

Secant non-defectivity of Segre-Veronese varieties via collisions of points

F. Galuppi (u. di Trieste), A. ONETO (u. di Trento)

The problem

classify defective varieties,

i.e., algebraic varieties for which the dimension of some secant variety is smaller than the expected. In particular, in the case of Segre-Veronese varieties with two factors.

 $\nu_{c,d}: \mathbb{PC}^{m+1} \times \mathbb{PC}^{n+1} \longrightarrow \mathbb{P}(\operatorname{Sym}^{c}\mathbb{C}^{m+1} \otimes \operatorname{Sym}^{d}\mathbb{C}^{n+1}), \quad ([v], [w]) \mapsto [v^{\otimes c} \otimes w^{\otimes d}]$

Veronese varieties.

A list of defective cases was known since the beginning of XIX century. In 1995, Alexander and Hirschowitz proved that the known list of defective cases was complete.

Segre-Veronese varieties with two factors.

In the last 25 years, a list of defective cases has been found by various authors. (Abrescia, Bocci, Catalisano, Geramita, Gimigliano, Ottaviani,... - see [AB13]) All the known defective cases appear in bi-degrees (c,d) where either c < 3 or d < 3.

Theorem.

If c,d \geq 3, then the Segre-Veronese variety $\nu_{c,d}(\mathbb{P}^m \times \mathbb{P}^n)$ is never defective.

Abo-Brambilla (2013), [AB13] - "the inductive step"

If there are no defective cases in bi-degrees (3,3), (3,4) and (4,4),

then there are no defective cases in bi-degrees (c,d) for c,d \geq 3.

Galuppi-Oneto (2021), [GO21] - "the base cases"

In bi-degrees (3,3), (3,4) and (4,4) there are no defective cases.

References.

[AB13] H. Abo and M.C. Brambilla, "On the dimensions of secant varieties of Segre-Veronese varieties", Annali di Matematica Pura ed Applicata, 192(1):61-92, 2013.

[GO21] F. Galuppi and A. Oneto, "Secant non-defectivity of via collisions of fat points", arxív preprint arxív:2104.02522, 2021.

An interpolation problem.

 $\operatorname{codim} \ \sigma_r(\nu_{c,d}(\mathbb{P}^m \times \mathbb{P}^n)) = \dim I(\mathbb{X})_{c,d}$

where $\mathbb X$ is a scheme of r general 2-fat points in $\mathbb P^m \times \mathbb P^n$ and $I(X)_{c,d}$ is the part in bidegree (c,d) of its defining ideal.

upper-bound by degeneration.

 $\exp .\operatorname{codim} \ \overline{\sigma_r}(\nu_{c,d}(\mathbb{P}^m\times\mathbb{P}^n)) \leq \operatorname{codim} \ \sigma_r(\nu_{c,d}(\mathbb{P}^m\times\mathbb{P}^n))$ $= \dim I_{c,d}(\mathbb{X}) \leq \dim I_{c,d}(\tilde{\mathbb{X}})$

where $\tilde{\mathbb{X}}$ is a degeneration of the scheme \mathbb{X} .

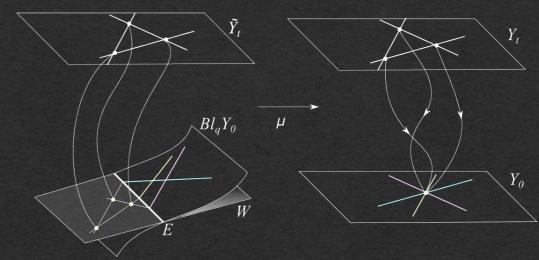
Collision of fat points.

Over an N-dimensional variety,

the collision of N+1 general 2-fat points is a local scheme such that:

- contains a 3-fat point;
- the restriction on a general line through it has degree 3;
- there are $\binom{N+1}{2}$ lines such that the restriction has degree 4;

namely, a 3-fat point with $\binom{N+1}{2}$ points infinitesimally close.



In our proof [GO21], we consider the degeneration of $\mathbb X$ obtained by collapsing m+n+1 among the 2-fat points of X.