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Abstract

In formal methods, security protocols are usually mod-
eled with a high level of abstraction. In particular, mar-
shalling/unmarshalling operations on transmitted messages
are generally abstracted away. However, in real applica-
tions, errors in this protocol component could be exploited
to break protocol security.

In order to solve this issue, this paper formally shows
that, under some constraints checkable on sequential code,
if an abstract protocol model is secure, then a refined model,
which takes into account a wide class of possible implemen-
tations of the marshalling/unmarshalling operations, is im-
plied to be secure too. The paper also indicates possible
exploitations of this result.

1. Introduction

In the last years, several techniques have been developed
to formally analyze abstract models of security protocols
where messages are represented as instances of high level
abstract data types. One question that arises is how to get as-
surance about the fact that the logical correctness of an ab-
stract protocol is indeed preserved when concrete versions
of the protocol are defined and when their implementations
are developed using programming languages. In general,
security faults not present in an abstract protocol specifica-
tion might be introduced when adding implementation de-
tails.

Recently, some work has been started in the direction of
bridging the gap that exists between abstract formal mod-
els and their concrete counterparts. For example, some re-
searchers have been working towards refining the models
of cryptography (e.g. [9, 2, 1]). Another research line ad-
dresses the problem of ensuring that the formal model used
for the analysis of a protocol is a safe abstraction of the pro-

tocol implementation, under the assumption that the cryp-
tographic and communication libraries used by the imple-
mentation behave as specified by their ideal abstract Dolev-
Yao [5] models. In particular, two different strategies have
been explored, namely automatic code generation from ab-
stract models ([11, 13]) and automatic model extraction
from implementation code ([4, 8, 6, 3]).

Methods based on automatic code generation start from
a high-level, formally verified, specification of the proto-
col, which abstracts away from details about cryptographic
and communication operations and binary data representa-
tions, and fill the semantic gap between formal specifica-
tion and implementation, guided by implementation choices
provided by the user.

Methods based on automatic model extraction start from
an already existing, full blown implementation code, from
which an abstract model is extracted and formally verified.
One of the things that can be observed looking at the results
reported in [4, 8, 3], is that the part of the extracted formal
model that describes message encoding and decoding oper-
ations can be quite complex, much more complex than the
abstract protocol model itself.

This paper presents sufficient conditions under which the
detailed models of marshalling and unmarshalling opera-
tions on transmitted messages can be soundly abstracted by
simpler models or assumptions.

The first step is the definition of simple formal mod-
els of these data encoding and decoding transformations.
Such models are general, in the sense that they do not
describe specific implementations, but rather they capture
only some general assumptions that are made on implemen-
tations. Verifying a real protocol implementation can thus
be reduced to verifying that the protocol implementation
fulfils the assumptions made and verifying that the model
satisfies the required security properties. Of course, this ap-
proach is advantageous with respect to other approaches,
provided that the general models are simple enough and the
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assumptions made are easy to be checked on real protocol
implementations.

The second step that is made is to show that these models
can be further simplified, using fault-preserving transforma-
tions like the ones introduced in [7]. The result that is finally
obtained is that, under some further simple assumptions, the
protocol models including implementation details can be
transformed back into the original abstract protocol mod-
els without implementation details, and the classical secu-
rity faults (secrecy and authentication) are preserved in this
transformation. This means that, provided all the assump-
tions we made are verified on a given implementation, the
formal model of the implementation details can be safely
abstracted away in verifying the desired security properties.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the notation and the modelling approach,
based on CSP, that is used to reason on security protocols
throughout the paper. Section 3 introduces detailed security
protocol models including marshalling and unmarshalling
operations, and the conditions under which they can be ab-
stracted. Section 4 discusses about the application of the ob-
tained results through an example, and section 5 concludes.

2. Abstract Protocol Models and Notation

The formalism used in this paper is based on CSP [12],
and the datatype definitions and protocol models are an ex-
tension of the ones used in [7]. Essentially, they follow
the Dolev-Yao approach [5]. The main extension w.r.t. [7]
is an added support for non-atomic keys. This extension
enables to model protocols where the key is constructed
from non-atomic data. The new datatype is defined as

Message ::=
ATOM Atom | PAIR Message Message |
SHKEY Message | PUBKEY Message |
PRIKEY Message | HASH Message |
SHKEYENCRYPT Message SHKEY Message |
PUBKEYENCRYPT Message PUBKEY Message |
PRIKEYENCRYPT Message PRIKEY Message.

This definition has been developed using the following
guidelines: First, each key is typed. It is possible to obtain
a key from generic material (that is, any generic Message).
Then, there is no longer need for the inverse K−1 of a key
K. Indeed, the key construction operators PUBKEY and
PRIKEY fulfil this role. Finally, no new types are added in
order to represent encoding parameters, because the idea is
to have a single datatype that can be used to model a proto-
col at different detail levels.

In order to get better reading for processes, the following
syntactic sugar is also provided:

Message Symbol
PAIR M M ′ (M,M ′)
SHKEY M M∼

PUBKEY M M+

PRIKEY M M−

HASH M H(M)
SHKEYENCRYPT M SHKEY K {M}K∼

PUBKEYENCRYPT M PUBKEY K {M}K+

PRIKEYENCRYPT M PRIKEY K {M}K−

Once the datatype is defined, it is also necessary
to update the intruder knowledge derivation relation
`. Eleven rules are defined for this new datatype:

member: M ∈ B ⇒ B `M
pairing: B `M ∧B `M ′ ⇒ B ` (M,M ′)
splitting: B ` (M,M ′)⇒ B `M ∧B `M ′

key deriv.: B ` K ⇒ B ` K∼ ∧B ` K+ ∧B ` K−

hashing: B `M ⇒ B ` H(M)
shared key encr.: B `M ∧B ` K∼ ⇒ B ` {M}K∼

public key encr.: B `M ∧B ` K+ ⇒ B ` {M}K+

private key encr.: B `M ∧B ` K− ⇒ B ` {M}K−

shared key decr.: B ` {M}K∼ ∧B ` K∼ ⇒ B `M
public key decr.: B ` {M}K+ ∧B ` K− ⇒ B `M
private key decr.: B ` {M}K− ∧B ` K+ ⇒ B `M

Honest agents and the intruder remain unchanged
from [7]. For completeness, they are briefly recalled here.

A honest agent can take part in a protocol by using the
events:

send.A.B.M if agent A sends message M , with in-
tended recipient B;

receive.A.B.M if agent B receives message M , appar-
ently from agent A;

claimSecret.A.B.M if A thinks that M is a secret
shared only with B; if B is not the intruder, then the in-
truder should not learn M ;

running.A.B.Ms if A thinks it is running the protocol
with B; Ms is a message sequence, recording some details
about the run in question.

finished.A.B.Ms if A thinks it has finished a run of
the protocol with B; Ms is a message sequence, recording
some details about the run in question.

The send and receive events can also be treated as chan-
nels, used by agents to exchange data; the remaining events
are used to formally define the desired security properties
of the protocol. Honest is the set of all honest agents.

The intruder acts as the medium, thus being allowed to
see, modify, forge or drop any message. It uses its knowl-
edge derivation relation ` to forge new messages from the
previously learnt messages. The set of messages it can de-
rive from an initial knowledge S is defined as

deds(S) , {M ∈Message |S `M}.
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Finally, the formal definition of the intruder is

INTRUDER(S) ,
�M∈Messagesend?A?B!M → INTRUDER(S ∪ {M})

2�M∈deds(S)receive?A?B!M → INTRUDER(S)
2�M∈deds(S)leak.M → INTRUDER(S)

where send and receive are the communication channels,
and leak.M is the event that signals that the intruder can
derive M from its current knowledge. The set of all agents
is defined as Agent = Honest ∪ {INTRUDER}.

Like in [7], attacks are specified as trace properties. A
trace specification SPEC(tr) is a predicate whose free
variable tr represents a trace. A process satisfies a speci-
fication if the SPEC(tr) predicate is true for all the traces
of the process:

P sat SPEC ⇔ ∀ tr ∈ traces(P ) · SPEC(tr).

Two predicates, namely secrecy and authentication, are
defined.

Secrecy states that if agent A believes that message M is
shared only with honest agent B, then the intruder must not
be able to derive M from its knowledge.

Secrecy(tr) , ∀ A ∈ Agent;B ∈ Honest ·
claimSecret.A.B.M in tr ⇒ ¬leak.M in tr

Authentication states that, for each protocol run that A
thinks it has finished with B, B must have started a protocol
run with A, and both A and B must agree on some set Ms

of data, belonging to AgreementSet.

AgreementAgreementSet(tr) ,
∀ A ∈ Agent;B ∈ Honest;Ms ∈ AgreementSet ·

tr ↓ finished.A.B.Ms ≤ tr ↓ running.B.A.Ms

where tr ↓ ev is the number of events ev appearing in the
trace tr.

3. Modelling and Simplifying the Channel En-
coding/Decoding Layer

In interoperable protocol implementations, all actors
must exchange data encoded by the specified external repre-
sentation, however, they can store data encoded in any inter-
nal representation, provided there exist some functions that
can translate to and from the two. In this paper, such trans-
lation functions are called the “encoding/decoding layer”.
It is assumed, and thus modeled accordingly, that, as usual,
such encoding/decoding layers are implemented separately
from the protocol logics.

Following the CSP modelling approach presented in [7],
and recalled in section 2, an actor performs all of its in-
puts on the receive channel, and all of its outputs on the

Figure 1. Actors A and B with INTRUDER in
SYSTEM .

send channel. Then, for actors A and B, the abstract formal
model of a protocol can be represented as in figure 1.

The model representing all the honest agents and the in-
truder is called SYSTEM, and is formally defined as

SYSTEM , INTRUDER(IK0) ‖ (|||A∈HonestPA)

where, for each A ∈ Honest, PA is the CSP process
that describes A’s behavior, and IK0 is the initial intruder
knowledge. That is, the intruder and the protocol agents are
synchronized on their common events.

It must be noticed that in SYSTEM the actors directly
exchange the abstract representation of data with the in-
truder.

In order to model the encoding/decoding layer, a refined
model SYSTEM ′ is defined as depicted in figure 2 for ac-
tors A and B.

Basically, SYSTEM ′ acts like SYSTEM , but it is ex-
plicitly modeled that the external representation of data is
being sent over send and receive. More precisely, for each
honest agent A, the coupled processes P ′A and EA represent
respectively the protocol logic and the encoding/decoding
layer of a program. So each P ′A in SYSTEM ′ acts like its
corresponding PA in SYSTEM , but it is explicitly modeled
that it sends its internal representation to its coupled encod-
ing layer EA, which in turn sends the encoded data to the
intruder, and vice versa.

This model can be described in CSP for all the honest
agents as

SYSTEM ′ , INTRUDER(IK ′0) ‖
(((|||A∈HonestP

′
A) ‖ (|||A∈HonestEA)) \ {int})

where int = int send, int receive.
It could be argued that, potentially, this model allows

each honest agent to send messages to any encoding layer,
and vice versa. However, implementations of protocol logic
and its coupled encoding layer are very often part of the
same application, so errors that would lead honest agents or
encoding layers to communicate with the wrong process are
not realistic. For this reason, a correct model P ′A for the pro-
tocol logic must be defined such that it will only exchange
messages with its coupled encoding layer model EA, and
vice versa. Indeed, the assumption that the definitions of
agent and encoding layer models are correct, implies that
such errors cannot happen in the model too. For the same
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Figure 2. Actors A and B with INTRUDER in SYSTEM ′.

reason, it is reasonable to hide the program internal com-
munication channels int send and int receive from the in-
truder’s view.

Finally, the relation between each PA and the cor-
responding P ′A and the formal definition of each EA

are given. For each PA, P ′A can be built by refin-
ing PA so as to model the information that the pro-
tocol agent must provide to the encoding/decoding
layer for its proper working. More precisely, P ′A is
obtained from PA by replacing each send.A.B.M
event in PA with int send.A.B.(ATOM L, (a, M)),
and each receive.B.A.M event with
int receive.B.A.(ATOM L, (a, M)). Here, ATOM L
is a special atom not present in the definition of PA, whose
only purpose is to tag the data exchanged on the internal
channels, and a is such that a ∈ Encoding ⊆ Message
where Encoding is the set of messages that can be used as
encoding/decoding parameters.

It is worth noting that an accurate model must set, for
each message M that is sent or received, its correct en-
coding parameters a according to the protocol specification
documents. It can also be noted that the encoding parame-
ters may or may not be already present in PA. For example,
if the encoding parameters a are being negotiated within
the protocol logic, then a will be already present in PA. Be-
cause of this, it is possible that the message (a, M) already
exists in PA. This is why we want to distinguish the mes-
sages (a, M) already present in PA, from those added when
deriving P ′A, which is achieved by the special label message
ATOM L, which has the property of never appearing in PA.
Since ATOM L is just a syntactic marker, it is assumed that
neither PA nor P ′A ever accept ATOM L on inputs or send
it on outputs, with the only exception when ATOM L is ex-
plicitly needed as syntactic marker.

Each process EA models the behavior of the encod-
ing/decoding layer. Because of this, it is able to perform
two kinds of actions: receive from its coupled process P ′A
internal representations of data, along with encoding param-
eters, and send encoded data to the INTRUDER process;
receive encoded data from the INTRUDER process, and
send to its coupled process P ′A the internal representation,
obtained using the decoding parameters specified by P ′A.

Apart from these assumptions on the possible interac-
tions of EA, it is assumed that internally EA can behave in
any way. The only restriction is that EA can access only the

data explicitly provided from outside. This behavior can be
represented by the CSP process in figure 3, where eA(a, M)
and dA(a, y) represent the result of the encoding and decod-
ing operations and are messages such that

eA(a, M) ∈ deds({a, M}) ∧ dA(a, y) ∈ deds({a, y})
(1)

By this definition, it is possible to state some proper-
ties of the modeled encoding/decoding layer EA. The re-
sult eA(a, M) of encoding M with parameters a can be
anything that can be derived from M and a. Two aspects
of this definition are particularly interesting: eA(a, M) can
contain the same or less information than M ; all informa-
tion in eA(a, M) that is not present in M must be present in
a. That is, a possibly incorrect encoding function can loose
some information on M , but can only use information that
comes from the internal representation and from the encod-
ing parameters. In order to model some information that is
hard coded into the encoding function implementation, it is
needed to explicitly add that information to a. The same
reasoning applies to the result dA(a, y) of decoding y with
parameters a.

Another property implied by this model is that one com-
putation of eA(a, M) and of dA(a, y) has no side effects
and is memoryless. Encoding mechanisms with memory
are not considered here.

It is worth noting that all the properties of the modeled
encoding layer, namely that the only data accessed by the
encoding/decoding functions, including hard-coded values,
are their input parameters and that no side effect occurs, are
information flow properties that can be verified on imple-
mentation code, by means of static sequential code analysis
techniques.

3.1. Model Simplifications

Removing the Encoding/Decoding Layer. The re-
moval of the encoding/decoding layer from SYSTEM ′

leads to a new process SYSTEM ′′, defined as

SYSTEM ′′ , INTRUDER(IK ′′0 ) ‖ (|||A∈HonestP
′
A)

where the initial intruder knowledge is now called IK ′′0 and
is assumed to be defined as

IK ′′0 , IK ′0 ∪ Encoding ∪ {ATOM L} (2)
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EA(i s, i r, s, r) , 2
�a∈Encoding,M∈Message i s!A?B!(ATOM L, (a, M))→ s!A!B!eA(a, M)→ EA(i s, i r, s, r)
�y∈Message r?B!A!y → �a∈Encoding i r!B!A!(ATOM L, (a, dA(a, y)))→ EA(i s, i r, s, r)

Figure 3. Formal definition of EA process.

The fault preservation of this transformation is expressed
by:

Theorem 1 If the definition of attack does not involve the
send and receive events, then if an attack exists in a
trace tr′ of SYSTEM ′, then there exists a trace tr′′ of
SYSTEM ′′, such that an attack exists in tr′′. Formally,
let comm = {send, receive}, then

P sat SPEC ⇔ P \ comm sat SPEC (3)
=⇒

SYSTEM ′′ sat SPEC ⇒ SYSTEM ′ sat SPEC

A formal proof of this theorem is not included here for lack
of space. It can be found in [10].

Theorem 1 is a general result, valid for any security
requirement SPEC, not only secrecy or agreement, pro-
vided that SPEC does not involve the send and receive
channels, as formally stated by expression (3). This is
a reasonable constraint, because usually security proper-
ties are obtained by correct use of special events, such as
claimSecret, running or finished, and not directly by
observing the sequence of messages exchanged on the com-
munication channels.

This theorem states that in a protocol specification where
the encoding/decoding layer is modeled as previously de-
scribed, only the protocol logic represented by P ′A is re-
sponsible for the security properties of the whole pro-
tocol, while any possible implementation of the encod-
ing/decoding layer EA can be considered as part of the in-
truder, provided that the latter knows all required encoding
schemes (because Encoding ⊂ IK ′′0 ). It is also needed
that the intruder knows the syntactic marker ATOM L. This
is not an issue, since it is assumed that ATOM L will only
be treated as a marker by honest agents.

Note that no assumption on the invertibility of encod-
ing functions has been made, thus even erroneous specifica-
tions of encoding schemes are safe (thought not functional,
of course). Moreover, since no assumption on implementa-
tion correctness has been made, even erroneous implemen-
tations of the encoding scheme are safe, provided they sat-
isfy the data flow assumptions made.

Removing the Encoding Parameters. Since each P ′A is
being built from PA (plus other information), it is possible
to find a simplifying transformation that can take from P ′A
back to PA.

Simplifying transformations have been introduced in [7].
The work proposed here extends that approach, and applies
it in order to obtain new results.

A fault-preserving simplifying transformation in its sim-
plest form is a function f : Message → Message that
defines how messages in the original protocol are replaced
by messages in the simplified protocol. The function f is
then overloaded to take events, traces and processes, such
that all messages in the events, traces or processes are re-
placed.

As stated in [7], if SYSTEM R is a process and
SYSTEM A = f(SYSTEM R) where f(·) is a simplify-
ing transformation that satisfies conditions

∀ B ∈ P(Message);M ∈Message ·
B ∪ IKR

0 `M ⇒ f(B) ∪ IKA
0 ` f(M) (4)

f(IKR
0 ) ⊆ IKA

0 (5)

then SYSTEM A sat Secrecy ⇒
SYSTEM R sat Secrecy.

In this work, a sufficient condition for fault preserving
transformations with respect to authentication agreement
specifications, weaker than the one given in [7], is used:

∀Ms, M
′
s ∈ AgreementSet ·

Ms 6= M ′s ⇒ f(Ms) 6= f(M ′s)
(6)

That is, f(·) must be locally injective on AgreementSet,
and not on the whole Message set, like in [7]. The proofs
of this and other extensions can be found in [10].

A fault-preserving renaming transformation that trans-
forms P ′A into PA, and thus SYSTEM ′′ into SYSTEM , is
now introduced. Like in [7], this transformation collapses
each pair (M,M ′) belonging to the Pairs set into its first
item M .

The definition of f(·) is

f(ATOM A) = ATOM A,

f(M,M ′) =


f(M), if (M, M ′) ∈ Pairs

∧ ¬isPair(M ′),
(f(M), f(M ′)), if (M, M ′) /∈ Pairs

∧ ¬isPair(M ′),

f(M, (M ′, M ′′)) =
{

f(M,M ′′), if (M,M ′) ∈ Pairs,
(f(M), f(M ′, M ′′)), otherwise,

f({M}K∗) = {f(M)}f(K∗)

f(H(M)) =H(f(M))
f(K∗) = f(K)∗
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where K∗ ranges over {K∼, K+, K−}.
In order to preserve secrecy, f(·) must satisfy condi-

tions (4) and (5). It can be shown that if we set

IKA
0 = f(IKR

0 ) ∪ {f(M ′)|(M,M ′) ∈ Pairs} (7)

then condition (4) holds, and condition (5) is clearly satis-
fied too. Equation (7) states that the intruder must already
know the information that is going to be coalesced away.

In order to preserve agreement, f(·) must satisfy condi-
tion (6). In order to achieve this, only one additional con-
straint is required:

∀Ms ∈ AgreementSet; subM ∈ subterms(Ms) ·
isPair(subM)⇒ subM /∈ Pairs

(8)
where subterms(M) is the set containing M and all its
subterms. Constraint (8) means that no subterm of any
Ms ∈ AgreementSet that is a pair must be in the Pairs
set, that is if agreement is required on a pair, then that pair
must not be coalesced away.

Now it is possible to show how the coalescing pairs func-
tion f(·) can be safely used to transform P ′A into PA, and
thus SYSTEM ′′ into SYSTEM . It is worth reminding that
P ′A has been obtained from PA by replacing each sent or
received message M with (ATOM L, (a, M)). Then, the
following two steps are required in order to obtain back PA

from P ′A:

1. P tmp
A = f(P ′A), with Pairs = {(ATOM L, a)|a ∈

Encoding}

2. PA = fsym(P tmp
A ), with Pairs =

{(ATOM L, M)|M ∈Message}
where fsym(·) is the symmetric function of f(·), that coa-
lesces pairs of the form (M,M ′) into their second item M ′.

In step 1, the syntactic marker ATOM L is used to find
and remove all encoding parameters that have been added
by the representation of the encoding/decoding layer. Then,
step 2 removes the syntactic marker, finally obtaining PA.

Each one of these transformations preserves secrecy
and authentication if the required sufficient conditions (7)
and (8) hold.

In step 1, by setting IKtmp
0 = f(IK ′′0 ) ∪

f(Encoding) = f(IK ′0) ∪ f(Encoding) ∪ {ATOM L},
that is, by requiring that the intruder already knows all en-
coding schemes, condition (7) is clearly satisfied. As stated
above, ATOM L in the intruder knowledge is not an issue.

Moreover, condition (8) holds because Pairs ∩
subterms(AgreementSet) = ∅. Indeed, in step 1 each
element in Pairs has the form (ATOM L, a); but ATOM L
can never appear in any running or finished event, and
thus in any subterm of the AgreementSet, because it is as-
sumed that no honest agent will ever input or internally gen-
erate the ATOM L value, except when the syntactic marker
is explicitly needed.

SSHClient(IDC, me, you, CAlgs, TrustedKeys) =
send!me!you!IDC → receive!you!me?IDS →
ucookieC∈Cookies send!me!you!(cookieC, CAlgs) →
receive!you!me?(cookieS, SAlgs) →
g := Negotiate(CAlgs, SAlgs, ‘g’) ∈ Parameter
p := Negotiate(CAlgs, SAlgs, ‘p’) ∈ Parameter
ux∈DHSecrets send!me!you!EXP (g, x, p) →
receive!you!me?(KeyS+, DHPublicS, {sshash}KeyS− ) →
GO(EXP (DHPublicS, x, p), sshash, KeyS+, T rustedKeys)

Figure 4. A possible abstract model of an
SSH-TLP client.

In step 2, condition (7) is clearly satisfied if we set
IK0 = IKtmp

0 ; condition (8) holds because of the same
reasoning used for step 1.

4. Modelling an SSH Transport Layer Protocol
Client

In this example, another syntactic sugar is added: lists of
n messages are reduced to nested pairs. So, for example,
(M,M ′, M ′′) is equal to (M, (M ′, M ′′)).

The SSH Transport Layer Protocol [15] (SSH-TLP) is
part of the SSH three protocols suite [14]; in particular
it is the first protocol that is used in order to establish an
SSH connection between client and server. SSH-TLP gives
server authentication to the client, and establishes a set of
session shared secrets.

A possible abstract model of an SSH-TLP client is re-
ported in figure 4.

The SSHClient process begins a protocol session
with the server by sending it the client identification
string denoted IDC. The server responds with IDS,
the server identification string. Then the client sends a
nonce cookieC, followed by the client lists of supported
algorithms CAlgs. The server responds sending a nonce
cookieS, followed by the server lists of supported al-
gorithms SAlgs. The client then computes the value
of the Diffie Hellman (DH) parameters g and p by the
Negotiate(CAlgs, SAlgs, Param) function, which re-
turns the requested negotiated algorithm parameter named
Param, obtained from the supported client and server algo-
rithms CAlgs and SAlgs. Here, Parameter ⊆ Message
is the set of all messages that can be used as DH param-
eters. Once g and p have been obtained, the client sends
its DH public key EXP (g, x, p), which is a message rep-
resenting gx mod p. This message is added to the datatype
and is defined as

EXP Message, Message, Message

along with the syntactic sugar EXP g, x, p = EXP (g, x, p).
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From the point of view of the intruder knowledge derivation
relation `, the EXP (·) message is like an hash. Only a
single ‘exponentiation’ rule, defined as

B ` g ∧B ` x ∧B ` p⇒ B ` EXP (g, x, p)

is needed. This rule is similar to the ‘hashing’ one. For this
reason, all previously proven results still hold.

The EXP (·) function has the following additional prop-
erty

EXP (EXP (g, y, p), x, p) = EXP (EXP (g, x, p), y, p)
(9)

so that two messages satisfying equation (9) are considered
equal by all parties, both protocol actors and the intruder.

When the EXP function is used for the DH key ex-
change algorithm, x and y can be considered as DH pri-
vate keys, EXP (g, x, p) and EXP (g, y, p) as DH public
keys, and the expression in (9) as the DH shared key that
can be obtained by each actor. Finally, g and p are the
DH group parameters, that must be explicitly represented
in the datatype, in order to express the exponentiation prop-
erty. In the next step of the protocol, the client receives
a message containing the server public key KeyS+, the
server DH public key DHPublicS and the server signed
final hash {sshash}KeyS− . The server will compute its
DH public key as DHPublicS = EXP (g, y, p), where
y is the server’s DH private key. However the client is
modeled to receive an opaque DHPublicS message, be-
cause the server DH public key is an opaque value from the
client’s point of view. The server final hash sshash is the
value upon which agreement is required, and contains all
the relevant data of a protocol session, i.e.

sshash = H(H(IDC, IDS, (cookieC,CAlgs),
(cookieS, SAlgs), KeyS+, EXP (g, x, p),
DHPublicS,EXP (DHPublicS, x, p)))

It is worth to notice the double hashing H(H(·)). The inter-
nal hash is the final hash, computed on all relevant session
data, prescribed by the protocol specification, while the ex-
ternal hash is the one required by the signature algorithm,
which prescribes to hash, and then cipher, the value that
must be signed. The EXP (DHPublicS, x, p), that is used
inside the final hash, is the DH shared key as computed by
the client, that is the session secret shared between the client
and the server. Finally, the GO(·) process is defined as

GO(DHKey, sshash,KeyS+, T rustedKeys) =
(claimSecret.me.you.DHKey →

finished.me.you.sshash)
|< KeyS+ ∈ TrustedKeys |> STOP

where P |< b |> Q means if b then P else Q. That is, if the
server public key KeyS+ is in the TrustedKeys set, the

SSHClientRef(IDC, me, you, CAlgs, TrustedKeys) =
send!me!you!(ATOM L, (string, IDC)) →
receive!you!me?(ATOM L, (string, IDS)) →
ucookieC∈Cookies send!me!you!(ATOM L,

(KEX, (cookieC, CAlgs))) →
receive!you!me?(ATOM L, (KEX, (cookieS, SAlgs))) →
g := Negotiate(CAlgs, SAlgs, ‘g’) ∈ Parameters
p := Negotiate(CAlgs, SAlgs, ‘p’) ∈ Parameters
ux∈DHSecrets send!me!you!(ATOM L,

((bin pack, mpint), EXP (g, x, p))) →
receive!you!me?(ATOM L, ((bin pack, string, mpint, string),

(KeyS+, DHPublicS, {sshash}KeyS− ))) →
GO(EXP (DHPublicS, x, p), sshash, KeyS+, T rustedKeys)

Figure 5. A possible refined model of an SSH-
TLP client.

set of server public keys trusted by the client, then the proto-
col run ends well, and all security properties can be claimed,
namely the secrecy of the DH shared key DHKey, and the
agreement on the server signed final hash, sshash.

Now that the abstract model of the client has been intro-
duced, figure 5 shows the refined client model, which takes
interaction with the encoding/decoding layer into account.

In this refined model,

KEX = (bin pack, bytes, namelists)
Encoding = {string, bin pack, bytes, namelists, mpint}

and each send or receive event has its own associated mar-
shalling parameters, as specified by the SSH-TLP descrip-
tion [14, 15].

The simplifying transformation as described in sec-
tion 3.1 maps the SSHClientRef process back onto the
SSHClient process.

If secrecy or authentication are going to be verified, then
it is possible to verify the abstract model, provided that
the intruder knows all the encoding schemes. If instead
other properties are going to be verified, the refined client
model should be used. Note that, even if this model is a
bit more complex than the abstract one, it is still much sim-
pler than a fully refined model including marshalling and
unmarshalling operations.

5. Conclusions

The work presented in this paper is a useful step towards
the verification of refined security protocol models that take
encoding and decoding data transformations into account,
thus allowing formal verification to get closer to protocol
code written in a programming language.

The main contribution of the paper is the formulation of
a set of sufficient conditions under which the models of mar-
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shalling and unmarshalling operations applied when send-
ing and receiving messages on channels can be safely sim-
plified or even completely abstracted away, and its formal
justification.

A refined protocol model corresponding to a typical lay-
ered implementation of such operations has been defined.
It has been shown that, in order to verify secrecy or au-
thentication properties on the refined model, it is enough to
verify those properties on the corresponding abstract model,
provided that the intruder knows the encoding parameters,
which is a reasonable assumption. Alternatively, in order to
check a generic security property defined on protocol traces,
still a simplified refined model can be used, in place of the
full one.

The model of encoding schemes that has been developed
in this work is general enough to take into account a widely
used class of encoding schemes, namely the memoryless
and side effect free ones. Moreover, no assumption has been
made on encoding scheme invertibility, nor on implementa-
tion correctness; it is required instead that the implemen-
tation of encoding and decoding functions satisfies some
data flow properties, that can be checked by standard static
analysis techniques. The exploitation of this result is that,
if some data flow properties are satisfied on implementa-
tion code, then even erroneous specifications or implemen-
tations of encoding schemes cannot be more harmful than
an intruder is.

Although some of these results are probably not so sur-
prising, all of them have been formally stated for the first
time in this paper, and they find application in improving
the development of formally verified implementation code
of security protocols, both using the code generation ap-
proach or the model extraction approach.

With code generation, the developer only needs to write
the abstract protocol model, and the code generation engine
can take care of ensuring that the generated code meets the
needed requirements.

When adopting a model extraction approach, it is pos-
sible to avoid extracting from code a complex model that
represents all the implementation details of encoding and
decoding functions, but a simpler model can be extracted,
provided that some static checks are first made on the im-
plementation code.

We can expect that, by abstracting away implementation
details from the model, a reduction in the time needed for
formal verification and the possibility to analyze more com-
plex protocols are finally achieved. It may be argued that,
in order to abstract details away, some properties have to be
verified on the implementation code. This is true, however,
the implementation code to be checked is sequential, and
thus easier and faster to be checked in isolation than it is
checking a protocol model that includes a detailed model of
the encoding and decoding functions.

Some issues on the topics presented in this paper are still
open for future work. In particular, it can be interesting
to explore under which conditions the final transformation
back to the original abstract model is safe for other secu-
rity trace properties. Another interesting further work is to
consider verification with computational models instead of
verification with Dolev-Yao models.
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