©2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or
to reuse any copyrighted component of this work in other works must be obtained from the IEEE

Comparing Lexical Analysis Tools for Buffer
Overflow Detection in Network Software

Davide Pozza, Riccardo Sisto
Dip. di Automatica e Informatica
Politecnico di Torino
Corso Duca degli Abruzzi 24
[-10129 Torino, ITALY
Email: {davide.pozza, riccardo.sisto }@polito.it

Abstract— Many of the bugs in distributed software modules
are security vulnerabilities, the most common and also the most
exploited of which are buffer overflows and they typically arise
in programs written in the C language. This paper, focusing
on static analysis tools for detecting buffer overflows in C
programs, presents a methodology for experimentally evaluating
and comparing the main objective features of such tools. The
proposed method is based on testing all the tools on a common
set of publicly available, open source software packages, and
makes use of specific metrics defined to evaluate the main tool
features. In particular, the evaluation aims at quantifying how
close the tool is to a complete and sound tool. Our approach
has been applied for an initial evaluation of the class of static
analysis tools that are based on lexical analysis, using as test
cases three well known network software packages. The results
obtained, illustrated and commented on in this paper, offer some
interesting indications.

Keywords: static analysis, lexical analysis, buffer overflow,
ITS4, Rats, Flawfinder.

I. INTRODUCTION

Nowadays distributed software is everywhere and plays an
important role in our life. The number, size and complexity
of software systems that interact, communicate and depend on
one another is growing. Moreover, despite the evolution of pro-
gramming languages, which tends to make the programming
task easier, many programming errors are still quite frequent,
because either the features of the new languages do not exclude
all the causes of errors or some old languages, like C and
C++, are still in use. A consequence of this scenario is an
increase in the number of critical bugs. Programming errors
are responsible for software failures, and they can have serious
safety and security implications.

In this paper, attention is focused on security issues. For
example, human and automated (e.g. worms) attackers can
exploit software bugs in order to subvert the normal behavior
of programs, in that, they are able to gain access to confidential
data, to improperly take control of systems, or to cause denial
of service. Security-relevant software bugs therefore can have
a devastating effect.

The CERT Coordination Center (at Carnegie Mellon Univer-
sity) has been keeping trace of all reported security software
vulnerabilities since 1995. Looking at the statistics [1] is

0-7803-9575-1/06/$20.00 ©2006 IEEE

Luca Durante, Adriano Valenzano
[EIIT - CNR
c/o Politecnico di Torino
¢.so Duca degli Abruzzi 24
[-10129 Torino (Italy)
Email: {luca.durante, adriano.valenzano }@polito.it

worrying, because the number of the reported vulnerabilities is
rapidly increasing. The sum of the number of vulnerabilities
reported between years 2000 and 2003 has grown by about
760% compared to the sum of those published between
years 1995 and 1999. The major classes of implementation
security vulnerabilities, which have been identified, are buffer
overflows, format strings, race conditions and weak sources
of random numbers. The largest class is represented by
buffer overflows, which, according to the ICAT Vulnerability
Database [2], account for about 20% of all the vulnerabilities
contained in the database since 1995.

Buffer overflows occur because of programming errors, such
as improper buffer bound checks and/or misuse of some library
functions (which work on buffers). A read buffer overflow
occurs when a read operation occurs outside the intended
buffer bounds. In this case, the confidential data stored in
memory can be leaked. A write buffer overflow occurs when
some program code tries to store more data in a buffer
than it was designed to hold. Since buffers are created to
contain a finite amount of data, the extra information overflows
into adjacent memory areas, thus corrupting (by overwriting)
the valid data held in them. Through out-of-bound writing
operations attackers can modify and/or take control of the
program execution, being able, in the worst case, to execute
arbitrary code with root/administrator privileges. The various
buffer overflow exploitation techniques are described in many
technical papers. A digest of these techniques is provided in
some published surveys (e.g. [3][4]).

The buffer overflow problem is typical of old programming
languages, such as C and C++, whilst it cannot arise in the
new generation of languages (e.g. Java and C#). However the
problem is still pervasive since much software is still written
in C and C++, or rely on system components that have been
written in those languages. A survey of www.sourceforge.com
(on September 2004) confirms this, indicating that a substantial
percentage of open source projects are still using C (14,0%)
and C++ (14,2%).

Detecting possible buffer overflows in a program is a
difficult and time consuming task, which can be alleviated
by using static and dynamic software analysis tools.

Our attention is focused on static analysis tools, and in par-


user
©2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE


ticular on the most lightweight ones, based on lexical analysis.
Such tools look for certain patterns in the source code and,
possibly using some heuristics, report the ones that might be
vulnerabilities. Despite their simplicity, lexical analysis tools
can help to select the parts of code that need auditing, without
significantly burdening the programmer. They are particularly
useful during the coding phase, where more sophisticated tools
would introduce prohibitive turnaround times.

Of course, static analysis tools can miss some bugs as well
as report false bugs. Thus, an important question for the user
is how to evaluate and objectively compare the various tools.
Up to now, not much research work has been done on exper-
imental evaluation of static analysis tools for buffer overflow
detection. The authors of the various tools have made some
experiments, but using different test programs and operating
conditions, so they do not provide any homogeneous basis for
comparison. The first attempt to compare static analysis tools
using a common base of test programs is [5], which, however,
uses extremely simple artificial code samples which are not
so representative of real code. Another evaluation work is [6],
which reports some qualitative results of experiments where
different programmers used various static analysis tools for
buffer overflow detection on the same set of programs. In this
case, the set of programs is significant, because it includes
real world open source programs, but the aim of the work is
more to evaluate human factors than to gain an objective and
quantitative evaluation of the tools themselves. In short, at the
moment experimental work is needed to quantitatively evaluate
the tools using a meaningful set of programs and homogeneous
test conditions. In particular, even rigorous methodologies
for the experimental assessment of tools, capable of giving
quantitative results, are missing.

This paper takes a first step in this direction. A method-
ology for experimental evaluation of static analysis tools for
buffer overflow detection is presented along with some initial
experiments performed according to the methodology on the
available lexical analysis tools. The experiments have been
made using real-world publicly available source codes as test
cases, all of which belong to the network programming area,
where buffer overflow detection is most important. In this
way it is evaluated how the tools behave when analyzing real
production network software, which contains commonly used
programming idioms and includes complex control flows, data
flows, data structures and component interactions.

The work presented here is the first part of a more extensive
research project in which it is planned to investigate the whole
class of static analysis tools.

The rest of the paper is organized as follows. Section II
presents a brief description of the features of static analysis
tools, and of lexical analysis tools in particular. Then, sec-
tion III describes the evaluation methodology, the experiments
performed and the results obtained. Section IV draws some
conclusions.

II. LEXICAL ANALYSIS

Static analysis techniques are useful to find errors that do
not arise during testing or using dynamic analysis techniques,
because they occur on uncovered execution paths. It is worth
noting that the problem of static program analysis, in general,
and the problem of finding all the buffer overflow errors,
in particular, is undecidable because it is a Turing halting
problem. Consequently, only approximate solutions can be ob-
tained. An analysis tool is said to be sound if it does not report
spurious warnings (i.e. warnings regarding code that does not
contain errors), whilst it is said complete if it detects all the
errors, possibly also reporting spurious warnings. Because of
the issue of undecidability, building a tool that is both sound
and complete is theoretically impossible, unless the tool is in
some way restricted to operate only on a decidable subset of
programs.

The existing static analysis tools that aid the programmer
in finding buffer overflow vulnerabilities use different analysis
techniques. In general, since each technique has its own speci-
ficity, the best results can be achieved using more than one
technique. However, the cost of using sophisticated techniques
can be too high and not worthy.

The simplest static analysis technique for buffer overflow
detection is the one used by what are called Lexical Analysis
Tools. It is a token-based analysis, searching for the presence
of calls to functions included in a database. When potentially
dangerous calls to such functions are detected, a warning is
reported. This approach is based on the consideration that most
security -related bugs are caused by misuse of library functions:
some functions are always unsafe, and should always be
avoided, while others can cause problems if not used properly.
The database of a lexical analysis tool contains library func-
tions that, when misused, can result in vulnerabilities. Some of
such tools use heuristics to recognize some forms of security-
safe usage of potentially dangerous functions, thus reducing
the number of false positives that they raise.

The main lexical analysis tools have been considered. They
are ITS4 ! [7][8], Rats, > Flawfinder > and VulCAn [9].

They aim at detecting not only buffer overflow problems, but
also format string bugs, race conditions, insecure temporary
file and weak randomness functions usages. VulCAn can
analyze programs written in C, while ITS4 and Flawfinder
can analyze those written in C and C++, and Rats can also
analyze those written in Perl, PHP and Python.

ITS4, Rats and Flawfinder are context-insensitive, while
VulCAn is context-sensitive, i.e. it considers the scope of
variables so that it can identify the variables involved in each
operation exactly.

According to its authors, VulCAn considerably reduces the
number of false positives with respect to context-insensitive
lexical analysis tools [9]. Unfortunately, VulCAN is not pub-
licly available and only very little information about it has

! Available at http://www.cigital.com/TTS4/
2 Available at http://www.securesw.com/
3 Available at http://www.dwheeler.com/flawfinder/



been published. So, it has been possible to analyze in detail
and compare experimentally only ITS4, RATS and Flawfinder
and it is for this reason that VulCAn is no longer considered
in the rest of the paper.

An important aspect that must be taken into account is how
the tools provide their results. For all the tools considered,
the report provided as output lists the lines of code that are
suspected to contain bugs. For each different set of items in
the list, a description of the potential problem along with
suggestions of possible solutions are given. However, the
output information should be considered just as a reminder
of how the problem could arise, since no information, which
would be useful to trace back the code in order to understand
when a bug really exists, is provided. In short, no significant
differences exist in the quality of the results given by the
various tools: all of them just provide a list of lines of code
which are to be analyzed further. The analysis of each warning
has a considerable cost, as is also noted and experimentally
verified in [6]. Thus, the amount of manual work needed to
analyze the reported warnings is the predominant cost. It can
be considered to be roughly proportional to the number of
code lines where warnings are reported.

The sensitivity of a tool is controlled by its severity cutoft,
1.e. the severity level above which the tool reports warnings.
The default value of this parameter is different for the var-
ious tools. For example, when 1TS4 and Rats are run with
their default settings, no warning is reported for the calls
to strcpy () functions using a fixed constant string as the
second parameter, independently of the fact that the second
parameter may exceed the maximum admissible length of
the first parameter. Flawfinder, instead, reports such potential
errors, due to its having different default settings. From a
security point of view, the behavior of ITS4 and Rats is correct,
since these kinds of buffer overflows are programming errors
that cannot be exploited by attackers and hence they are less
risky. However, users can customize the behavior of these
tools, in order also to report these kinds of errors, disabling
the heuristics that reduce the risk levels associated with the
database functions and/or modifying the severity-cutoff level.

All the tools being considered are neither sound nor com-
plete (because they deal only with errors caused by misuse of
library functions). However, since ITS4, Rats and Flawfinder
are configurable, it is possible to set them so that they are
sound (they can be instructed to report only warnings for the
functions that must always be avoided) or partially complete
(i.e. complete with respect to the sub-problem of finding buffer
overflows caused by misuse of library functions).

However, as already noted in [6], soundness and complete-
ness are of little use when considered separately. A complete
tool can be practically useless if it gives too many false
positives and the same is true for a sound tool that identifies
only a minimal fraction of errors. The aim of tool designers
is to build a tool that is as close as possible to achieving
both soundness and completeness. The extent to which this is
reached can be evaluated experimentally, as explained in the
next section.

IITI. EXPERIMENTAL EVALUATION OF LEXICAL ANALYSIS
TooLs

The definition of the ideal tool useful to detect buffer
overflows is helpful in determining how to evaluate real tools
experimentally.

The ideal tool should be sound and complete, it should be
able to give precise information about which lines of code
contain errors and why, and it should take a negligible time to
achieve these goals. With such an ideal tool, all the errors are
detected and the programmer’s effort needed to identify and
correct them is minimum. Unfortunately, the available tools are
far from this ideal case, and the analysis of a source program
never leads to the certainty of having found all the errors, while
a lot of manual work is involved. Typically, the programmer
uses static analysis tools to get a set of warnings, and then
restricts the manual search for errors to the set of source code
lines indicated by the warnings. This work should lead the
programmer to distinguish real errors from false positives.

It can be noted that only certain features of a tool are
amenable to an objective evaluation. For example, it is not
possible to establish objectively how useful warnings are in
detecting buffer overflows, because this very much depends
on human factors. Instead, here interest is focused on defining
a methodology that enables quantitative and objective evalua-
tions of the tools to be obtained.

The main indexes that can be evaluated objectively are how
close a real tool is to a complete and sound tool and how long
it takes to perform the analysis. Another feature that may be
evaluated is the tool scalability, i.e. if and how such indexes
vary when the programs being analyzed grow in size.

The definition of metrics suited to completeness and sound-
ness is not obvious and calls for a preliminary discussion.
Completeness is related to tool efficacy (it describes the ability
of the tool to report as many real errors as possible). Soundness
is related to tool efficiency (it describes the ability of the tool
to report errors without reporting false positives): few false
positives means low manual auditor effort will be needed to
perform the task. A question that arises when trying to define
quantitative completeness and soundness performance indexes
concerns what units are to be used for errors, false positives
and warnings. In this paper it is assumed that each line of code
may contain at most one error and the unit used is the line
of source code: each tool gives warnings that refer to lines of
code and for each line of code indicated by a warning there
may be either exactly one real error or a false positive.

The extent to which completeness is achieved by a tool
when analyzing a given program can be measured by the
fraction of real error lines reported by the tool. Similarly,
soundness can be evaluated by the fraction of false positives
in the reported warnings. If T'P denotes the number of true
positives (i.e. real error lines) given by the tool and F'P the
number of false positives (i.e. false error lines) given by the
tool, it follows that the total number of warnings (in code lines)
given by the tool is FP+TP. If LOF is the total number of
lines of errors in the program analyzed, tool completeness for



a given program can be evaluated by the fraction T'P/LOFE
and tool soundness for a given program can be evaluated by
the fraction TP/(TP + FP). Of course, the completeness
measure makes sense if LOF > 0, i.e. if the test program
contains at least one error, and the soundness measure makes
sense if TP + FP > 0, ie. if the tool gives at least one
warning.

Another important aspect of an experimental evaluation is
how to select the set of test programs to be used as samples.
In this paper this set is called the program basis.

Of course, in order to provide uniform and comparable
results for all the tools, they must all be tested using the same
program basis and under the same conditions. Furthermore,
to get results of practical interest, the experiments should use
a program basis made up of real code, containing real world
errors, and not artificial code samples.

Additional criteria to be followed when selecting the pro-
gram basis were identified as follows:

o The programs in the program basis must be publicly
available, so that the program basis is itself publicly
available and anyone can use it to repeat the experiments
or to evaluate other tools.

o To be representative of a large class of real programs, the
program basis should contain programs of different sizes
(and hence different complexities), possibly written by
several hands (so as to contain a wide range of program-
ming idioms) and having different security reputations
(i.e. programs known to contain several vulnerabilities
and programs considered to have a secure implementa-
tion).

¢ The program basis should be made up of programs that
are potentially prone to buffer overflow problems, i.e.
programs that belong to the class of network software and
intensively use buffers, performing several operations on
them.

The methodology just outlined has been applied to experi-
mentally evaluate the available lexical analysis tools for buffer
overflow detection. Specifically, ITS4 (version 1.1.1) [7][8],
Flawfinder (version 1.21), and Rats (version 2.1) have been
evaluated.

The experiments presented here are only a first step towards
a complete experimental evaluation of these static analysis
tools: the specific aim of the experiments has been to evaluate
the tools when run with their default settings, with a minimal,
but sufficiently significant, program basis.

The program basis that has been used for these experiments,
although composed of only 3 software packages, satisfies all
the above mentioned criteria. It includes: net-tools 1.46, WU-
FTPD 2.5.0 and Pure-FTPd 1.0.17a.

Net-tools is a package that implements several system
commands related to networking, such as netstat, ifconfig,
route, and so on.

WU-FTPD was the most popular and widely used FTP
daemon for Unix systems, at least until 2001. However, now
it is no longer being developed, supported or widely used,
probably because it has sadly become famous for the high

number of discovered security problems. Version 2.5.0 is an
old version with several known vulnerabilities*.

Pure-FTPd is defined as a free (BSD), secure, production-
quality, standard-conformant, efficient and easy to use FTP
server. The authors of the program audited the code several
times before releasing it, and no buffer overflow vulnerabilities
have been reported yet. By accurately analyzing the source of
the program a single and very simple programming error was
found.

TABLE I
SOME FEATURES OF THE PROGRAMS SELECTED FOR EXPERIMENTS.

Program Ver. |# file# file| LOP | LOP | LOC |LOE|LOE/LOC src.
sre. | lib. src. | sre. %
Net-tools 1.46| 14| 49(10878| 4850| 4146 50 1.206
WU-FTPD|| 2.5.0| 32| 19[20772[17738|13582| 65 0.479
Pure-FTPd|[1.0.17a| 111 8|29275|28201(25230 1 0.004

Tab. 1T provides some information about sizes and defect
rates of the selected programs, so that the reader can see
that our selection meets the stated criteria. For each program,
the table reports the number of source (# file src.) and
support-library (# f£ile 1ib.) files. Then it reports the
total number of lines (LOP), the number of lines of the
source files only (LOP src.) and, since programs normally
contain comments and empty lines, the net number of non-
comment, non-empty lines of code (LOC src.). Finally, it
reports the number of lines where buffer overflow errors were
found (LOE) and the defect ratio in percentage ( (LOE/LOC
src.) %). LOE takes into account all the errors that were
known in advance and the additional ones that were found by
performing an accurate auditing guided by the warnings given
by the available static analysis tools. Of course, considering
the size of the programs, it is possible that some errors are
not included in this figure, because they were not detected.
So, the real total number of lines of code containing errors is
unknown, and, for the purpose of these evaluations, only the
errors that were discovered are considered.

All the experiments were performed using an Athlon 1800
XP+ machine equipped with 1GB of RAM and running Linux
Red Hat 9.0.

The following procedure was used to obtain the experimen-
tal results.

Each tool was run once, with its default settings. Before
proceeding with the manual investigation of the warnings
raised by the tools, the output of each tool was filtered
preliminarily, in order to eliminate the parts which where of
no interest to this study.

Of course, all warnings not concerning buffer overflows
but other vulnerabilities, such as format string bugs and race
conditions were all eliminated beforehand.

In addition, it was decided to exclude from our evaluation
the potential buffer overflow vulnerabilities related to the
functions getopt, getopt_long and syslog, because

4For the known buffer overflow vulnerabilities, see CERT advisories CA-
1999-13, CA-2001-07 and CA-2001-33



only some old library implementations of such functions suffer
from buffer overflow problems. Consequently, the warnings re-
lated to such functions were also eliminated from the outputs.

Finally, all the warnings that give generic hints to the
programmer without indicating precisely the possible location
of errors were eliminated from the outputs. These include the
warnings (emitted by Flawfinder) regarding the strlen func-
tions, because, if strlen works outside the buffer bounds,
the programming error is not due to the strlen itself, but to
some other portion of the code. Similarly, it was decided to
delete the warnings issued by Flawfinder and Rats for all the
statically sized buffers, recommending that bounds checking
be performed, functions that limit length be used, and that the
size is larger than the maximum possible length be ensured.

The next step of the procedure was to audit code by hand,
since it is necessary to find out which warnings correspond to
either false positives or real errors respectively. The code au-
diting was performed independently twice, in order to reduce
the risk of human errors in the categorization of warnings,
since all the lines of code subject to buffer overflow problems
were not known beforehand.

Auditing was performed with the aid of the powerful
source code navigation features of CodeSurfer [10]. This tool
significantly helped to alleviate the work needed to understand
and carefully examine the code in order to assert presence or
absence of errors for each line of code reported by the tools.
It is interesting to note that, on average, understanding when
a warning is an error is less expensive than proving that a
warning is a false positive. In fact, in order to determine the
presence of an error it is sufficient to find a path where a
buffer can be used outside its allocation size, while asserting
absence of errors requires that correctness be proved for all
the possible execution paths. Therefore, while judgments have
been made by humans, CodeSurfer has been invaluable to
understand interaction between functions, pointer aliasing and
to avoid the examination of execution paths being overlooked.

The results obtained were entered in a database maintaining
information about which tools issued a warning (for a file-
line pair) and what kind of warning it was. Each warning was
classified as either P (False Positives) or 7P (True Positives).
TP were further classified as BO (Buffer Overflows), for all
the buffer overflow problems, or PE (programming errors),
for generic programming errors that are not buffer overflow
problems.

A summary of the results of the categorization is presented
in tables II and III. Tab. II shows the number of warnings
issued by each tool for each program in the program basis
and, cumulatively, for the whole program basis (last line). The
warnings, as stated above, were classified according to their
type (i.e. TP, and hence either BO or PFE, and F'P). Tab.
IIT shows the same data but as percentages of the number of
lines of the analyzed code.

At first glance, it can be noted that [TS4 and Rats behave
more or less in the same way, moreover Flawfinder is the tool
that raises the highest number of warnings (having the highest
number of both I'P and TP).

TABLE I
CATEGORIZATION OF THE REPORTED WARNINGS.

[ Program | Warnings [[ ITS4 | Rats | Flawfinder |

Net-tools FP + TP 64 64 148
TP BO 36 37 44

PE 0 0 0

FP 28 27 104

WU-FTPD FP + TP 128 114 255
TP BO 38 35 57

PE 1 1 1

FP 89 78 197

Pure-FTPd FP + TP 45 32 156
TP BO 0 0 0

PE 0 0 0

FP 45 32 156

Program FP + TP 237 210 559
Basis TP BO 74 72 101
PE 1 1 1

FP 162 137 457

TABLE III

REPORTED WARNINGS AS PERCENTAGES OF THE LINES OF CODE.

[ Program | Warning Ratio % [[ ITS4 | Rats | Flawfinder |
Net-tools (FP+TP)/LOC 1.544 | 1.544 3.570
TP/LOC 0.868 | 0.892 1.061
FP/LOC 0.675 | 0.651 2.508
WU-FTPD (FP+TP)/LOC 0.942 | 0.839 1.877
TP/LOC 0.287 | 0.265 0.427
FP/LOC 0.655 | 0.574 1.450
Pure-FTPd (FP+TP)/LOC 0.178 | 0.127 0.618
TP/LOC 0.000 | 0.000 0.000
FP/LOC 0.178 | 0.127 0.618
Program (FP+TP)/LOC 0.552 | 0.489 1.301
Basis TP/LOC 0.175 | 0.170 0.237
FP/LOC 0.377 | 0.319 1.064

Looking at Tab. III it can be noted that all the tools, on
average, have an acceptable usability for low to medium sized
software packages, in the sense that they issue a reasonable
number of warnings. In fact, checking 1-2 lines of code every
100 lines, having, in the worst case, about 25 F'P every 1000
lines of code is affordable. Of course, for large programs, this
warning rate can be prohibitive. It is also worth noting that the
ratios of warnings seem to decrease as the size of the programs
increases, but this is probably due to the simultaneous increase
of secure (or at least believed secure) code implementation of
programs.

TABLE IV
THE COMPLETENESS FIGURE T'P/LOFE (PERCENTAGES).

[ Program [[ ITS4 | Rats | Flawfinder |
Net-tools 72.00 74.00 88.00
WU-FTPD 56.52 52.17 84.06
Pure-FTPd 0.00 0.00 0.00
Program Basis 62.50 | 60.83 85.00

Going on to consider the main performance figures, Tab. IV
reports the completeness figure (T'P/LOF) as a percentage
for each tool-program pair and the cumulative figure for the
whole program basis (last line). FlawFinder is the tool that,
according to these experiments, gets closer to full complete-



ness. Its 85% of buffer overflow errors caught confirms the
assumption that most buffer overflow errors are related to
improper usage of library functions: the known errors which
do not fall into this class are less than 15% of the total in our
program basis. It can also be noted that the completeness of
all the tools decreases when the defect rate and size of the
programs increase.

TABLE V
THE SOUNDNESS FIGURE T'P/(T'P + F P) (PERCENTAGES).

[ Program [[ ITS4 | Rats | Flawfinder |
Net-tools 56.25 57.81 29.73
WU-FTPD 30.47 | 31.58 22.75
Pure-FTPd 0.00 0.00 0.00
Program Basis 31.65 | 34.76 18.25

Tab. V shows the percentage of true positives over the total
number of raised warnings for each analyzed program, and
for the whole program basis, thus measuring the soundness of
the tools. Unfortunately, as soundness is related to efficiency,
the tools do not seem to be very efficient. In particular, ITS4
and Rats behave better than Flawfinder. Considering how
the lexical tools work, it is obvious that their efficiency is
better when they analyze programs containing lots of misused
functions. Accordingly, it can be noted that the soundness
of all the tools decreases when the defect rate and size of
the programs increase. Specifically, it can also be noted that
the soundness loss of ITS4 and Rats is higher than that of
Flawfinder, when they analyze programs with lower defect
rates and of larger sizes.

100 —

Rals  +
1TS4 x
Flawfinder *

90

80

70

60

50

Soundness %

40

30 x

20 ¥
10

0

0 10 20 30 40 50 60 70 80 90 100

Completeness %

Fig. 1.
ages).

Graphical representation of completeness and soundness (percent-

Fig. 1 shows graphically how far the available tools are from
the ideal one. The graph was obtained using the cumulative
percentage values of soundness and completeness of the tools
as Cartesian coordinates. Therefore, the i1deal tool would be
located in the top-right comer of the graph, since it is 100%
sound and complete.

Looking at the figure it can be noted that all the tools are
closer to being a complete tool than to being a sound tool.

Moreover, the similarity of Rats and ITS4 is quite evident.
The tool that actually most resembles the ideal one is Rats,
followed by ITS4, while, as has already been noted, the results
show that the most complete tool 1s Flawfinder.

The execution times of all the tools are in the range of few
seconds, so execution time is not a critical parameter for our
comparison.

A more interesting question to consider is the advantage
that can be obtained by using more than one tool. In other
words, it is interesting to study the set-relationships between
the warnings raised by the various tools, and in particular those
regarding true positives.

whole set of - - - Flawfinder
—— known errors - ITS4
(ropy - Rats
Fig. 2. Set relationships between sets of T'P.

Fig. 2 shows such results. It is worth noting that the
outermost ellipse contains all the T'P which it was possible
to discover also by using other tools and that 14 TP were
not detected by any of the lexical analysis tools considered.
Looking at the numbers of common TP, it can be noted
that they are high, confirming the similarities of the tools
considered.

An interesting result is that the T'P reported by Flawfinder
are a super-set of those reported by ITS4 and Rats. So, the
errors that can be found by Flawfinder in our program basis are
a strict super-set of those that can be found by each one of the
other tools. A large intersection instead is observed between
the T'P reported by ITS4 and those reported by Rats, even
though each tool reports at least one error not reported by the
other.

In our experiments, Flawfinder detects more errors (i.e. it
issues more T'P) than the other tools, but this advantage has
to be traded against a high number of additional F'P (which
amounts to about 20% of the total, as can be deduced from
Fig. 1).

From this point of view, and on the basis of the preliminary
results collected, it is possible to say that the use of ITS4 or
Rats during development can be an efficient choice, since they
have the best soundness index and show the best compromise
between soundness and completeness. Flawfinder produces
more warnings than the other tools and, hence, its use requires
more code auditing work and its efficiency is low. However,



it has been helpful in finding more errors than the other tools.
Thus, it should be used when a thorough analysis is needed
and typically only for the final code auditing, so that as many
residual errors as possible will be found.

P 4 RN
/ ’/‘// -\\\ N
' ./ | \
! 1 10 } 286 |
N . - ’
--- Flawfinder ----- IS4 - Rats
Fig. 3. Set relationships between sets of F'P.

One possible strategy to minimize the impact of false posi-
tives is to use either ITS4 or Rats during development, marking
the lines of code investigated and eventually patched, and then,
at the end of development, use Flawfinder to find additional
T P. In this last analysis, only the warnings related to lines not
previously examined would be considered. It is worth noting
that, even in this way, the human work needed is considerable,
since Flawfinder emits many additional warnings. Moreover,
the additional auditing activity turns out to be rather inefficient,
as can be deduced by looking at Fig. 3, which shows the set
relationships between F'P. In fact, the number of additional
FP when Flawfinder is used after ITS4 is 296 and it is
320 when Flawfinder is used after Rats, which corresponds
to a decrease of soundness indexes of 13.43% and 16.52%
respectively.

In general, it can be observed that all the available lexical
tools appear to be rather far from being ideal in their behavior.
In particular, while they seem to be able to reach considerable
completeness (Flawfinder), their soundness still appears poor.

IV. CONCLUSIONS

Evaluation and comparison of static analysis tools for buffer
overflow detection on an objective basis calls for experiments
to be made in which the various tools are all tested under the
same conditions and using real-world programs as test cases.
Since no much previous work is available on this topic, this
paper has proposed a possible basis for objective quantitative
evaluation of static analysis tools for buffer overflow detection.

The proposed experimental evaluation methodology has been
used to make an initial evaluation and comparison of some
lexical analysis tools when applied to network software pack-
ages. The experiments and their results are limited to the
default settings of the tools. They show quantitatively the main
features of the three available tools that have been tested:
ITS4, Rats and Flawfinder. From these data it is possible to
understand the relative strengths, weaknesses and peculiarities
of the tools with their default settings. These results could
subsequently be refined using a larger program basis and can
be used as a reference for objective comparisons, possibly
including new tools that will become available in the future.
The work presented in this paper naturally complements
the work presented in [6], which addresses the problem of
evaluating human factors, i.e. how useful, on average, the
warnings given by the various tools are for the programmer.

ACKNOWLEDGMENT

This work was partially supported by the Italian National
Council of Research in the framework of the project ICT-P06-
[EIIT-MS5: “Metodi e Strumenti per la Progettazione di Sistemi
Software-Intensive ad Elevata Complessita™.

REFERENCES

[1] “Cert coordination center.” [Online]. Available: http://www.cert.org/
stats/cert_stats.html#vulnerabilities

[2] “Icat metabase.” [Online]. Available: http://icat.nist.gov/icat.cfm

[3] J. Pincus and B. Baker, “Beyond stack smashing: Recent advances in
exploiting buffer overruns,” IEEE Security & Privacy, vol. 2, no. 4, pp.
20-27, 2004.

[4] “Buffer overflow and format string overflow vulnerabilitites,” Sofiware
Practice and Experience, vol. 33, no. 5, 2002.

[5] J. Wilander. and M. Kamkar, “A comparison of publicly available
tools for static intrusion prevention,” in Proceedings of the 7th Nordic
Workshop on Secure IT Systems, Karlstad, Sweden, Nov. 2002, pp. 68—
84.

[6] J. Heffley and P. Meunier, “Can source code auditing software identify
common vulnerabilities and be used to evaluate software security?” in
Proceedings of the 37th Hawaii International Conference on System
Sciences, Big Island, Hawaii, Jan. 2004.

[7]1 J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw, “Its4: A static
vulnerability scanner for ¢ and c++ code,” in ACSAC ’00: Proceedings
of the 16th Annual Computer Security Applications Conference, New
Orleans, Louisiana, Dec. 2000, pp. 257-271.

[8] J. Viega, J. T. Bloch, T. Kohno, and G. McGraw, “Token-based scanning
of source code for security problems,” ACM Trans. Inf. Syst. Secur.,
vol. 5, no. 3, pp. 238-261, 2002.

[91 M. Weber, V. Shah, and C. Ren, “A case study in detecting software
security vulnerabilities using constraint optimization,” in SCAM, Venice,
Italy, 2001, pp. 3—13.

[10] P. Anderson, T. Reps, T. Teitelbaum, and M. Zarins, “Tool support for
fine-grained software inspection,” IEEE Software, vol. 20, no. 4, pp.
42-50, 2003.





