equality holds, the elements of A “compress” V ′ into W ′.

Example
When r = 2, taking r1 = r2 = 1 we get a compression space equivalent to the
vector space of matrices of the form

0 0 · · · 0 ∗
...

...
...

...
0 0 · · · 0 ∗
∗ ∗ · · · ∗ ∗

 .
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Example
In general, a compression space of bounded rank r is equivalent to a space of
(dimV )× (dimW ) matrices having a common v ′ × w ′ block of zeros with
(dimV − v ′) + (dimW − w ′) = r , the largest possible value.

As a corollary of the description of all spaces of matrices of rank ≤ 1 we get:

Theorem of classification of spaces of matrices of bounded rank 1
Every space of matrices of bounded rank 1 is a compression space.

B This is only true for r = 1! Indeed, the space of 3× 3 skew-symmetric
matrices is a space of bounded rank 2 that is NOT a compression space.
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There is one more uninteresting case that we need to rule out before we go on
with our classification.

Let V ′ ⊂ V of codimension r1 and W ′ ⊂W of dimension r2 be two subspaces,
and consider A′ ⊂ Hom(V ′,W /W ′) a space of matrices of bounded rank r ′;
then the space A ⊂ Hom(V ,W ) of matrices inducing the elements of A′ via the
composition:

V ′ ↪→ V →W � W /W ′

has rank bounded above by
r ′ + r1 + r2.

Let us call π : Hom(V ,W ) � Hom(V ′,W /W ′) this projection.
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In other words, from a space of matrices of a given bounded rank, one
can cook up matrices of higher rank by adding some rows or columns of
arbitrary entries.

This motivates the following

Definition

A space of matrices A ⊂ Hom(V ,W ) is primitive if there do not exist
subspaces V ′ ⊂ V and W ′ ⊂W with (V ′,W ′) 6= (V ,W ) such that the
upper bound of the rank of A is the same as the one of π−1(π(A)).

If A is not primitive, there exist subspaces V ′ and W ′ satisfying the
condition above such that A′ = π(A) is primitive; A′ is called a primitive
part of A. (Which, in general, is not unique.)
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Remark that a compression space is exactly a space whose primitive part
is zero; in particular, there are no primitive spaces of bounded rank 1.

A projection map π corresponds, in terms of suitable bases, to taking
submatrices. Thus A fails to be primitive if A is equivalent to a vector space of
matrices in such a way that some space of submatrices A accounts entirely for
the low rank of A; that is, A is a subspace of a vector space Ã of matrices
having the same rank as A and looking like

Ã =


∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗ A′

∗ ∗


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Examples/exercises:

Show that the space of skew-symmetric 3× 3 matrices is primitive.

Show that the space 
d 0 0 0
0 c d 0
0 −b 0 d
−a 0 −b −c


is not primitive (because the rank of the family corresponding to the last
three columns is 2).
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Theorem of classification of spaces of matrices of bounded rank 2
A space of matrices of bounded rank 2 is either a compression space or is primitive,
in which case it is the space of 3× 3 skew-symmetric matrices.

B Eisenbud-Harris’ proofs for this and the next results relies on the theory of
sheaves and vector bundles and their syzygies; we will see some ideas tomorrow.

In bounded rank 3 there are two complications: projections of the following
space appear: 

b c d 0 0 0
−a 0 0 c d 0
0 −a 0 −b 0 d
0 0 −a 0 −b −c

 ,

and there are imprimitive spaces which are not compression spaces.
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Theorem of classification of spaces of matrices of bounded rank 3
A nondegenerate space of matrices of bounded rank 3 is either a compression
space, or primitive, or it has bounded rank 3 and its primitive part is the space of
3× 3 skew-symmetric matrices, so that it is of the form

0 a b ∗
−a 0 c ∗
−b −c 0 ∗
0 0 0 0


or its transpose.

The primitive spaces themselves can be classified:
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Theorem of classification of primitive spaces of bounded rank 3
A primitive space of matrices of bounded rank 3 is equivalent either to

b c d 0 0 0
−a 0 0 c d 0
0 −a 0 −b 0 d
0 0 −a 0 −b −c

 (?)

or its transpose or to one of the following four projections of (?) and their
transposes, which are themselves primitive and pairwise inequivalent:

−b −c −d 0 0
a 0 0 −c −d
−d a 0 b 0
c 0 a 0 b

 ,


−b −c −d 0 0
a 0 0 −c −d
0 a 0 b 0
0 0 a 0 b

 ,


c d 0 0
0 0 c d
−a 0 −b 0
0 −a 0 −b

 ,


−b −d 0 0
a 0 −c −d
−d 0 b 0
c a 0 b

 .
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To conclude, remark that the classification for rank 2 and 3 gives in particular a
complete classification of inclusion-maximal singular matrix spaces of size 2, 3, 4
(including degenerate cases).

For n = 2, every singular matrix space is a compression space, hence conjugate
to a subspace of one of the two spaces{(

∗ ∗
0 0

)}
,

{(
0 ∗
0 ∗

)}
.

For n = 3, there are four conjugacy classes of inclusion-maximal singular matrix
spaces, represented by the three maximal compression spaces

0 ∗ ∗
0 ∗ ∗
0 ∗ ∗

 ,


0 0 0
∗ ∗ ∗
∗ ∗ ∗

 ,


0 0 ∗
0 0 ∗
∗ ∗ ∗

 ,

together with the space of skew-symmetric 3× 3 matrices.

Boralevi, Lecture 1, 21/22



Unfortunately for large size it seems impossible to classify these spaces.

For n = 4, there are still finitely many (namely, 10) conjugacy classes of
inclusion-maximal singular matrix spaces (see [Eisenbud-Harris] and

[P. Fillmore, C. Laurie, and H. Radjavi, On matrix spaces with zero determinant,
Linear and Multilinear Algebra, 18 (1985)]),

but this is not true for n ≥ 5.

There are other evidences: for instance, for infinitely many n there exists a
maximal singular matrix space in Kn×n of constant dimension 8, at least if we
assume that the field K has characteristic 0, see

[J. Draisma, Small maximal spaces of non-invertible matrices,
Bulletin of the London Mathematical Society, 38 (2006)].
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