
Spi2Java: Automatic Cryptographic Protocol
Java Code Generation from spi calculus

Davide Pozza, Riccardo Sisto

Politecnico di Torino

Dip. di Automatica e Informatica

c.so Duca degli Abruzzi 24

I-10129 Torino (Italy)

Davide.Pozza, Riccardo.Sisto@polito.it

Luca Durante

IEIIT - CNR

c/o Politecnico di Torino

c.so Duca degli Abruzzi 24

I-10129 Torino (Italy)

Luca.Durante@polito.it

Abstract
The aim of this work is to describe a tool (Spi2Java)

that automatically generates Java code implementing cryp-

tographic protocols described in the formal specification

language spi calculus. Spi2Java is part of a set of tools for

spi calculus, also including a pre-processor, a parser, and a

security analyzer. The latter can formally analyze protocols

and detect protocol flaws. When a protocol has been ana-

lyzed and an adequate confidence about its correctness has

been reached, Spi2Java can generate a corresponding cor-

rect Java implementation of the protocol, thus dramatically

reducing the risk of introducing security flaws in the coding

phase.

1 Introduction

One of the most challenging practical problems in mod-

ern computer science is how to ensure design and imple-

mentation correctness of security protocols. The role of

such protocols is to achieve security goals such as authenti-

cation, confidentiality and integrity, by using cryptography.

For this reason they are also called cryptographic protocols.

Recently, many research efforts have been dedicated to

the problem of analyzing the logical correctness of crypto-

graphic protocols (e.g.[3][2][6][7][11]), whereas the imple-

mentation correctness problem has not yet been considered

so much. One of the possible approaches to ensure imple-

mentation correctness is to produce implementations auto-

matically from formal specifications [7][12][9]. If the code

generator is such that the generated code faithfully imple-

ments the specification and avoids programming errors that

can lead to security breaches, implementation correctness is

achieved. Therefore, if the source specification is logically

correct, so is the implementation. In this paper we show

how this approach can be put into practice in a framework

where the target code language is Java and cryptographic

protocols are specified in spi calculus [1], a process alge-

braic specification language specifically tailored for such

protocols.

The rest of the paper is organized as follows. Section

2 briefly introduces spi calculus, section 3 presents the ar-

chitecture of Spi2Java, and sections 4-7 describe its compo-

nents. Section 8 gives some experimental results, section 9

discusses related work, and section 10 concludes.

2 Spi calculus

The spi calculus is defined in [1] as an extension of the

π calculus [8] with cryptographic primitives. It is a process

algebraic language designed for describing and analyzing

cryptographic protocols. The spi calculus has two basic lan-

guage elements: terms, to represent data, and processes, to

represent behaviors. In this paper we present only some fea-

tures of spi calculus, through an example, due to the limited

space. Fig. 1 shows the spi calculus1 specification of the

Andrew[5] key exchange protocol.

The specification is composed of two process descrip-

tions named pA and pB, which represent the two roles of

the protocol. The Inst process represents the interaction

scenario where an instance of pA and an instance of pB run

concurrently. The initiator role process pA and the Inst
process are parameterized by M, which is the data that must

be sent. M occurs explicitly as a parameter, because this is

required by the security analysis tool [3]. In contrast, the

other protocol parameters are all implicit.

The left column of Fig. 1 shows the exchanged messages

using the informal, intuitive representation often encoun-

tered in the literature, where A → B :σ means that A sends

1Spi2Java uses some typographic conventions respect to the original

spi calculus

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

user
©2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE

A->B: A,Na pA(M):=
 (@Na)
 cAB<A,Na>.

pB():=
 cAB(xA,xNa).

B->A: {(Na,k1AB)}kAB cAB(xMSG).
 (@KeyStore)
 KeyStore.
 KeyStore(kAB).
 case xMSG of
 {xNa,xk1AB}kAB in
 [xNa is Na]

 (@KeyStore)
 KeyStore<xA>.
 KeyStore(kAB).
 (@k1AB)
 cAB<{xNa,k1AB}kAB>.

A->B: {Na}k1AB cAB<{Na}xk1AB>. cAB(xMSGcypher).
 case xMSGcypher of
 {xnewNa}k1AB in
 [xnewNa is xNa]
 KeyStore<xA,k1AB>.

B->A: Nb cAB(dummy).
 KeyStore<B,xk1AB>.

 (@Nb)
 cAB<Nb>.

A->B: {M}k1AB cAB<{M}xk1AB>.0 cAB(Mcypher).
 case Mcypher of
 {x}k1AB in 0

Inst(M):=(pA(M)|pB())

Figure 1. The Andrew Protocol spi calculus
specification

message σ to B. The central column shows the spi calcu-

lus specification for process pA, whereas the right column

shows the behavior of process pB.

The Andrew protocol assumes that each process has a

local key store where symmetric keys are stored. Since the

key store explicitly partakes in the protocol, it must be mod-

elled in spi calculus. Our simple modelling strategy is to

represent the key store as a separate process (not shown in

Fig. 1) that interacts with the corresponding protocol prin-

cipal through a dedicated communication channel (the Key-

Store channel). The operations of getting and storing a key

are modelled as inputs and outputs on the key store channel

respectively. More precisely, a key is stored in the key store

under an alias, which permits its unique identification. So,

the operation of retrieving a stored key is represented by

the statements KeyStore < xA > .KeyStore(kAB) where

KeyStore denotes the interaction channel, xA is the alias

and kAB is the variable where the key extracted from the

key store is saved. The corresponding storing operation is

described by the statement KeyStore < xA, k1AB > where

k1AB is the key that must be stored under the alias xA. Note

that the visibility of the KeyStore term is restricted with

the @ operator, so it is considered private for the process. In

a run of the Andrew protocol, five messages are exchanged

between pA and pB over channel cAB: 1)pA sends pB its

identifier A and Nonce Na. pB receives the message and

stores the two fields in variables xA and xNa respectively.

2)pB retrieves key kAB, shared with pA, from its local Key-

Store and builds a new fresh key k1AB, that together with

xNa is encrypted with kAB and the result is sent to pA. pA
receives the message and decrypts it by means of kAB re-

trieved from its local Key Store. The two fields of the com-

puted cleartext (Na and k1AB) are stored in xNa and xK1AB
and the match between the value of Na and xNa is checked.

transport layer.

Java Library

implementing the

Text File,

containing a

Spi-Calculus

protocol

description

Pre-processor

and

Parser

Term typer and

description checker

Automatic generator

of Java code

Java Code

implementing the

cryptographic

protocol

The Java security

library:

it.polito.SecureClasses

Specification

File

Symbol

Table

Figure 2. The Spi2Java Program Architecture

3)pA sends pB the nonce Na encrypted with the shared key

k1AB. pB decrypts the message and checks the match be-

tween the received nonce xnewNa and xNa. Then pB stores

k1AB under the alias A in its local KeyStore, thus overwrit-

ing kAB. 4)pB sends pA a fresh nonce Nb. pA receives the

nonce and replaces kAB with k1AB in its local KeyStore.

Now the key is fully agreed. 5)pA uses k1AB to encrypt the

secret message M and sends it to pB. pB receives the en-

crypted message, decrypts it and stores M in variable x.

3 The Tool Architecture

The generated code is organized as one independent pro-

gram for each protocol role, and such programs can be acti-

vated at need whenever a new session of the protocol must

be executed. Therefore, Spi2Java generates a single proto-

col role at a time (like pA of Fig. 1). Processes that specify

only particular instantiation scenarios of protocol sessions

(like Inst of Fig. 1) are not relevant and are ignored during

code generation.

The Spi2Java program is composed of two modules:

a Term Typer and Description Checker and an Automatic

Generator of Java Code. The generated code is based on

Java library modules implementing, in a configurable way,

the elementary operations that can occur in spi calculus de-

scriptions. Fig. 2 shows the dataflow for the whole tool

architecture.

4 The Term Typer and Description Checker

Spi calculus is not typed, so the Term Typer and Descrip-

tion Checker is responsible to fill the information gap be-

tween protocol specification and implementation for what

concerns data types. In particular, this functional block au-

tomatically checks whether term variables are used consis-

tently within a protocol role process and, if this check is

positive, automatically assigns concrete Java types to term

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

SharedKeyT IdentifierChannelId NonceT

PairT

Level 2HashT

Name

Level 1 Message

SharedKeyCiphered

Level 3

Figure 3. The term type class hierarchy

variables. Term type assignments are performed by an al-

gorithm that associates any term variable with the most spe-

cialized Java class that safely represents it. The user can

manually enforce more specialized types for certain vari-

ables by means of the Specification file, which is read and

interpreted by this module. Manually specifying a more

specialized type is possible but not necessary. For exam-

ple, if a process does not perform any operation on a term

except sending it out, the Message type is perfectly appro-

priate for that term.

We use a class hierarchy organized on three specializa-

tion levels (Fig. 3 shows only some of the classes, due to the

limited space, although Spi2Java deals with all the spi cal-

culus features) for those terms that could be sent over chan-

nels and another simple hierarchy for communication chan-

nels, since channel classes depend on the applied Trans-

port Library and on the process role (client/server). So a

term is typed as Channel when it is a generic communica-

tion channel used to send/receive messages or as KeyStore
which is a possible specialization of Channel, when it repre-

sents the access point to a local key store where keys and/or

digital certificates are stored. Here is a brief description of

the meaning of term classes shown in Fig. 3. Message is

the less specialized type, because it represents any message.

A term is typed as Message whenever the algorithm is not

able to determine a more specialized type for it. Name is a

partially specialized type that represents any non-structured

spi calculus term (i.e. a spi calculus name). Name is im-

plemented by a class that cannot be instantiated, because

objects of this class are always objects of more specialized

concrete classes. A Name can be any level 3 class object

but it can even be an object of a new user-defined derived

class. ChannelId represents a channel identifier. It is use-

ful for sending over an existing channel the information for

opening a new communication channel with a server role.

SharedKeyT represents a key for use with symmetric cryp-

tosystems. NonceT represents a randomly chosen sequence

of bits. Identifier represents some information which iden-

tifies an entity in a unique way. For example, it can be used

as an alias to identify a key stored inside a KeyStore. HashT
represents the result of applying a cryptographic hash func-

tion on some data SharedKeyCiphered represents the re-

sult of a symmetric cryptographic operation on some data.

The operation can be either an encryption or a decryption.

PairT represents a container of a couple of objects that can

be of heterogeneous types. A tuple of objects is translated,

inside the program, into nested Pair objects.

5 The SecureClasses Library

The SecureClasses security library provides a set of

classes that implement in a flexible and configurable way

all the elementary data types and cryptographic operations

that can be abstractly expressed in spi calculus. This library

acts as a general interface toward security providers, which

are responsible to provide the concrete implementations of

cryptographic algorithms. The providers used to test Se-

cureClasses and the generated code are those by SUN 2 and

IAIK 3. This library heavily relies on Java Serialization to

build data packets to be sent on communication channels

and/or to be encrypted. The SecureClasses library has been

designed with special care, pursuing several goals: 1) There

is a strict correspondence whereby each spi calculus term

corresponds to a Java class in the SecureClasses library as

shown in Fig. 3. Note that each spi calculus statement cor-

responds to a simple Java construct calling a method in one

of the term objects. 2)Classes and methods hide the in-

ternal complexity of the cryptographic algorithms behavior

and management. 3)The user is able (by means of a special

class where constants can be modified) to customize the in-

ternal behavior of classes, choosing the security provider,

the algorithm and the related parameters for each different

kind of cryptographic operation. 4)Attention has been paid

to achieve efficiency of the generated code, thanks to the ef-

ficiency of the classes implementation. 5)Each class imple-

mentation has been kept as close as possible to its abstract

model, and programming errors that can lead to known se-

curity breaches have been avoided. Note that a complete

adherence is not achievable since the used cryptography is

not perfect. In fact the implementations of cryptographic

operations can only approximate the idealized behavior of

cryptographic algorithms. For example, assuming perfect

cryptographic conditions (perfect encryption) the hashes of

different messages never collide.

6 The Transport Layer Interface

The SecureClasses library includes three interfaces

named ChannelId to represent a channel identifier, Chan-

nelT to represent a generic client/server communication

2The SUN-JCE provider is furnished as extension with the JCE 1.2.x

or included inside the JDK 1.4, it is available at http://java.sun.com
3The IAIK-JCE provider is a product of IAIK, it is available at

http://www.iaik.tugraz.at

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

channel, and ServerT to represent the generic server pro-

cess waiting for incoming client requests. All these classes

are the interaction point with the Transport Layer Library

that is used. In this way, transport layer independence is

achieved for the generated code. The user can specify it by

means of the Specification file.

The transport layer classes hide transport layer manage-

ment and enable the direct translation of any spi calculus

input/output operation into proper Java code.

7 The Java Code Automatic Generator

The Java automatic generator provides the Java imple-

mentation of the protocol role described in spi calculus

and is partially guided by the Specification file, where the

user can specify several implementation choices, such as

for example which role (client/server) must be assigned

to a spi calculus process, what terms are return parame-

ters and what transport layer library must be used. The

generated code uses classes and methods provided by the

it.polito.SecureClasses and by the Transport Library mod-

ule that has been chosen.

Starting from a spi calculus specification, and the related

Specification file, the Code Generator writes the Java pro-

tocol implementation class on the Protocol file. The Code

Generator also produces an application skeleton (on the Ap-

plication file) and some other class files useful to launch the

client application/server, since the user will typically use the

protocol handshake as a prelude of a target application.

The Protocol file is generated by syntax directed transla-

tion of the spi calculus behavior expression. More precisely

the spi calculus syntax tree is visited and for each spi calcu-

lus operation, the Java code that implements it is generated,

preceded by a description comment. The latter enhances

code readability and makes the correspondence with the spi

calculus specification visible. Fig. 4 shows the most inter-

esting piece of code generated in the Protocol file for the

pA process of the Andrew protocol. Return objects are re-

trievable by the method getReturnParameter(inti) (not

shown here). ClassCastExceptions are generated when

a wrong cast happens. This may happen during message

receive and deserialization operations.

7.1 Generated Java Code Characteristics

Spi2Java is coupled with a protocol analyzer [3] that can

detect design protocol flaws on spi calculus specifications.

Using the analyzer, a reasonable confidence about the log-

ical correctness of the specified protocols can be reached.

The main objective of Spi2Java is to derive protocol im-

plementations that are as faithful as possible to the original

formal protocol specification that has been analyzed. This

is achieved by performing a syntax driven translation where

 1:public class andrewPA_Protocol {
 2:
 3:/* Object containing Return Parameters */
 4:private Message retPar;
 5:
 6:/* The number of Return Parameters */
 7:private int nPar;
 8:
 9:public andrewPA_Protocol (Message M_1, IdentifierT A_0, IdentifierT B_0,
10: TcpIpClientChannel cAB_0, LoadKeyStore KeyStore_5)throws ProtocolException {
11: try {
12:
13: /* cAB_0<(A_0,Na_2)> */
14: NonceT Na_2 = new NonceT();
15: PairT Pair__A_0__Na_2 = new PairT(A_0, Na_2);
16: cAB_0.Send(Pair__A_0__Na_2);
17:
18: /* cAB_0(xMSG_4) */
19: SharedKeyCiphered xMSG_4 = (SharedKeyCiphered) cAB_0.Receive();
20:
21: /* KeyStore_5<B_0>
22: KeyStore_5(kAB_7) */
23: PasswordManager pm0 = new ConstantPassword();
24: SharedKeyT kAB_7 = new SharedKeyT(B_0.getIdentifier(), KeyStore_5.getKeyStore(), pm0);
25:
26: /* case xMSG_4 of {_w0_8}kAB_7 in */
27: SharedKeyCiphered _w0_8 = new SharedKeyCiphered(xMSG_4.getEncoded(), kAB_7,
28: Cipher.DECRYPT_MODE, xMSG_4.getIV());
29:
30: /* let (xNa_9,xk1AB_9) = _w0_8 in */
31: PairT Pair__xNa_9__xk1AB_9 = (PairT) DeserializeT.getDeserializeT(_w0_8.getEncoded());
32: NonceT xNa_9 = (NonceT) Pair__xNa_9__xk1AB_9.getFirst();
33: SharedKeyT xk1AB_9 = (SharedKeyT) Pair__xNa_9__xk1AB_9.getSecond();
34:
35: /* [xNa_9 is Na_2] */
36: if(!xNa_9.isEqual(Na_2))
37: throw new ProtocolException("Match test is false!");
38:
39: /* cAB_0<{Na_2}xk1AB_9> */
40: SharedKeyCiphered Na_2_SharedKeyCiphered_xk1AB_9 = new SharedKeyCiphered(
41: SerializeT.getSerializeT(Na_2), xk1AB_9, Cipher.ENCRYPT_MODE, null);
42: cAB_0.Send(Na_2_SharedKeyCiphered_xk1AB_9);
43:
44: /* cAB_0(dummy_12) */
45: Message dummy_12 = (Message) cAB_0.Receive();
46:
47: /* KeyStore_5<(B_0,xk1AB_9)> */
48: PasswordManager pm1 = new ConstantPassword();
49: xk1AB_9.addToKeyStore(B_0.getIdentifier(), KeyStore_5.getKeyStore(), true , pm1);
50:
51: /* cAB_0<{M_1}xk1AB_9> */
52: SharedKeyCiphered M_1_SharedKeyCiphered_xk1AB_9 = new SharedKeyCiphered(
53: SerializeT.getSerializeT(M_1), xk1AB_9, Cipher.ENCRYPT_MODE, null);
54: cAB_0.Send(M_1_SharedKeyCiphered_xk1AB_9);
55:
56: /* Build the container, for the objects we have to return. */
57: nPar = 1;
58: retPar = (SharedKeyT)xk1AB_9;
59:
60: } catch(java.lang.ClassCastException cce) {
61: throw new ProtocolException("An unexpected object has been received belonging to
62: class: " + cce.getMessage());
63: }
64:
65: }

Figure 4. The Andrew pA Protocol code

there is a one to one correspondence between each spi cal-

culus description element and a Java code fragment that im-

plements it. More precisely, a mapping is established from

spi calculus behavior expressions to behavior logics that use

classes of the SecureClasses library and from spi calculus

terms to classes of the SecureClasses library. This strat-

egy guarantees that the generated code structure reflects the

same structure of the original specification, ruling out hu-

man errors that are possible if coding is done by hand.

It is worth noting that spi calculus, differently from other

specification formalisms for cryptographic protocols that

describe only the exchanged messages, also enables precise

specifications of all the checks that must be performed by

the protocol roles. Accordingly, the resulting implementa-

tion includes exactly the specified checks, rather than any

possible check, as it would be needed starting from other

specification formalisms and using a conservative approach.

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

It is also worth noting that the protocol security analyzer

[3] models any cryptographic operation in an idealized way

(perfect encryption). Therefore, even if a protocol has been

shown correct from a logical point of view, it cannot be im-

plemented maintaining exactly the same semantics, so, it is

not possible, in general, to formally guarantee that the gen-

erated code behaves exactly as its formal protocol specifica-

tion. Nevertheless, even if it is impossible to achieve perfect

encryption, it is still possible to draw near it. In fact it is pos-

sible to change both security providers and algorithms for

any kind of cryptographic operation allowing the user to se-

lect implementations that best match the perfect encryption

assumption. This capability also gives the chance to easily

substitute an algorithm implementation that is affected by

an error, immediately as soon as it is discovered.

Let us consider now immunity of the generated code

from breaches due to programming errors. Since the gen-

erated code is simply a sequence of calls of methods from

the (SecureClasses and TcpIpLayer) libraries, it is enough

to achieve a high confidence about immunity of such li-

braries from breaches due to programming errors. In order

to achieve this, the libraries have been carefully developed

and have been extensively tested. Furthermore, the imple-

mentation of our libraries, and then of the protocol, is se-

cure against the following kinds of implementation weak-

nesses: Buffer overruns because the adopted implemen-

tation language is Java [15][4], which cannot be affected

by this kind of attacks (except for overflows in the JVM it-

self). In fact Java uses the following to safeguard the mem-

ory: array bounds are checked for each array access; there

are no pointers, memory is managed by reference (pointers

are one of the most bug-prone aspects of C and C++); ob-

ject casting is restricted (necessary to ensure type safety);

variables cannot be used before they are initialized (another

memory-protection mechanism); garbage collection auto-

matically frees memory (avoiding memory deallocation er-

rors). Type flaws that occur when a message is interpreted

in an incorrect form, because all messages are typed and

code always checks type inconsistencies and raises an ex-

ception when a mismatch occurs. Moreover note that in

our implementation all messages are serialized, so the de-

serialization mechanism fails and raises an exception if a

type flaw occurs. False input attacks because they rely on

unchecked input parameters, whereas checks on objects are

already specified in the spi calculus description, and their

specification correctness is verified by the security analyzer

program [3]. Moreover the implementation of our classes

provides all the necessary checks and generates an excep-

tion whenever a constraint is violated.

In conclusion, an overall high confidence about non-

vulnerability of the protocol implementation can be

reached. Moreover, the code is highly configurable, since

the user can independently select the security provider, the

cryptographic algorithms and their parameters. At the same

time, the protocol code implementation is optimized in the

sense that each object is created only when it is really

needed: this means that at each time all live objects are only

those strictly needed.

8 Testing and experiments

We have tested the it.polito.SecureClasses library using

all the features supported by the IAIK4 and SUN5 providers.

Moreover we have tested Spi2Java using several simple ad-

hoc protocol examples and some real known protocols: An-

drew, KSL, SSL, Needham-Schroeder.

9 Related work

In the last years some tools have been developed to spec-

ify, design, verify and implement cryptographic protocols.

While a lot of papers address protocol verification, only

some address automatic code generation [7] [12] [9].

We have chosen Java as the target language for proto-

col implementation, as in [7] [12] [9], due to the language

excellent security architecture and resistance to common se-

curity attacks [15] [4].

The choice of spi calculus as the language for protocol

specification gives some advantages with respect to previ-

ous works, because it allows to explicitly specify which

checks the protocol must perform. This implies that the

code generator, knowing what kind of controls must be im-

plemented, can avoid to generate controls that are not re-

quired, thus producing an optimized protocol code. All the

other tools [7] [12] [9], starting from protocols specified by

means of formal languages without the above feature, must

always implement all the possible checks. Moreover, all

the other tools [7] [12] [9] require that each term type is

explicitly specified, while our tool is able to understand the

correct type of terms in an automatic way, directly in almost

all cases.

Cryptographic Code Generation From CAPSL [9] starts

from the CAPSL or CIL specification languages. The pro-

duced code includes a demonstration environment, useful to

view the protocol behavior, that shall be removed or mod-

ified for a direct use in application environments. This en-

vironment represents the ”man in the middle” attack, so it

receives all messages exchanged between parties showing

protocol handshakes. Our code does not contain a demon-

stration environment, but we can add such a feature in the

transport layer directly (building a new transport library),

4The IAIK-JCE provider is a product of IAIK, it is available at

http://www.iaik.tugraz.at
5The SUN-JCE provider is furnished as extension with the JCE 1.2.x

or included inside the JDK 1.4, it is available at http://java.sun.com

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

thus allowing the redirection of messages towards a demon-

stration application able to behave as an attacker. Moreover

in [9] the generated code is inefficient because it runs by in-

terpreting an abstract data structure. A further limitation is

the dependence of key objects on cryptographic algorithms,

which are fixed as DES for symmetric operations. Another

limitation is the absence of public encryption which is sub-

stituted in the code by a dummy encryption operation.

The AGVI [12] tool generates code using the same proto-

col description taken by the protocol analyzer Athena [11].

[12] contains few information about code generation and

implementation. Such information is probably reported in

[10], which, however, is not reachable on the web.

SPEAR II [7] provides code generation from an ab-

stract protocol specification in the GYPSIE [13] environ-

ment, while parameters and settings for code generation are

specified in the graphical GENIE [14] environment. The

produced code is based on Cryptix6 and Crypto-J7 crypto-

graphic libraries. A good feature of [7] is that it uses the

accepted standard ASN.1 for describing messages, thus al-

lowing the generated code to communicate with other non-

SPEAR II implementations.

All the above projects [7] [12] [9] generate a code that is

not Java-Security-Provider-independent as ours. Provider

independence is a good feature, because if a security flaw is

found in a specific library, it is possible to replace the secu-

rity provider with another one, unaffected by the problem,

without modifying the generated code. Only the code pro-

duced by SPEAR II [7] is Transport Layer independent and

translates from protocol specification to code implementa-

tion directly, as we do.

10 Conclusions

A new automatic Java code generator for cryptographic

protocols specified in spi calculus has been developed, to

be integrated in a specification and verification environment

for security protocols. Spi2Java provides the protocol im-

plementation together with a skeleton code, useful to de-

velop an application that uses the protocol.

Spi2Java has a module that associates a type to each spi

calculus term in an automatic or semi-automatic way and

checks for abstract description incongruities.

With the SecureClasses library, we have been able to

hide the complexity of the cryptographic algorithms and

offer maximum flexibility, allowing the choice of a Secu-

rity Provider, an algorithm and the algorithm parameters

for each kind of cryptographic operation. Moreover, a strict

correspondence between spi calculus objects and classes al-

lows us to guarantee a high confidence level about code cor-

6The Cryptix library is available from http://www.cryptix.org
7The Crypto-J library is an RSA product, it can be obtained form

http://www.rsa.com

rectness. The definition of Transport Layers as modules al-

lows the user to choose and replace the transport protocol in

an easy way.

The produced Java code optimizes the creation time of

needed object, avoids common implementation attacks and

maintains an high understandability thanks to the presence

of comments before each behavior expression.

11 Ackonwledgment

This work has been partially funded by the Center of Ex-

cellence on Multimedia Radiocommunications (CERCOM)

of Politecnico di Torino.

References

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic

protocols the spi calculus. Inf. Comput., 1(148):1–70, 1999.

[2] E. M. Clarke, S. Jha, and W. Marrero. Verifying security

protocols with brutus. ACM Trans. on Softw. Eng. and Meth.,

9(4):443–487, 2000.

[3] L. Durante, R. Sisto, and A. Valenzano. Automatic testing

equivalence verification of spi calculus specifications. ACM

Trans. on Softw. Eng. and Meth., 12(2):222–284, Apr. 2003.

[4] T. Lindholm and F. Yellin. The Java Virtual Machine Speci-

fication. SUN Microsystems, 2nd edition. Online, available

at: http://java.sun.com/docs/books/vmspec/.

[5] G. Lowe. Some new attacks upon security protocols. In 9th

IEEE Comp. Sec. Found. Work., pages 162–169, 1996.

[6] G. Lowe. Casper: A compiler for the analysis of security

protocols. J. Comput. Secur., 6(1):53–84, 1998.

[7] S. Lukell and C. Veldman. Automated attack analisys and

code generation in a unified, multi-dimensional security pro-

tocol engineering framework. Comp. Science Hon., 2002.

[8] R. Milner, J. Parrow, and D. Walker. A calculus of mobile

processes, parts I and II. Inf. Comput., pages 1–77, 1992.

[9] F. Muller and J. Millen. Cryptographic protocol generation

from capsl. Tech. Rep. SRI-CSL-01-07, SRI Int., 2001.

[10] A. Perrig, D. Phan, and D. Song. Acg - automatic code gen-

eration and automatic implementation of a security protocol.

Tech. Rep. 00-1120, Univ. of California, 2000.

[11] A. Perrig, D. Song, and S. Berezin. Athena: a novel

approach to efficient automatic security protocol analisys.

Tech. rep., Univ. of California and Carnegie Mellon Univ.

[12] D. Phan, A. Perrig, and D. Song. Agvi - automatic genera-

tion, verification, and implementation of security protocols.

Tech. rep., Univ. of California.

[13] E. Saul. Facilitating the modelling and automated analysis

of cryptographic protocols. Master’s thesis, Univ. of Cape

Town, 2001.

[14] C. Veldman, S. Lukell, and A. Hutchison. Attack mod-

elling, code generation and performance analysis in a

multi-dimensional security protocol engineering framework.

Project report, Univ. of Cape Town, 2002.

[15] F. Yellin. Low level security in java. Online, available at:

http://java.sun.com/sfaq/verifier.html.

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

