FSA-based Packet Filters

Pierluigi Rolando, Riccardo Sisto, Fulvio Risso
Dipartimento di Automatica ed Informatica
Politecnico di Torino
Email: {pierluigi.rolando, riccardo.sisto, fulvio.risso} @polito.it

Abstract—We propose a packet filtering technique based on the
generation and composition of Finite-State Automata (FSA), in
contrast to most traditional imperative approaches. FSAs provide
a formal framework with well-defined composition operations
and enable the generation of optimized executable code without
resorting to multiple and opportunistic optimization algorithms.
Memory safety in filters is enforced with minimal run-time
overhead and termination can be proved without restricting filter
control flow graphs to be acyclic, thus enabling full parsing of
complex protocol formats and multiple encapsulation layers.

Experimental evidence shows that this approach is viable and
improves the state of the art in terms of filter performance
and scalability without incurring in the most common FSA
deficiencies, such as state space explosion.

I. INTRODUCTION

Packet filters are a class of packet manipulation programs
[1] that can be used to classify network traffic in accordance
to a set of user-provided rules; they are a basic component
of many networking applications, ranging from traffic shapers
and analyzers to demultiplexers, firewalls, intrusion detection
systems and more.

The modern networking scenario poses multiple require-
ments for packet filters, mainly in terms of processing speed
(to keep up with network line rates) and resource consumption
(to run in constrained environments). Preserving the integrity
of the execution environment is crucial, both in terms of
memory access safety and termination enforcement, even more
so when running in kernel space or on the bare hardware. Since
proving that a generic program written for a Turing-equivalent
machine stops is a notorious undecidable problem [2], many
existing generators restrict filters to acyclic structure, thus
making it difficult to parse packets with multiple levels of
encapsulation or repeated header fields sequences. Moreover,
on most platforms packets and all the related data structures
are stored in random-access memory, so it is necessary to
ensure that no access is ever performed beyond the established
bounds. Finally, filtering techinques should also be flexible and
effective in specifying predicates and protocol formats.

Existing approaches to packet filtering focus on subsets of
these issues, each one providing improvement over the state of
the art in terms of performance, flexibility or safety, but, to the
best of our knowledge, not all at the same time. As an example,
both BPF+ [3] and PathFinder [4] generate optimized and safe
filters that are unable to support recursive encapsulation rela-
tionships; NetVM-based filters [5], on the contrary, can parse
complex packets but no provision for enforcing termination is

currently present, either in filter programs or in the underlying
virtual machine.

Most of the generation techniques proposed so far address
the performance issues by applying opportunistic optimiza-
tions on the generated code. This paper investigates a new
technique for packet filter generation that takes a different
approach and exploits the Finite State Automata (FSA) model.
The technique is aimed at stateless filtering (layer 2 to layer
4) and at achieving high performance and expanded flexibility,
while maintaining all the desired safety properties. Filter
generation times and dynamic rule set updates are not taken
into consideration. This restriction in scope excludes some
potential use cases, such as stateful TCP session filtering,
where the rule set should be modified on-the-fly. Nevertheless,
FSA-based filters are still useful for many classic packet filter
applications, such as monitoring and traffic trace filtering,
where changes in the rule set occur rarely and not at run-
time. We also explicitely forgo the architectural aspects of
packet filtering, such as their placement in the operating sys-
tem networking stack: architectural issues can be considered
orthogonal to our compilation technique and it will be shown
that FSA-based filters have all the safety properties required
to run in kernel space, if needed.

A packet filter can be expressed as a set of predicates
on packet fields, joined by boolean operators: maybe the
most important question in designing generation techniques
for high-performance filters is how to efficiently organize this
set of predicates. Many existing filter generators [3] [S5] [6]
[7] [8] are based on the synthesis of imperative programs
where predicates form a Control Flow Graph (CFG). This
representation is quite flexible but, for the same reason, prone
to redundancies that are hard to spot and optimize away. Other
techniques organize predicates into regular structures such as
tries or trees [9] [4]. This makes it easier to spot redundancies
and other sources of overhead but might also carry limitations:
it is e.g. intrinsically hard to express the cyclic relationships
required to support tunneling or repeated protocol portions
with acyclic structures such as trees.

The FSA approach considers packet filtering as a regular
language recognition problem and it provides a simple math-
ematical framework to express and organize predicates. As
shown in this paper, the FSA model enjoys several interesting
properties, such as reducing by construction the amount of
redundancy along any execution path in the program.

Automata are straightforward to translate into efficient
executable forms without requiring a full-blown optimizing

compiler. Safety, both in terms of termination and memory
access integrity, can be enforced with very low run-time
overhead, as shown in this paper. Finally, FSAs provide a
natural way to express tunneling, encapsulation relationships
and repeated header portions.

The rest of this paper is structured as follows: section II
presents an overview of the main related filtering approaches
developed to this date. Section III provides a brief introduction
to the FSAs used for filter representation and describes the
filter construction procedure. Section IV focuses on executable
code generation and on enforcing the formal properties of
interest, while section V presents the experimental evidence
collected to evaluate the new approach and to support our
claims. Finally, section VI reports our conclusions and also
highlights possible future developments.

II. RELATED WORKS

There is a large corpus of literature on packet filters. The
best-known and most widely employed technique is probably
BPF [7], the Berkeley Packet Filter. BPF filters are created
from protocol descriptions hardcoded in the generator and
are translated into a bytecode listing for a simple, ad-hoc
virtual machine. Filter predicates are structured into a control
flow graph (CFG) where backward jumps are disallowed (thus
forgoing support for e.g. IPv6 extension headers); memory
protection is enforced by checking each access at run-time.
Multiple rules can be composed together by boolean operators.
In its original implementation, only a small set of optimiza-
tions were perfomed over predicates, either within a single
filter or across many. The bytecode was interpreted, leading to
a considerable run-time overhead impact which can be reduced
by employing JIT techniques [10].

A lot of work builds on BPF and, more generally, CFG-
based models, either by bringing architectural modifications or
by improving the filter generator process. BPF+ [3] improves
filter compilation by adding a number of local and global data-
flow optimization algorithms that remove redundant operations
by altering the CFG structure. The resulting program is
translated into BPF bytecode, then emitted to native instruc-
tions just-in-time. While these improvements speed up filter
execution w.r.t. BPF, protocol descriptions are still hardwired
in the filter generator and no precautions are taken to lessen the
impact of checking memory accesses at run-time. Moreover,
a potential BPF+ issue is that, like in every CFG-based
technique, the set of optimizations it performs are designed
to handle a given set of improvement opportunities that are
considered to be common. While some code transformations
are clearly useful both in general terms and for the specific
problem at hands, it is possible that unforseen applications or
future developments introduce sources of redundancies that
need additional care: no conclusions can be taken a-priori
about the quality or structure of filtering code.

A more recent BPF derivative is xPF [6], whose main
contributions w.r.t. filter generation are the addition of persis-
tent storage to preserve data across multiple filter executions
and allowing backward jumps in the control flow graph of

the filter in order to provide relief for what is reported to
be an unacceptable restriction. Termination is enforced by
an execution monitor that limits the maximum number of
instructions executed, an approach that is viable as long as the
filter instructions are interpreted, but that might prove difficult
to extend to native code emission, and the additional overhead
imposed has not been measured.

A CFG-based filter generation technique unrelated to BPF
is described in [5]. Its main contribution consists in decoupling
the protocol database from the filter generator by employing an
XML-based protocol description language, NetPDL [11]. The
filter code is executed on the NetVM [12], a special-purpose
virtual machine targeting network applications. The NetVM
provides a JIT compiler which takes care of performing
common optimizations, both on filter structure and on low-
level code. A relevant result is that the introduction of a
high-level description language reportedly does not cause any
performance penalties; this approach, however, delegates all
safety considerations to the VM and does not provide an
effective way to compose multiple filters.

A different approach has been taken by PathFinder [4],
which departs from the CFG model to render predicates as
template masks (atoms). Each packet is scanned linearly from
the beginning to the end while atoms are applied until a result
is reached. Atoms are ordered in a decision tree so that shared
prefixes can be coalesced and evaluated only once. It has been
noted that merging only common prefixes is not sufficient to
catch some common optimizations opportunities, where there
are no shared prefixes but predicate evaluation is nevertheless
redundant [3]. The PathFinder approach has been shown to
work well both in software and in hardware but does not
solve any issues related to the protocol database and memory
accesses. FSA-based filters are similar to PathFinder because
packet contents are processed in a similar order but without its
limitations and filter composition is handled to a wider degree.

DPF [9] improves on PathFinder by generating machine
code just-in-time and avoiding whenever possible the rep-
etition of multiple memory offset checks within the same
atom. Further optimizations are also added, such as using a
flexible strategy to implement multi-way conditional choices;
nevertheless, the redundancy elimination strategy is still based
on prefix merging. DPF implements a bounds checks reduction
strategy that aggregates checks by scanning each atom and
checking only the availability highest memory offset required
to succesfully complete the filter. The bounds checking reduc-
tion technique described in section IV-E aggregates multiple
checks in a similar fashion but considers the whole filter at the
same time, thus reducing run-time overhead to a single check
in most cases.

A further approach has been presented by Jayaram et
al. [13] that uses a pushdown automaton to perform packet
demultiplexing; filter specifications are expressed as LALR(1)
grammars and can be therefore effectively composed. While
this is shown to greatly improve filter scalability, there are
downsides related to the push-down automaton: while a naive
implementation is trivial, specific optimizations are required to

achieve good performance. The format chosen for expressing
filter predicates and protocol structure, while certainly flexbile,
is also quite unusual and the grammar must be kept unambigu-
ous, a task which might prove difficult in complex situations.
The authors marginally note that the simpler FSA model would
be sufficient for the same task.

A differentiating point between different packet filtering
approaches is how redundancies and dependencies in the
filter predicate set are handled. CFG-based techniques such
as BPF, BPF+ and the NetVM use optimization algorithms
derived from general-purpose compilers to reorganize code to
different degrees of effectivness, while PathFinder and DPF
mainly employ prefix coalescing, made easier by their internal
organization of filter predicate sets. Whereas BPF optimizes
only protocol parsing, by avoiding to reexamine lower layer
headers, PathFinder and DPF use a trie-like structure that
supports prefix merging: each time a new filter is added to
the active set the generator descends into the data structure
until a new leaf can be appended. If no common prefix is
found, a new trie must be created and the whole trie set is then
examined at run-time, until a match is found. This approach
works well if all filters are expressed with the same predicate
order (a condition enforced by construction by DPF) and if a
common prefix can be recognized. However, this is not always
the case: as an example the following simple filter causes a
redundant comparison to be performed:

(ip source = X and tcp dport = Y) or
(tcp sport = Z and tcp dport = Y)

In this case a common prefix is shared between the two
subexpressions up to the IP header only: if the first part fails
because tcp dport is not Y, then the second portion of
the filter is needlessly executed. This specific optimization
opportunity is caught by the data-flow optimizations performed
by BPF+, that are able to detect a potentially duplicate
evaluation of the same predicate and optimize it away by
transforming the filter CFG appropriately.

As it will be seen, FSA filters examine each header filter at
most once by construction, because automata scan their input
sequentially and the resulting executable code mimic rather
closely this behaviour, and this property is preserved across
filter composition operations. The technique described in this
paper is therefore at least as capable at redundancy removal
as the best alternatives described in literature.

Other improvements come from architectural considera-
tions, as demonstrated for instance by xPF, FFPF [14] and
nCap [15], or from supporting dynamic rule sets as with the
SWIFT tool [8]. These techniques are out of scope for the
purpose of this paper.

III. FILTER GENERATION TECHNIQUE

The filter generation technique we have developed consists
in creating and implementing a Finite-State Automaton (FSA)
that recognizes a user-defined set of packets.

While FSAs are normally expressed as regular expressions,
the notation is unusual in the field of packet processing where
filters are usually specified as predicates over header fields;

for this reason we have developed a simple filter specifica-
tion language, rather similar to the one used by BPF, that
additionally contains some provisions to support encapsulation
relationships. The input of the generator consists in a set
of filter rules and a protocol database providing on-the-wire
formats.

The task the filter generator must perform can then be
logically divided into 3 independent steps:

1) each protocol in the externally-provided database is
translated into an augmented FSA representation which
will act as a template for further processing;

2) filter rules are compiled, one predicate at a time, to get
specialized FSAs, each recognizing a subportion of the
filter;

3) the FSAs obtained from step 2 are merged together using
boolean operators.

The end result of the generation process is a Deterministic
Finite-state Automaton (DFA) which is a well-defined formal
description of filter semantics and, upon minimisation, is its
canonical form.

The rest of this section provides a formal definition for FSAs
and details over the 3 generation steps outlined above, while
section IV describes the second part of the generation process,
where the filter DFA is translated into executable form.

A. Finite-State Automata

A Finite-State Automaton (FSA) 1is a quintuple
(%, 8, 80,0, F), where ¥ is an alphabet of input symbols, S
is the set of states, sy € X an initial state, § C S x ¥ x S
the transition relation and F' C S the set of accepting states.
For our purposes, X is the set of all the possible 8-bit strings
plus the empty symbol €, used to label transitions that can be
taken without consuming any input.

Finite-state automata can be used to represent regular sets
of symbol strings; it is easy to check whether any given
string belongs to a set represented by a FSA and regular sets
are closed under all of the classical set operations (union,
intersection, complementation, etc).

In order for FSAs to be applicable to the problem of packet
filtering, it must be proven that any possible set of packets
can be represented by an FSA, which is true iff all the sets of
packets are regular. Regularity is trivially verified by noting
that the set of possible packets has a finite cardinality, as for
any given packet-switched network there is a maximum frame
size allowed by the data-link technology. Since any finite set
is regular, and because any filter recognizes a subset of all the
possible packets, FSAs are a suitable analytical way to model
stateless packet filters, and this provides a sound theoretical
basis for our efforts.

B. Protocol database compilation

The first phase of the filter generation process consists in
parsing the protocol database and generating template au-
tomata. For each protocol, the generator creates an automaton
that accepts all and only the packets that respect the protocol
format. These automata can be non-deterministic. During this

<protocol name="ipv6">
<format>
<fields>

<field type="bit" name="ver" mask="0xF0000000" size="4"/>
<field type="bit" name="tos" mask="0x0F000000" size="4"/>
<field type="bit" name="flabel"mask="0x00FFFFFF" size="4"/>
<field type="fixed" name="plen" size="2"/>
<field type="fixed" name="nexthdr" size="1"/>
<field type="fixed" name="hop" size
<field type="fixed" name="src" size="16"/>
<field type="fixed" name="dst" size="16"/>

<loop type="while" expr="1">
<switch expr="nexthdr">

<case value="0"> <includeblk name="HBH"/> </case>

<case value="51"> <includeblk name="AH"/> </case>

<default>
<loopctrl type="break"/>
</default>
</switch>
</loop>
</fields>
</format>

<encapsulation>
<switch expr="nexthdr">
"4"> <nextproto proto="#ip"/> </case>
> <nextproto proto="#tcp"/> </case>
<case value="17"> <nextproto proto="#udp"/> </case>

</switch>
</encapsulation>
</protocol>

Fig. 1. 1Pv6 NetPDL excerpt

phase, some automata transitions are annotated with labels that
act as anchors for determining which packet field is being
parsed upon reading a certain input byte. These labels are
used in the next phase of the compilation process to apply
filtering conditions over the automata created at this step and
are discarded soon afterwards, so they do not influence in
any way the FSA-handling algorithm or the properties of the
model.

The protocol database is kept separated from the generator
itself so that it can be freely modified. We have employed
the NetPDL protocol description language [11]. NetPDL is an
XML-based language to describe the on-the-wire structure of
a network protocol and to specify encapsulation relationships.
This allows to parse input packets up to layer 7. NetPDL
provides primitives to describe protocol fields of both fixed
and varying size either expressed in bits or bytes. More
complex structures such as optional or repeated sections can
be expressed by a number of control-flow-like primitives
that include conditional choices and loops. Encapsulations
are described by predicating conditions over one or multiple
protocol fields. A simplified NetPDL description of the IPv6
header format is presented in fig. 1.

Our filter generator reads its protocol database from an
external NetPDL source, so it is effectively protocol-agnostic:
a new protocol requires only its NetPDL description to be
supported in the generator and its fields are automatically made
available in the filtering language as well.

In its current form, the FSA generator supports a proper
subset of the NetPDL primitives, which can be used to describe
most existing layer 2 to layer 4 protocols. The excluded
constructs, such as stateful session tables, target higher layers
or do not match well the capabilities of the FSA model. FSA
generation has been succesfully tested on the full versions
of the most common protocols in use nowadays, such as
Ethernet, MPLS, VLAN, PPPoE, ARP, IPv4, IPv6, TCP, UDP
and ICMP; this set can be easily extended as long as no stateful

capabilities are required.

As long as it is correctly performed, the creation of FSAs
from NetPDL descriptions is not critical to filtering perfor-
mance, as it will become clear from later sections; its exact
inner working can be therefore regarded as a volatile imple-
mentation detail, prone to improvements in future versions of
the filter generator. Nevertheless, in order to provide the reader
with some examples, we report the automata generated for a
simple fixed-length header field (fig. 2b), a 2-way conditional
construct (fig. 2d) and a more complex situation where a loop
is interlocked with a switch construct, closely representing
the structure of the IPv6 extension headers (fig. 2f). Internal
field names are reported where relevant.

As it can be seen from the figure, simple NetPDL constructs
such as fixed field have a straightforward FSA translation.
Other constructs, such as switch, need more attention: since
the FSA model has no concept of discrete storage locations but
it is nevertheless necessary to remember values read previously
for subsequent computations, a number of parallel branches
has to be spawned within the automaton. This often leads to
the replication of some automaton portions.

The automaton in fig. 2b can be easily related to the NetPDL
description in fig. 2a as it simply consists in a transition
chain that consumes as many symbols as the length of the
type field. Fig. 2d presents a 2-way conditional construct.
The choice between blocks B and C (that abstract automaton
portions) depends on the value of filed t ype; since A stands in
the path between the point where type is read and the point
where its value is actually needed, it needs to be replicated.
In any case, at run-time only one copy of A will actually be
executed. Finally, fig. 2f shows a more complex case where a
switch construct similar to the one in fig. 2d is embedded in
a loop. This time the field involved in the switch construct
is read at iteration N but affects the outcome of iteration N+1
so the transition graph is more complicated. Both the block A
and the states implementing the inner fields must be replicated
in this case.

C. Filter rule imposition

In the second processing step filtering rules are parsed into
blocks i.e. atomic units predicating one or multiple conditions
over a single protocol header that must all be true at the
same time. In a single rule there may be one or more
blocks, referring to one or multiple protocols (multiple blocks
referring to the same protocol are allowed), joined together
with boolean operations. A simple filter statement such as
ip.src = X and tcp.sport = Y is therefore divided
into two blocks, that are both operands for the boolean and
operator. Filtering conditions are then imposed over template
FSAs one block at a time, thus creating a set of FSAs, each
one recognizing all the packets with correctly formed protocol
headers and matching the condition of the block involved.

In order to apply the conditions predicated by a block
to a protocol, the filter generator uses the annotations on
template FSAs to find the transitions consuming the desired
bytes of the specified field, then replaces them with specialized

<field type="fixed” name="type” size="4" ... />

(a) Fixed field

<field type="fixed” size="1" name="type” />
A
<switch expr="type”>

<case value="0">

B
</case>
<case value="1">
C
</case>
</switch>
(c) Switch construct
<field type="fixed” size="1" name="nexth” ... />

A
<loop type="while” expr="1">
<switch expr="nexth”>
<case value="0">
<field type="fixed” size="1"” name="nexth” ... />
<field type="fixed” size="1" ... />
</case>
<case value="1">
<field type="fixed” size="1" name="nexth” ... />
<field type="fixed” size="2" ... />
</case>
<default>
<loopctrl type="break” />
</default>
</switch>
</loop>
B

(e) Interlocked loop and switch

Fig. 2.

versions that trigger only upon matching the requested value.
Particular care must be taken when this mechanism interacts
with optional (or repeated) protocol parts and, in general, when
fields used in the NetPDL database (e.g. IPv4 header length)
are also subject to user-specified predicates: in these cases the
automaton structure might need to be modified to accomodate
the transition specialization. In the aforementioned filter, the
generator would create a specialized copy of the IP automaton
that only accepts packets with the correct IP address, then a
copy of the TCP automaton to recognize headers with the
source port equal to Y.

D. Filter composition

In this step the FSAs created previously are joined together
in order to build the final filter automaton. This operation is
performed in the order dictated by the filter statement and uses
well-known algorithms [16] to implement boolean operations
and make the resulting automaton both deterministic and
minimal.

Up to this step, the FSAs used in the generator do not

type[0] Q

type[2] type (1]

(b) FSA for the fixed field

type (3]

type

typé %AE€>§CE £

(d) FSA for the switch construct

(f) FSA for interlocked loop and switch

Filter generation examples

necessarily conform to any specific requirements; in particular
they can be indifferently deterministic or non-deterministic.
However, to our knowledge there are no algorithms to com-
plement non-deterministic FSAs, so a determinisation step is
needed beforehands.

Automata theory shows that a minimised DFA is unique
for a given filter statement and protocol database, regardless
of the compilation process: even if a totally different procedure
were used, the final result would still be the same, the main
difference being space and time requirements for compilation.
This provides the theoretical basis for regarding the whole
compilation process as described so far as an implementation
detail; the current prototype shows that there is at least one
practical way to perform filter generation. In a similar way,
the FSA-based approach is also insensitive to any specific
predicate order or other peculiarities of the filtering rules: the
final result is dependent on the semantics of the filter statement
only, regardless of its syntactic form.

E. On the properties of FSA-based filters

The FSA model provides by construction a set of properties
that can be successfully exploited for our purposes. First of
all, the final minimised filter DFA can be interpreted both as
a semantic model of the filter that univocally identifies the
recognized packet set and as a guideline for a software imple-
mentation that closely mimics the mathematical behaviour of
the automaton. Having a machine-agnostic representation can
be useful because it decouples the generation process from
the code emission routines and allows porting the filter across
platforms while fully preserving its semantics.

Another very useful property of FSA-based filters is that
their construction process ensures that each field of the packet
is examined at most once, no matter how complex the protocol
database or the filtering rules. Since automata are closed
under boolean operators this property is preserved also across
compositions of any nature. This property is useful because
it provides a trivial method for the code generator to avoid
redundant comparisons and makes each execution path in the
filter quite fast. There are downsides to this built-in efficiency,
however. In the FSA model, filters are by design limited to
examining packet fields in the same order as they appear on
the wire. Since the current code emission technique closely
mimics the behaviour dictated by the model, it is possible
that some fields are examined before it becomes essential to
know their value: the comparison may turn out to be useless
on the execution path that is eventually taken. This constitues
a form of partial redundancy that can be handled by many
algorithms described in literature [17] [3] [18]. In spite of
these considerations, good quality code can be generated even
if this issue is ignored, as the number of partially redundant
checks is quite low when considering real-world protocols.

IV. EXECUTABLE CODE GENERATION

The last generation phase is code emission, needed to
translate the filter DFA into an executable form. In a parallel to
traditional compiler architecture, during this phase the DFA is
used as a kind of intermediate representation passed from the
front-end (the DFA builder) to the back-end (the code emitter).

While translating a DFA into an executable form is by no
means a difficult or innovative task, it is nevertheless critical
for our objectives and in particular both for performance
and safety. In line of principle the filter structure could be
translated into a regular expression and then fed to a general-
purpose matching engine such as the one provided by Flex' or
the PCRE library?. In practice, however, our scope and specific
requirements are sufficiently different from the mainstream
application of regular expressions to justify the development of
an ad-hoc engine which can be made simpler (as no advanced
features such as backtracking are required) and faster (by
performing DFA transformations that would not be useful in
the general case). Generic regex engines usually implement
features such as backtracking or subexpression matching that

! Available at http://flex.sourceforge.net/
2 Available at http://www.pcre.org/

are useful in a general-purpose tool but are not needed for our
goals. Supporting these features creates run-time overhead that
we can easily avoid [19].

A DFA stops when the input symbol sequence is over; this
behaviour should be emulated by the software implementation,
that however receives a memory buffer and not a data stream
as its input: the stream semantics should be mimicked using as
few run-time operations as possible. A naive implementation
that performs a termination check at each computation step
is likely to be too expensive. Besides termination, replacing
the input stream with a memory area also brings a safety
problem because of potentially out-of-bounds read operations.
Again, these must be avoided with the least possible run-time
overhead.

The rest of this section describes the transformations per-
formed over the filter DFA in order to improve performance
while enforcing safe memory accesses and termination. Af-
terwards, the code generation technique used in the current
back-end is documented.

A. Succeed-early algorithm

In many practical instances, filters are not used to verify
packet well-formedness but only classify network traffic ac-
cording to some user-specified conditions. Under this assump-
tion, it makes sense to forgo some protocol header format
requirements imposed by the protocol database and terminate
the filter as soon as the user-specified rules are matched. As
an example, if the user wishes to filter packets based on their
IP source address only, it might make sense to stop as soon
as the IP source address field is encountered.

The filter generator can run an optional algorithm that
improves peformance in these cases by removing a trailing
portion of the filter, after all user-specified rules have been
matched.

The effects of this succeed-early algorithm are shown in
fig. 3, where an automaton is simplified by coalescing all the
states post-dominated by the final one.

The succeed-early algorithm modifies the packet set recog-
nized by the filter: as an example, fig. 3b no longer contains the
well-formedness check dictating that a non-zero byte should
be followed by a non-empty byte string. More specifically,
the algorithm removes all the states along any path that would
lead to success if enough input symbols were available. This
makes the filter cheaper to execute, as in the example one
less memory read and conditional choice are required, but
also extends the filter to recognize truncated packets. If this is
not desirable, the algorithm can be disabled with an apposite
filtering predicate that forces full parsing.

B. Transition compaction algorithms

In most filters a large amount of input bytes are never
used because neither the protocol database nor the filtering
rules predicate anything about them: reading these bytes from
memory is a waste of processor cycles and memory bandwidth
that should be avoided whenever possible. In order to improve
performance, the generator searches DFA transition graphs

(a) Original automaton

Fig. 3.

for sequences of byte-skipping transitions, visually marked
with stars in figures; whenever possible, these are compacted
into a single one, marked with the correct length, and all
the intermediate states are removed. This constitues the star
compaction algorithm.

A similar optimization is perfomed on non-star transitions:
while our filter DFA works natively on 8-bit values, most
CPUs are capable of processing more than one byte at a
time, making reapeated single-byte operations more expen-
sive that fewer multi-byte ones. The transition compaction
algorithm takes care of this mismatch by merging multiple
subsequent transitions whenever possible, thus allowing the
resulting program to operate on larger word sizes. In line of
principle transition compaction is performed similarly to star
compaction: starting from a single state, the transition graph
is explored to build long chains of transition to be replaced
with a multi-byte one. In contrast to star compaction, however,
the maximum number of transitions to be coalesced is limited
to the machine word size; furthermore, the maximum amount
of transitions created by the algorithm is limited to avoid a
potentially exponential explosion.

Neither star compaction nor transition compaction remove
any paths in the FSA graph, so the language (and thus the set
of packets) recognized by the filter is left unmodified. As an
example, we have reported a sample automaton both before
(fig. 4a) and after (fig. 4b) its star and transition compaction.

The combined effect of transition merging is somewhat
similar to DFA multi-striding [20]. A relevant difference is
that multi-striding keeps all transititions of the same length, so
the resulting object is still an automaton with a different input
alphabet; on the contrary, the transition merging pass produces
transitions of different sizes® and the result cannot be regarded
as an automaton, as there is no well-defined input alphabet
any longer. This creates no issues as no further automata
operations need to be performed after the compaction step in
the compilation process; dropping the requirement of making
every transition of the same length also provides additional
flexibility because it allows to compress only local portions of
the transition graph, without affecting the whole structure.

Transition compaction has also a side effect very similar to
an optimization that is also performed by other filtering tech-
niques, sometimes called atom coalescing [9], which consists

3Nevertheless, all transitions out of the same state are kept of the same
length.

(b) After the succeed-early algorithm

Succeed-early algorithm

in merging multiple short physically adjacent fields into fewer
larger ones, disregarding field boundaries. Since no trace of
distinct fields remains at this level in the compilation process,
transition compaction automatically exploits every chance of
merging atoms.

In addition to reducing the number of operations to perform
at run-time and decreasing the amount of data to fetch from
packet memory, the post-processed automaton is significantly
smaller because many states can be safely eliminated.

C. C code generation

For simplicity reasons the currently implemented back-end
translates compacted DFAs into C functions; a full-fledged
JIT compiler for the direct emission of assembly code for any
physical or virtual machine would not be difficult to build, if
needed.

Given the relatively simple structure and behaviour of DFAs,
there are multiple possible software implementations. Perhaps
the most straightforward automaton implementation consists in
keeping an explicit transition table in memory, but this might
require many memory accesses with hard to predict patterns
to walk through the automaton graph. Our generator emits a
code snippet for each state and its outgoing transitions: this
approach enables a better exploitation of the CPU prefetch and
branch prediction units.

The required execution environment is minimal, providing
as filter input a memory buffer that holds the packet and its
length. No other facilities (e.g. memory protection or external
libraries) are needed. The C filtering function is made up of
instruction blocks, one per state, each uniquely identified by a
label and containing the instructions used to compute the next
state that should be reached.

Given that the input stream is replaced by the aforemen-
tioned packet buffer, it is necessary, in the general case, to
execute the following steps:

« read the required amount of input bytes. This is taken care
of by fetching the correct amount of bytes from memory
into an appropriately-sized variable;

« increment the memory offset pointer by the amount of
bytes read;

o perform a multi-way conditional comparison with the
patterns derived from outgoing transition labels of the
DFA model by using a switch statement;

« jump to the correct next state by using a goto statement.

(a) Original automaton

IS

- {10 0 0 1}

(x % * x)

(b) After the compaction pass

Fig. 4. Automata compaction algorithm

As an exception to this behaviour, states with only a byte-
skipping outgoing transition can be implemented by simply
increasing the offset pointer by a fixed amount and jumping
to the following state. No packet reads are needed and no
switch construct is required. A code emission sample for
both cases is depicted in fig. 5.

There are no other essential primitives, and all byte-
swapping and arithmetic operations can be performed at
compile-time. A possible optimization is to employ arithmetic
operations to reduce the cardinality of multi-way statements.
As an example, the IP length header check is currently
translated into an 11-way conditional construct with 16 labels
in each case*; the same operation could be replaced with a
more traditional masking of the lower 4 bits of the field.

Once the C function is generated, it can be fed into a C
compiler to be translated into executable code and then linked
to more complex applications.

Even with compiler optimizations enabled, the C code is
not very prone to transformations because of the properties
directly derived from the FSA model. In particular, along
any possible execution path each comparison is relevant for
the final result (so it cannot be optimized away) and any
memory read is useful as well. Since no arithmetic operations
are performed, apart from incrementing the offset pointer
by a constant value, the impact of any related optimization
algorithm is expected to be very small. Similarly, loops are
not unrolled or modified because all exit conditions depend
on packet data, which is not available at compile time. These
expectations have been confirmed by visually inspecting the
resulting code. The most relevant tasks left to the compiler are
low-level machine adaptation procedures such as register allo-
cation and move coalescing [21] and choosing a good switch
emission strategy [22]. In particular the switch emission
strategy is critical, because it is an operation very common
in FSA-based filters, and it is not natively implemented by
most processing architectures. The next section explores this
problem further.

4These figures derive directly from the IPv4 protocol definition: header
length is a count of 32-bit words, stored as the lower 4 bits of a byte. Some
values are invalid, as the minimum IP header length is 20 bytes.

D. Asymptotical complexity of FSA-based filters

If all the required operations (read from memory, offset
pointer increment, multi-way conditional choice, unconditional
jumps) were executed in constant time, it would be possible
to deduce that the worst-case execution time of any FSA-
based filter is asymptotically proportional to the length of the
input packet; since packet size is upper bounded by a constant
(depending on the actual physical layer), FSA-based filters
would run in O(1) time, independently from the complexity
of both the rule set and the protocol database. This would not
provide any warranties over the actual speed of FSA-based
filters, as constant and multiplicative factors might still be
large; this concern is addressed in section V. Nevertheless,
this asymptotical bound is a relevant result when evaluating
the scalability of our approach.

Unfortunately, FSAs have to be emulated on real-world
machines for which it is not possible to assume that all
the required operations can be executed in constant time: in
particular multi-way decision statements such as the switch
construct are not natively supported and must be transformed
into multiple simpler instructions by the compiler. There are
multiple alternative strategies described in the literature to
implement switch operations [23] [22]: the compiler used
for our tests (GCC 4.2) has been observed to use binary
decision trees for the large, non-dense case sets that are com-
monly encountered with multi-byte fields. Since the number
of levels in a balanced decision tree grows logarithmically
with the number of nodes, the worst-case complexity of the
switch instruction is expected to be O(log N) where N is
the number of switch cases. This quantity, in turn, grows
roughly linearly with the number of rules when composing
similar filters (recognizing e.g. TCP sessions or firewall rules
that classify packets based on source/destination address and
service), so, with the current compilation strategy, we expect
the filter execution time to scale as O(log M) where M is the
number of filter rules employed.

An improvement over this O(log M) asymptotical behaviour
can be achieved by modifying the switch compilation strat-
egy: as an example it is possible to use minimal perfect
hashing, where hashing functions are used to map case values
into dense sets [24] [25]. Perfect hashes can be expensive to
compute at compile time but they execute in constant time

sl:

(a) Standard state

* ok ok
s4 s5

/
(c) Skipping state

Fig. 5.

with regard to the number of keys, lowering the asymptotic
complexity of FSA-based filters to O(1). Among the others,
some techniques described in the literature are explicitly aimed
at supporting real-time updates in networking applications
[26].

E. Memory access safety

While the FSA model assumes that input comes as a stream
of symbols, it is more natural for software implementations to
present the C program with a memory buffer that holds packet
data. This poses the problem of detecting and handling out-
of-bounds accesses to the buffer; performing a comparison
between the current offset and packet size upon each access
is an effective but expensive solution to this issue which can
be improved by reducing the number of bounds checks to be
performed at run-time.

In order to address this issue we have developed the bounds
checking minimisation algorithm that places aggregate bounds
checks in a small number of places in the program, thus
reducing run-time overhead while preserving memory safety.

Given a compacted DFA transition graph G, we derive a
weighted oriented graph G’ with an edge for every DFA
transition and vertex for each state; edge weights are the
(positive) byte lengths of the corresponding transitions. We
establish a metric on G’ so that the distance between two
states (a, b) is the shortest path from state a to b. This metric is
used to compute the distance of every vertex from the nearest
one that corresponds to a final state; we call this distance
Sfrom success and denote it as d(s) for any state s. If, upon
entering state s, less than d(s) input bytes remain, then the
filter is bound to fail as not even the nearest final state can
be reached. Additionally, since transitions consume a known
amount of input data, we can denote as [(a, b) the length of a
transition going from state a to state b: if d(a) > d(b)+I(a,b),
then no check needs to be performed upon taking the transition
considered.

read4 = get_4 bytes(packet, len,
offset += 4;
switch (read4) {

offset);

case ((10 << 8*0) | (1 << 8*1) | (1 << 8%2) | (1 << 8*3)):
case ((10 << 8%0) | (2 << 8*1) | (2 << 8%2) | (2 << 8*3)):
case ((10 << 8%0) | (3 << 8*1) | (3 << 8%2) | (3 << 8*3)):
goto s2;
break;
default:
goto s3;

break;

(b) Code for standard state

sd:
skip(len, &idx, 4);
goto s5;

(d) Code for skipping state

C code emission

The bounds checks minimisation algorithm works by plac-
ing a bounds check before entering the initial state (no
assumptions can be made at that point), then placing bounds
checks on all transitions that do not respect the aformetioned
inequality. These transitions derive mostly from back edges in
the protocol encapsulation graph and optional protocol parts
(e.g. IPv4 options). Fig. 6a shows a DFA where each state is
annotated with its distance from success, and fig. 6b shows
the corresponding G’ with distance-annotated edges. States
marked in bold in fig. 6a require bounds checks on at least
one of their input transitions.

With the bounds check minimisation algorithm each check
does not only verify that there are enough bytes left to take
the next transition, but that there are enough to reach the end
of the computation as well. This effect is similar to bounds
checks aggregation (or grouping), which is performed (to
different degrees) by general-purpose bounds check optimizers
[27] and DPF [9]. While aggregation often operates on local
opportunities, the bounds check considers the whole filter,
achieving a high degree of effectiveness: as an example, a TCP
session filter requires exactly one size check when parsing a
plain packet with no IP options and common encapsulations.
This check is performed at the beginning of the filter to
detect packets that are too short to contain the minimum-sized
Ethernet plus IP plus TCP header sequence. Placing memory
checks as early has possible has also the nice side effect of
discarding truncated packets without having to fully decode
them.

F. Termination in C FSA-based filters

The FSA model clearly dictates the worst-case termination
condition for any automata, which is exhaustion of the input
string. This provides the theoretical ground for proving ter-
mination for any filter automaton: it terminates as soon as its
finite-sized input stream is completely processed, regardless
of the presence of any loops in the FSA transition graph. The

(b) G* graph

same property, however, must be shared by the C code imple-
mentation, a requirement not trivially fulfilled: the currently
implemented back-end treats termination and bound checking
as intertwined problems, by carefully placing bounds checks
and exploiting those to enforce filter termination as well.

Given the current back-end, the filter function returns in the
following cases:

o a sink state is reached, whether final or non-final (sinks
have only one outgoing transition, leading to themselves);

« a memory check fails (in this case the filter returns with
a mismatch).

It must be noted that any path in the FSA graph always ter-
minates with a sink state by construction: during compilation
any states with no successors are automatically linked to a
non-final sink.

Backward jumps in the code derive from loops in the FSA
transition graph, but it must be taken into account that the
generator uses detereministic automata for code emission. In
(compacted) DFAs each transition consumes (at least) one
byte and there can be no e-transitions: translated to C code,
this means that the offset pointer is strictly monotonically
incremented. In turn, this implies that any finite input sequence
will be completely consumed after a finite amount of state
to state transitions; any further read from memory triggers a
bound check, thus terminating the filter.

V. EXPERIMENTAL EVALUATION

In order to validate the FSA-based packet filtering approach
we have run a series of comparisons with a set of other
techniques which we believe representative of the current
state of the art. Besides FSAs, we have considered BPF
which, regardless of its age, is still one of the most common
approaches to packet filtering; in order to avoid interpretation
overheads we have used the JIT version described in [10].
BPF+ 3 has been selected as it is representative of CFG-based
techniques and employs a set of optimization algorithms that
allows it to exploit a wider set of opportunities than other
techniques regarded as the state of the art, such as PathFinder.
BPF+ comes natively with an UltraSparc back-end but it
has been modified to generate C code in order to make it
compatible with the test platform, similarly to what happens
with FSA-based filters. Since the C code for BPF+ filters is
compiled with optimizations enabled, it is possible that further
optimizations are introduced by the compiler.

NetVM-based filters run on a virtual machine that is ex-
plicitely targeted towards packet processing applications. They
have been included because they are based on NetPDL proto-
col descriptions, therefore achieving a level of expressiveness
very similar to our approach, especially because NetPDL
descriptions can be shared. At the time of the tests being
run, the NetVM JIT compiler did not provide any facility to
enforce safety, neither in terms of termination nor in terms
of memory access correctness. Finally, in order to provide
a rough estimate of how synthetic filters compare to hand-
written code, in some tests we have included filters hand-
coded in C, compiled with the same optimizing compiler used
for FSA-based filters. These test programs do not take safety
issues into consideration.

It should be noted that each of these techniques has its
own filtering language and protocol database, so there are
unavoidable differences in capabilities and expressiveness.
While the filtering rules were made as similar as possible,
whenever meaningful we have decided to let the more modern
techniques (FSA-based and NetVM-based) handle advanced
features such as multiple levels of encapsulation and full
decoding of IPv6, even if BPF+ and BPF cannot.

To ensure significancy, the test filters were run indepen-
dently in a test bench that measures clock cycles with the
RDTSC instruction and uses the gettimeofday POSIX
system call for longer time periods (more than a second). The
hardware platform used for all the tests is a Dell workstation
with an Intel E8400 Core 2 Duo dual-core processor with of 4
GiB of RAM, running an OS based on the Linux 2.6.24 kernel.
C code was compiled with GCC 4.2. All filter processes were
bound to a single processor and the machine was otherwise
unloaded. All tests were performed with hot disk and processor
caches.

5The authors would like to thank dr. Begel who kindly provided the BPF+
source code.

TABLE I
SAMPLE FILTERS

filter 1 ip

filter 2 ip.src == 10.1.1.1

filter 3 tep

filter 4 ip.src == 10.1.1.1 and ip.dst == 10.2.2.2
and udp.sport === 20 and udp.dport == 30

flter 5 | 1P-src == 10.4.4.4 or ip.src == 10.3.3.3 or
ip.src == 10.2.2.2 or ip.src == 10.1.1.1

80
70
60

50
B FSA, simple
M FSA, check
[J FSA, nocheck
NetVM

M Native

& BPF

40

Clock cycles

30

20

Filter no.

Fig. 6. Code quality evaluation

A. Worst-case filter performance

The first test series aims to evaluate the emitted code quality
in terms of clock cycles taken to execute simple filters in
the worst case. In order to provide a baseline value to filter
complexity in simple cases, we have generated the filters
reported in table I with BPF, the NetVM filter generator,
by hand and using our generator. Since we are interested
in comparing filters recognizing identical sets of packets, in
this test the NetPDL database used for both the NetVM and
the FSA-based was reduced to contain only the complete
descriptions of the protocols involved.

For each filter an ad-hoc packet was crafted to trigger the
worst-case code path (among those leading to success) to be
executed. The test packets did not contain multiple levels of
encapsulation, because they cannot be handled by BPF and
hand-written C filters. BPF and NetVM measurements refer
only to the proper filtering code while the cost of the respective
VM frameworks has been excluded.

The results are reported in fig. 6. The two columns “FSA,
check” and “FSA, nocheck” refer to FSA-based filters com-
piled with the aforementioned NetPDL descriptions and bound
checks enabled or disabled, respectively. In order to level the
field the additional data series “FSA, simple” was generated
with a NetPDL database where some protocol features were
disabled, to matches more closely the capabilities of the re-
maining filtering techniques. BPF+ was excluded from this test
because no JIT emitter for the x86 platform was available and
it would have been hard to separate optimizations introduced
by the C compiler from optimizations performed by the filter
generator itself.

As it can be seen from the chart, the code quality of FSA-

based programs is similar or better than other approaches for
filters of different complexity. The best results are achieved
in test cases 4 and 5 where the statement is more complex
because the FSA model is able to organize user-specified
predicates to avoid performing redundant checks. Test cases 1,
2 and 3 show that the FSA-based technique provides low over-
head for low-complexity filters as well, even if the protocol
database used contains conditions that the other approaches
do not handle; when considering the “simple” database the
results for FSA-based filters are better than or equal to the
other approaches considered in any case.

A second result obtained from benchmark results is that
safety checks introduce very low run-time overhead; this is
fully justified by the fact that safety check amounted to a single
comparison at the beginning of the filter which can be correctly
predicted by the CPU, therefore negating most adverse effects.
It can be noted that in test cases 1 and 5 enabling safety
checks actually lowers filter execution time. This apparently
strange behaviour is retained even when tests are repeated
large number of times and might be caused by instruction
reordering or other pipeline issues in the processor, or, given
the very small measured difference (around 1 clock cycle) to
unforeseen sources of error in the measurement procedure.

B. TCP session filtering scalability

The filtering techniques were evaluated in more realistic
conditions during the second test series, which was designed
to highlight filter scalability. The rule set was created by
extracting the N most active (in terms of packet count) TCP
sessions from a 1 GiB real-world captured packet trace;
packets were filtered accordingly. The number of recognized
TCP sessions was increased from 1 to 128 and the time
required to process the aforementioned trace was measured
after the disk cache provided by the Linux operating system
was preloaded with the packet trace.

The results are presented in fig. 8, which reports the
measured average frame rate normalized to the running time
of the fastest filter (1 session, FSA-based). The results for
NetVM filters are not reported, as they are made less mean-
ingful because of the relatively high overhead introduced
by the virtual machine. Since in this case we measure the
observed real-world performance of an application performing
packet filtering using different filtering techniques, artificially
removing the time spent in the framework would result in
less relevant measurements. C filters were not considered for
this test as well, as it is quite cumbersome to write by hand
optimized programs that recognize large numbers of TCP
sessions and it is quite unlikely that this operation would be
perfomed manually in any case.

The NetPDL database used for this test is represented as an
encapsulation graph in fig. 7. The graph is larger than what
can be examined using BPF-derived techniques and allows
FSA-based filters to recognize TCP sessions even if the IP
header is encapsulated. This causes some protocols that are not
directly involved in the filter statements (e.g. VLAN and IPv6)
to be present in the executable code because their traversal

Fig. 7.

Protocol encapsulation graph

could be required to reach IP and TCP headers; in turn, this
causes more operations to be performed at run-time than the
amount required by BPF and BPF+ that do not take tunneling
into account. The difference is small but accounts nevertheless
introduces some overhead.

FSA-based filters are shown to scale significantly better
than the other techniques with increasing session counts:
while all the other approaches scale linearly, FSA-based filters
follow a logarithmic curve, as expected from the theoretical
considerations reported in section IV-D. The absolute frame
rate results are good as well, since even in complex cases it is
possibile, on the test machine, to filter packets at roughly 150%
the rate required for gigabit Ethernet. It is worth noting that the
results obtained for low session counts are made somewhat less
relevant by the time spent in ancillary tasks such as fetching
packets from the trace. Moreover, the CPU of the test machine
is probably able to correctly predict a large number of the
bounds checks that are present at each memory access both
in BPF and BPF+ code, as all packets in the trace are well-
formed. Running the same test with a different processor with
less advanced branch prediction capabilities would probably
yield worse results for BPF and BPF+ where each access is
checked. Accurate branch prediction is not as important in
FSA-based filters, as they execute only 1 bound check in most
cases.

C. Memory consumption and potential state-space explosion

A very felt problem with FSAs, and DFAs in particular, is
the potential exponential explosion in the number of states
experienced when transforming a NFA into a DFA. This
issue is, in the general case, unavoidable and comes from the
intrinstic inability of FSAs (especially if deterministic) to cope
with certain pattern sets [28] that unfortunately are frequently
encountered in real world situations such as intrusion detection
systems. A sample pattern set that triggers this behaviour is
reported in [29] and consists in multiple patterns of the form
“ % S5 % SI” (with S; and S] being different strings) that are

105

% - FSA
--BPF
¥ BPF+

Relative performance

75
1 10 100

TCP session count (log scale)

Fig. 8. TCP session filtering performance (log plot)

to be disjunctively matched. In general, a NFA of n states can
lead to a DFA of O(2™) states upon determinization; the DFA
minimisation algorithm improves filter memory consumption
but does not prevent by itself state-space explosion.

These considerations make it necessary to investigate
whether similar issues arise in our context by measuring the
memory used by FSA-based filters and its trend with increas-
ing filter complexity. We have measured memory occupation
in filters that recognize increasing numbers of TCP sessions.
Since no memory is allocated at run-time, except for a very
small and fixed stack space, we performed binary code size
(which is broadly proportional to state count) measurements
with the POSIX nm command. This test includes FSA-based
and BPF+ filters because they are compiled to object code
in a similar fashion. For FSA-based filters we have used a
reduced protocol database that mimics the one supported by
BPF+, but including all protocol features and all the relevant
encapsulation relationships as shown in bold in fig. 7.

The results, presented in fig. 9, show that the memory
consumption is broadly linear in the number of filtered TCP
sessions and no state explosion occurs for this work set.
Moreover, the absolute code size is reasonably small, so even
big filters can fit into modern processor caches. FSA-based
filters occupy rougly twice the space required for BPF+ filters.
This is a good result especially when considering that, as
explained in previous sections, the plain FSAs we use contain
repeated portions that cause additional memory consumption.
If a further reduction in size is desired, a number of different
automata compression techniques (orthogonal to our approach)
is described in literature [30].

While the performed test provides only empyrical evidence,
and it is always possible to design protocols and filter rules
to cause a state space explosion, we do not expect any from
real-world protocol sets and filter rules. This is because filters
are not as free-form as regular expressions matching arbitrary
text fragments can be: as an example, packets always start
with a known protocol and follow a known field sequence, so
no packet filters start with (or contain) “.x” patterns, therefore
excluding the chance for the aforementioned case.

25 1200

1000
20

800

600 & FSA (small)

=BPF+
=¥-State count

Code size (kiB)
State count

400

200

TCP session count

Fig. 9. Memory occupation of TCP session filters

VI. CONCLUSIONS AND FUTURE WORKS

We have designed, prototyped and evaluated a packet filter
generation technique based on Finite-State Automata, aimed
at obtaining good performance and flexibility while preserv-
ing all the traditional safety requirements, both in terms of
memory access correctness and termination. The FSA model
is particularly valuable for the task at hand because it is
powerful enough to express any possible stateless packet filter
(even with loops) while at the same time providing a robust
mathematical framework with well-defined properties that can
be exploited to enforce safety. An interesting property of
the FSA model is that, by construction, each packet field
is examined at most once; this property always holds and
greatly limits the amount of redundancy that can be present
in filter programs. Moreover, it does not require any effort to
be achieved, in contrast with the large number of optimization
algorithms that are traditionally employed and cannot, by their
own nature, provide any hard guarantee about the resulting
code quality.

There are known algorithms to perform boolean operations
between FSAs: this provides a well-defined way to compose
filters, an operation that is traditionally perfomed either by
running them in sequence or resorting to heuristics that might
fail in complex or unforeseen circumstances. FSAs are closed
under boolean operations, so even the result of multiple com-
position operations is still optimized with regard to repeated
evaluations of the same packet field.

Finite-state automata are also very well-known and un-
derstood and have straightforward and efficient software and
hardware implementations: besides being a non-ambiguous
semantic model for a filter, they also double as an effective
and useful guideline for code emission.

In order to prove this technique to be viable and practical,
we have developed a filter generator that creates the filter DFAs
from an external protocol database (thus decoupling protocol
description from filter generation) and user-specified filtering
rules. The DFAs can then be used as they are by existing
hardware or software engines, or can be translated into C code

by the back-end, which also performs some transformations in
order to improve performance. The main optimizations consist
in adapting the operations to be performed to the underlying
machine word size, and carefully placing a small number of
run-time bounds checks in order to enforce filter termination
and memory access safety. Bounds checks are generated
already fully aggregated, so their number is very low, both in
absolute terms (they are generated only on loops or optional
parts in the protocol description or in the encapsulation graph)
and along any execution path (only one is needed in many
cases).

We have evaluated the run-time performance and memory
occupation of FSA-based packet filters by comparing them
to other approaches both on synthetic benchmarks, by deter-
mining the worst-case run-time over a set of simple filters,
and on a real-world test, consisting in filtering an increasing
number of TCP sessions from a captured packet trace. The
resulting programs exceed the dissection capabilities of most
other approaches in terms of recognizable fields and tunneling;
FSA-based filters are not affected by restrictions, such as
forbidding cycles in the filter program, traditionally required
in order to enforce termination.

Even if more complex and capable, FSA-based filters are
shown to be of comparable performance to other modern
approaches such as BPF+ on simple filters; moreover, they
are shown to scale better with increasing filter complexity
because their regular structure enables a code emission strategy
that focuses on improving performance instead of eliminating
sources of overhead introduced by the compilation process
itself, as it is often the case with traditional compilers. The
measured overhead of run-time safety checks is very small and
was shown not to cause any significant performance penalties.

Overall, the FSA approach is an effective and simple
way to generate packet filters that are easy to compose and
efficient to run, even with increasing complexity. Among the
potential problems, a widely-known issue affecting FSAs and,
more specifically, DFAs, is the occurrence of a space-state
explosion. This problem is a limiting factor for DFA adoption
in pattern-based detectors such as intrusion detection systems;
even if it can be triggered with our generator as well, we
believe it unlikely to happen with a realistic protocol and
common use cases, because of protocol header and filter
structure. A specific case that triggers a space state explosion
is encountered when filters compare 2 packet fields against
each other; while theoretically supported, this requires O(2%)
states for N-bit fields. Similar limitations are shared by other
generators, albeit for different reasons. Experimental results
show that, when filtering increasing numbers of TCP sessions,
memory occupation grows roughly linearly with the numer of
filtering rules.

The presented technique can be easily extended to support
packet demultiplexing in addition to packet filtering. This is
partially supported by our current generator prototype, in that
it labels final states with identifiers of the filtering rules that
matched and correctly propagates these labels across automata
manipulation algorithms. Full support would require handling

dynamic automata creation and code generation, tasks that will
be the object of future studies. Another possible extension to
our approach consists in enabling interactions (look-ups, up-
dates) with stateful constructs such as session tables, required
for higher-layer filtering and traffic classification.

The FSA-based filter generation techniques improves the
current state of the art by uniting most of the desirable
properties required for packet filters by providing processing
speed, reasonable memory consumption, flexibility in speci-
fying the protocol formats and filtering rules, effective filter
composition and low run-time overhead for enforcement of
both termination and memory access safety. The development
of the filter generator and the test results support our claims
by showing that the approach presented is viable.

[1]

[2]

[3

=

[4]

[5]

[6

=

[7]

[9]

[10]

[11]

[12]

[13]

[14]

REFERENCES

R. T. Braden, “A pseudo-machine for packet monitoring and statistics,”
in SIGCOMM ’88: Symposium proceedings on Communications archi-
tectures and protocols. New York, NY, USA: ACM, 1988, pp. 200-209.
A. M. Turing, “On computable numbers, with an application to the
entscheidungsproblem,” Proceedings of the London Mathematical Soci-
ety, vol. Series 2, 42, pp. 230-265, 1936.

A. Begel, S. McCanne, and S. L. Graham, “BPF+: exploiting global data-
flow optimization in a generalized packet filter architecture,” SIGCOMM
Comput. Commun. Rev., vol. 29, no. 4, pp. 123-134, 1999.

M. L. Bailey, B. Gopal, M. A. Pagels, L. L. Peterson, and P. Sarkar,
“PathFinder: A pattern-based packet classifier,” in Operating Systems
Design and Implementation, 1994, pp. 115-123. [Online]. Available:
citeseer.ist.psu.edu/bailey94pathfinder.html

O. Morandi, F. Risso, M. Baldi, and A. Baldini, “Enabling flexible packet
filtering through dynamic code generation,” Proceedings of the IEEE
International Conference on Communications (ICC 2008) - Advances
in Networks and Internet Symposium, May 2008.

S. Ioannidis and K. G. Anagnostakis, “xPF: Packet filtering for low-cost
network monitoring,” in Proceedings of the IEEE Workshop on High-
Performance Switching and Routing (HPSR), 2002, pp. 121-126.

S. McCanne and V. Jacobson, “The BSD packet filter: a new architec-
ture for user-level packet capture,” in USENIX’93: Proceedings of the
USENIX Winter Conference, 1993.

Z. Wu, M. Xie, and H. Wang, “Swift: a fast dynamic packet filter,”
in NSDI'08: Proceedings of the 5th USENIX Symposium on Networked
Systems Design and Implementation. Berkeley, CA, USA: USENIX
Association, 2008, pp. 279-292.

D. R. Engler and M. F. Kaashoek, “DPF: fast, flexible message demulti-
plexing using dynamic code generation,” in SIGCOMM ’96: Conference
proceedings on Applications, technologies, architectures, and protocols
for computer communications. New York, NY, USA: ACM, 1996, pp.
53-59.

L. Degioanni, M. Baldi, F. Risso, and G. Varenni, “Profiling and
optimization of software-based network-analysis applications,” in SBAC-
PAD ’03: Proceedings of the 15th Symposium on Computer Architecture
and High Performance Computing. ~ Washington, DC, USA: IEEE
Computer Society, 2003, p. 226.

F. Risso and M. Baldi, “NetPDL: an extensible XML-based language for
packet header description,” Comput. Netw., vol. 50, no. 5, pp. 688-706,
2006.

L. Degioanni, M. Baldi, D. Buffa, F. Risso, F. Stirano, and G. Varenni,
“Network virtual machine (NetVM): a new architecture for efficient
and portable packet processing applications,” Telecommunications, 2005.
ConTEL 2005. Proceedings of the 8th International Conference on
Telecommunications, vol. 1, pp. 163-168, June 15-17, 2005.

M. Jayaram, R. Cytron, D. Schmidt, and G. Varghese, “Efficient
demultiplexing of network packets by automatic parsing,” 1994.
[Online]. Available: citeseer.ist.psu.edu/jayaram95efficient.html

H. Bos, W. D. Bruijn, M. Cristea, T. Nguyen, and G. Portokalidis,
“FFPF: Fairly fast packet filters,” in Proceedings of OSDI, 2004, pp.
347-363.

[15]

(16]

[17]

[18]

(19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

L. Deri, “nCap: wire-speed packet capture and transmission,” in
E2EMON °05: Proceedings of the End-to-End Monitoring Techniques
and Services on 2005. Workshop. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 47-55.

J. E. Hopcroft, R. Motwani, Rotwani, and J. D. Ullman, Introduction to
Automata Theory, Languages and Computability. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2000.

P. Briggs and K. D. Cooper, “Effective partial redundancy elimination,”
in PLDI ’94: Proceedings of the ACM SIGPLAN 1994 conference on
Programming language design and implementation. New York, NY,
USA: ACM, 1994, pp. 159-170.

R. Gupta, D. A. Berson, and J. Z. Fang, “Path profile guided partial
redundancy elimination using speculation,” in ICCL ’98: Proceedings
of the 1998 International Conference on Computer Languages. Wash-
ington, DC, USA: IEEE Computer Society, 1998, p. 230.

V. Laurikari, “Efficient submatch addressing for regular expressions,”
Master’s thesis, Helsinki University of Technology, 2001.

M. Becchi and P. Crowley, “Efficient regular expression evaluation:
theory to practice,” in ANCS ’08: Proceedings of the 4th ACM/IEEE
Symposium on Architectures for Networking and Communications Sys-
tems. New York, NY, USA: ACM, 2008, pp. 50-59.

A. W. Appel and J. Palsberg, Modern Compiler Implementation in Java.
New York, NY, USA: Cambridge University Press, 2003.

A. Korobeynikov, “Improving switch lowering for the LLVM compiler
system,” in Proceedings of the 2007 Spring Young Researchers Collo-
quium on Software Engineering (SYRCoSE2007), May 2007.

Ulfat Erlingsson, M. Krishnamoorthy, and T. V. Raman, “Efficient
multiway radix search trees,” Inf. Process. Lett., vol. 60, no. 3, pp. 115-
120, 1996.

T. T. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
algorithms. Cambridge, MA, USA: MIT Press, 1990.

D. E. Knuth, The art of computer programming, volume 3: (2nd ed.)
sorting and searching. Redwood City, CA, USA: Addison Wesley
Longman Publishing Co., Inc., 1998.

Y. Lu and B. Prabhakar, “Perfect hashing for network applications,” in
in IEEE Symposium on Information Theory. 1EEE Press, 2006, pp.
2774-27178.

T. Wiirthinger, C. Wimmer, and H. Mossenbock, “Array bounds check
elimination for the java hotspot™client compiler,” in PPPJ ’07: Pro-
ceedings of the 5th international symposium on Principles and practice
of programming in Java. New York, NY, USA: ACM, 2007, pp. 125—
133.

S. Kumar, B. Chandrasekaran, J. Turner, and G. Varghese, “Curing
regular expressions matching algorithms from insomnia, amnesia, and
acalculia,” in ANCS ’07: Proceedings of the 3rd ACM/IEEE Symposium
on Architecture for networking and communications systems. New
York, NY, USA: ACM, 2007, pp. 155-164.

R. Smith, C. Estan, and S. Jha, “XFA: Faster signature matching with
extended automata,” Security and Privacy, IEEE Symposium on, pp.
187-201, 2008.

D. Ficara, S. Giordano, and G. Procissi, “An improved DFA for
fast regular expression matching,” SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 5, pp. 2940, 2008.

