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Turbulence: Basic Physics and
Engineering Modeling



{&4" POLITECNICO DI TORINO

Outline of this Section

e Fundamental Considerations
— Introduction
- Length and Time Scales in Turbulence

e Modeling of Turbulence
- Reynolds Averaged Navier — Stokes (RANS)
— Direct Numerical Simulation (DNS)
— Large Eddy Simulation (LES)

e RANS models and Boundary Layers

-~ k—e closure models
— law of the wall
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“... the smallest eddies are almost numberless, and large
things are rotated only by large eddies and not by small ones,

and small things are turned by small eddies and large.”
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The Reynolds Experiment

lass pipe dye streak
giass pip j\ /

I /
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| / |

instantaneous 4/

turbulent streamline

Figure 1.2: The Reynolds experiment; (a) laminar flow, (b) early transitional (but still laminar)
flow, and (c) turbulence.
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Fundamental Considerations

Modern View of Turbulence

“Turbulence is any chaotic solution to the 3-1) Navier—Stokes
equations that s sensitive to initial data and which occurs as
a result of successive instabilities of laminar flows as a bifur-
cation parameter is increased through a succession of values.”

e Random is not (deterministic) chaos

e Navier — Stokes system of equations may exhibit
turbulent solutions

e Turbulent solutions show sensitivity to initial conditions

e The sequence of bifurcations is usually quite short
(steady —> periodic = quasiperiodic = turbulent)
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Main Features of Turbulence

1. disorganized, chaotic, seemingly random behavior;

2. nonrepeatability (i.e., sensitivity to initial conditions);

3. extremely large range of length and time scales (but such that the smallest scales are still
sufficiently large to satisfy the continuum hypothesis);

4. enhanced diffusion (mixing) and dissipation (both of which are mediated by viscosity at

IIlDIECI]I&I‘ SC‘ELIES i..

5. three dimensionality, time dependence and rotationality (hence, potential flow cannot be
turbulent because 1t 1s by definition irrotational);

6. intermittency in both space and time.
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Fundamental Considerations

Navier — Stokes System of Equations

e Navier — Stokes (NS) equations for incompressible flow:

V-U=10.,
U +U- VU =-VP+rvAU + Fp.

e The critical parameter driving the succession of
bifurcations and ruling the transition from laminar to
turbulent flow is the Reynolds number, namely

Re=UL/v

where U is a velocity scale, L is a typical length scale and
v is the kinematic viscosity.
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Fundamental Considerations

Existence (E), Unigueness (U), Regularity

2D 3D
Strong Solutions E&U E?, U
Weak Solutions E&U E, U?

e Even though it should happen that one day it is proven
that long-time strong solutions do not exist, we will still
rely on the weak solutions, which exist all the time, but

may be not unique.

e Attempting to employ high-order numerical methods for
discretization of NS equations in strong form is likely
doomed to falil.
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Fourier Transform (in Time)

X (w) = f r(t) et dt
()= 5= [~ X() e du
X — ox | w) €
TIME DOMAIN FREQUENCY DOMAIN
7
h’Et} H(f)

AT

— 7 ’ ks H— - .\:{rr ° 1}’! - +f—
hit)=A |t|]<T/2 4+—> H(f) = AT sin({ 7tTf )
A2 | =TP2 T

10

=0 |t|>T/2
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Fundamental Considerations

Autocovariance, Frequency Spectrum
Ry = [ fF(t— )

S(f)= | R@) e dr

e Autocovariance (which is proportional to autocorrelation)
IS a function that provides a measure of how well a signal
remembers what it has happened.

e The frequency spectrum allows to identify the leading
oscillating components of a signal, in order to identify
periodicity in pseudo-random behavior.
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time series containing two frequencies S0 and 120 cycles/sec
T T T T T
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~ NHT:Turbulence
- Fundamental Considerations
Time - Space: Taylor Hypothesis

Taylor’s hypothesis. As noted in Def. 1.99, Tavlor's hyvpothesis can be employed to
deduce spatial information about turbulent fluctuations using time series of measurements
at a single point, or at a sequence of points at which measurements have not been taken
simultaneously. The preceding discussions of length and time scales suggest that these can
typically be related through some velocity scale, and this is what is involved when invoking
Taylor’s hypothesis. In particular, as described in [7], measurements of fluctuating velocities
are sometimes collected by traversing a probe through the flow field so rapidly that the nature
of the turbulence does not change significantly during the measurement process. This permits
construction of spatial derivatives of the fluctuating quantities at an ostensibly fixed time.
If the speed of traversal U of the probe is sufficiently high, then a fluctuating velocity signal
u'(t) at a fixed location can be identified with fluctuations at a different location a distance
x away by substituting ¢ = x/U. This is often termed a “frozen turbulence” approximation,
and it is shown in Hinze [6], among other places, that |u'|/U < 1 must hold for results
obtained from Taylor’s hypothesis to be valid.

14
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Two-point, Wavenumber Spectrum

R; (1) = ] (X s (X + 1)l

. 1 ,
6i(K) = 5. f exp(—ik.r) Ry ; (r)dr
e The concept of stationary is somehow ambiguous in
turbulence - it is better to introduce the concept of
homogenous (statistics invariant of translations) and
Isotropic (statistics invariant of translations, rotations and
reflections) turbulence.

e The wavenumber spectrum tensor is the Fourier
transform of the two—point one-time autocovariance.
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Energy Spectrum

E=1/2 f i () g (%) dx (4.5)

can be written in terms of the spectrum ¢; ;(k)

E= % f B1.4(k)dk = f E(k)dk (4.6)

where ¢, ;(k) is the Fourier transform of the velocity correlation tensor R; ;(r):

¢: (k) = # f exp(—ik.r)Ri;(r)dr ; Rij(r) = f uj(X)ui(x+r)dx  (4.7)

R, j(r) tells us how velocities at points separated by a vector r are related. If we
know these two point velocity correlations, we can deduce E(k). Hence the energy
spectrum has the information content of the two-point correlation.

E(k) contains directional information. More usually, we want to know the energy at
a particular scale & = vk.k without any interest in separating it by direction. To
find E(k), we integrate over the spherical shell of radius & (in 3-dimensions):

16 E= ] E(k)dk = L h }( E(K)dodk = ] T Ek)dk (4.8)

0
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Length and Time Scales in Turbulence

large scale

/— integral scale

inertial
subrange
dissipation
scale

| | | o
kr kr g
log k&

log E(k)

Figure 1.5: Turbulence energy wavenumber spectrum.
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Integral Scale (¢)

4 ! / u'(x, t)u'(x +r,t)dr

iz, S

- = 20| S|

[

e The integral scale is defined by a single wavenumber,
which corresponds to the maximum in turbulence energy.

e It can be expressed either by means of autocorrelation
function or by means of turbulence energy dissipation

rate €, which depends on the symmetric part of the stress
tensor.

18
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Taylor (Micro) Scale (1)

e P [u<|-u*|?>]”

0%

(IS

e |t does not involve a clear physical meaning = it is
considered for historical reasons.

e This scale is roughly consistent with the Kolmogorov
iInertial subrange scales, but it usually overestimates the
actual dissipative eddy size

19
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We now find expressions for the smallest scales of turbulence. These were derived by
Kolmogorov under the assumption that at these scales mainly dissipation would be impor-
tant, so the only two physical parameters needed to describe behavior from a dimensional
standpoint are viscosity v and dissipation rate £ of turbulence kinetic energy.

. v v ~ Re; 34
/ |_u:|3g3 L

Very huge computational demand !

20
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Reynolds Decomposition

Then the Reynolds decomposition of u(x,t) is
u(z,t) =u(x) + 4 (x,t),

where u/(x,t) is termed the “fluctuating part.”

VW

i
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Derivation of RANS equations 1/2

V-U=V-(u+u)=V.-u+V-u'=0. (2.2)
Then averaging this equation results in
V. a+V-w=0, (2.3)

and from Eq. (1.26) we deduce that

Then it follows from the far right-hand side of Eq. (2.2) that
V-u'=0 (2.5)

also holds.

We remark that if the averaging performed in Eq. (2.3) had been omitted, we might
conclude that only

Vu=-V.u

22
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Modeling of Turbulence: RANS

Derivation of RANS equations 2/2

(@+u),+@+w) V(w+u)=-VE+p)+vA@+u) .

Now recall that w is independent of ¢, by definition, so the first term in this expression is
identically zero. Then upon expansion of the dot product on the left-hand side we have

wi+w-Vu+u-Vu' +u' - Va+u' -Vu' = -V (@ +p)+vA@+u') .

i+u-Vu+u-Vu' +u -Vu+u'-Vu' = -V(@+p)+rvA(u+u'). (2.6)

(2.9)

e Closure problem: this vector equations contain more
unknowns than equations - the situation is the same in
case one considers the higher order statistical equations

”s for averaged quantities



24

SER
(&4 POLITECNICO DI TORINO

Modeling of Turbulence: RANS

Reynolds (Stress) Tensor

( u:z 1w -u’u:’\

2 )
(7 — 1 ! 'Lf"r Lr'r K 'i'_."'r y

w
K.u:w: o w'? /

Closure problem: The so-called RANS closure model
provide a proper dependence of the unknown tensor on
the main flow characteristics (average quantities and/or
their gradients) - these models involve some heuristic
content, which must be verified before applying it to the
considered application.
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of Turbulence: RANS

Multiple Time Scales

0.5

-0.5

sin{o) (1+1/10 sin{100 o))

_____________
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Many-to-one mapping !!
Unknown quantities are recursively affecting themselves
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General Problems of RANS 2/4

u(z,t) = a(z) + o (x,t). (2.22)

20

u(x,t) = ) ar(t)ew().

| k| =0

(@) =) (ar(t) — ) on(). (2.23)

The Reynolds fluctuation contains all other modes of the
Fourier representation but the first one = There is a
lot of physics here, we are neglecting !!

27
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General Problems of RANS 3/4

So consider a fluctuating temperature 6(z, t) at a fixed location @ and its interaction
with a component of fluctuating velocity, say u'(x,¢). Now recall that, by definition, both
6" and «' have zero mean: but in the case of ', the fluctuations will remain close to this

magnitude. The consequence of this will be a temperature-velocity correlation such that
u'f! < O(1), implying that the turbulent heat fluxes have essentially no effect on the mean
temperature. But in reality, the turbulent fluctuations could produce very significant local in
space and instantaneous in time effects. RANS models are unable, in general, to reproduce
such phenomena, and in fact do not attempt to do so. Rather, the goal of RANS modeling
in such situations is simply to produce averaged scalar fluxes whose overall effect is close to
a “smearing” over time of the actual physics.

It is not possible to model interactions at the small
scales between flow and other quantities (transported
28 scalars) !!
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General Problems of RANS 4/4

In this final subsection we consider what is possibly the most important question related
to RANS solutions. To put this into the proper setting we first think in terms of time-
averaged experimental results. Since it is now almost universally accepted that the N.-S.
equations embody all the physics of turbulence, it is reasonable to view experimental time
series as solutions (albeit, analog) to the N.-S. equations, subject, of course, to measurement
errors. Hence, averaging of any such time series yields a time-averaged solution to the N.-S.

equations. Then, with respect to the RANS equations, the natural question to consider is

whether solutions to these equations equal the time-averaged solutions to the N.—S. equations.

Failure to demonstrate such equality would obviously raise serious questions regarding use
of RANS formulations in general, and it is well known that comparisons of RANS solutions
with experimental data have, from the earliest calculations to the present, always shown
discrepancies.

Conceptually impossible to recover the exact results of
NS system, without using the exact expression for the
29 Reynolds stresses !
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Modeling of Turbulence: DNS

Direct Numerical Simulation (DNS)

Direct numerical simulation consists in solving the Navier
— Stokes equations, resolving all the scales of motion,
with initial and boundary conditions appropriate to the
flow considered.

There is no closure problem !!

The computational demand is very huge (for the current
computational resources), as clearly pointed out by the
Kolmogorov estimation of turbulence scales - parallel
computing is essential.

Problems in defining accurate initial conditions,
consistent with reality.
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Decay of Homogenous Isotropic Turb.

Binary mixture, mesh size 135°, E(k) = 0.038 k* exp(-0.14 k?) with k < [4,8]

>, <g(t)>/<¢(0)>

<k(t)>/<k(0)
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Modeling of Turbulence: DNS

Binary mixture, mesh size 123°, E(k) = 0.494 k* exp(-0.14 k?) with k < [1,8]
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Modeling of Turbulence: DNS

Optimal Resolution

Binary mixture, mesh size 135°, E(k) = 0.038 k* exp(-0.14 k*) with k  [4,8]

2 ! ! ! ! !
- 18 ' ' ' '
>
£ 16
T
A 14 5
? 1.2 : .
N Fiw . | =k Average |
= 1o T e Kingtic energy [ P -
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e 08F—f gt e — .
= &y
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Large Eddy Simulation (LES)

/7 original signal

low-pass filtered —\

high-pass part
MJM-—\_\\/\/[M r '\.f".k_\l. NPJW mﬁr\ﬂﬂ-\ I"lhh

™) NN WI‘*

36 Figure 1.6: Low-pass and high-pass filtered parts of a signal.
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Large Eddy Simulation (LES)

1) DNS requires no modeling, but it demands resolution from the large scales all the way

through the beginning of the dissipation scales. This results in total arithmetic scaling
at least as Re®.

11) LES requires modeling of part of the inertial subrange and into the beginning of the
dissipation scales. The amount of required modeling is set by the amount of resolution
that can be afforded, but it is unlikely that total arithmetic will scale worse than Re?.

1i) RANS requires modeling of everything from the integral scales into the dissipation
range. As a consequence, total arithmetic is at most a weak function of Re.

e Large Eddy Simulation (LES) is a turbulence
computational method lying somewhere in between
RANS and DNS (also in terms of computational demand)

37
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Large Eddy Simulation (LES)

Uz, t) = @(x.t) +u'(x,1). (3.1)

We remind the reader of two key points associated with this form of decomposition. The
first is that =~ represents a spatial filter that should be considered a low-pass filter which, in

principle, removes all wavenumbers in the Fourier representation of U above those supported

Oy the chosen 1screfization ol the governing equatmns. ormally, we lave

Ulx,t) = /ﬂ Glal§) U(&, 1) dg = . t), (3.2)

where the filter kernel G is often taken to be a Gaussian, and (), is a subdomain of the solution
domain € such that the volume of €; is approximately A* with h being the discrete step
size of the numerical approximation.

e |t is based on a spatial filtering, which excludes the
smallest scales in dissipation range because they are

assumed independent of the particular considered flow
38
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LES Decomposition

u'(x,t) =U(x,t) — u(x,t).

w(x,t) £ a(x,t) and o (x.t) £0,

Ule,t) = 3 an(t)on(x) + gak(tm(m)-
PR ey 1

e [he fundamental information of the flow are not lost and
the approximation converges to the exact solution by

Increasing the resolution
39
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Filtered Momentum Equation

D __ o
=+ (UU) = —Vp+ AT (3.9)

@+)[@+v) = 70 + W' + o +u'v,

e

Li; = uv —uv, (Leonard stress)
Ci;, = uv' + v (cross stress)
R, = v, (Reynolds stress)

e The subgrid part of a LES representation consists of high-
pass filtering of the solution, thus carrying information only

from the modes above cut-off wavenumber
40
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Modeling of Turbulence: LES

Subgrid — Scale (SGS) Model
w+ V-(uu) = -Vp+vAu — V-1 . (3.12)
Tsasi; = S (@ e S (3.13)

At least from the standpoint of maintaining NS invariances,
it is probably best to model SGS stress as a single entity.

Time derivative is rigorously correct (the filtering is spatial).
Spatial filtering is defined in such a way that LES - DNS.

From the mathematical point of view, filtering eliminates
aliasing arising from under resolution imposed by coarse
grids of practical discretization.
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Modeling of Turbulence: LES £

Smagorinsky Model
Toas — _Q%ng . (3.14)
thas = (CsA)?|S]. (3.15)

e Early LESs were often performed with resolutions nearly as
fine as employed for DNS - the SGS viscosity becomes
very small, and contributions from the model are rather
minimal

e The Smagorinsky model is completely dissipative = no

backscattering of the turbulence kinetic energy (which can
be up to 1/3)

e Modern models allow to automatically tune the constant Cq
42 = Dynamic models by Germano et al. (POLITO)
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RANS Models

There are several different ways by means of which RANS models are classified. One
of the more common is in terms of the number of additional PDEs one must solve beyond
those of the Navier—Stokes equations. Thus, as described earlier in Def. 1.108, one considers
zero-equation, one-equation and two-equation models. and as noted by Wilcox [92] there are
also 3-equation models which include a single ordinary differential equation in their formu-
lation. But this does not exhaust the possibilties. Indeed, the “second-moment closures,” so
named because they include equations for each of the second-moment statistical quantities
comprising the Reynolds stress tensor, employ at least five additional PDEs, and in some
forms might include seven. In principle, one could construct third- and higher-moment clo-
sures, although this is almost never done, even theoretically. In part because of all these
various possible formulations and associated terminologies, turbulence models are often sim-
ply called “algebraic” if they include no additional ODEs or PDEs, and otherwise they are
termed “differential.”

43
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Boussinesqg Hypothesis

Newton’s law of viscosity which might be
paraphrased as “shear stress is proportional to strain rate, with viscosity being the constant
of proportionality.” That is,

ou
= pu— 2.44
The turbulent flow case, which might be expressed as
—u'v' =vp | — 4+ — 2.45

where vp is the turbulent eddy viscosity, is not an empirically-supported phyvsical result.

v
o= 1 2.46
r L (R ( )
2 Yy dr
we see that vp cannot be a constant, except for extremely simple flows. Moreover, it is also

easy to see that vy should actually be a tensor if we are to employ this in 3D. This is all
very different from the situation for the physical viscosity v, as should be obvious.

44
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k — € Models and Boundary Layers

Instantaneous Response (?!)

[t should first be observed that turbulence tends to “remember” its past history, at least
for short times. This is, of course, one of the strongest arguments against randomness (but
not necessarily against stochasticity) of turbulence, and indeed, the Taylor hypothesis would
never work if turbulence did not however briefly remember its past. Equation (2.45) does
not reflect this. It is clear that in a flow field exhibiting mean strain rate this equation
predicts nonzero turbulent stresses (which is qualitatively correct); but as soon as the strain

'is removed, this same relationship instantaneously predicts zero turbulent shear stress. 1 hi

oes not at comclde wit EX]}EI‘IIHEI]ta observations,

e Instantaneous decay to zero of turbulent stress, when the
deformation goes to zero, violates the basic notion of
causality: an effect can neither precede, nor be
simultaneous with, its cause.

e Reynolds stresses, which come from averaging the
nonlinear advective terms, are replaced with linear

45 diffusive terms - we alter the bifurcation sequence.
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Total Kinetic Energy

U-(U,+U-VU) = U.(~Vp+ vAU).

A straightforward calculation shows that

31 (51UF) + U9 (GIUR) = =601 v (510F ).

—\U\E l(u 1P —I—w):f

where

the total kinetic energy per unit mass. Thus, the above can be expressed as
Ki+U-VK =-V-(pU) + vAK.

46

(2.58)

(2.59)

(2.60)
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Mean Flow Kinetic Energy

1
K = E[u—l—u L-I—L) -|—(E-|—u;’)2]
1 1
e (@ +7v* +0°) + 5 (u? +v* + w®) +u + o' + wu
= k+K+U-U". (2.61)
V. W =-Vp+vAu - Ru' '), (2.28)

We can also construct an energy equation analogous to Eq. (2.60) for the mean flow in '
exactly the same way, viz., form the dot product of the mean velocity vector with the RANS

equations. This results in

(2.63)

47
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Turbulent Kinetic Energy

Formal time averaging of (2.60) after substituting the decomposition obtained in Eq.
(2.61) yields

UVk+E)+UNUU)=-V-(pU)+vAk + k),
and after considerable manipulation this can be expressed as
wV(k+k) + V- (wF) = -V(pu) - V- (o) + vAk + vAk. (2.64)

We observe that Eq. (2.64) is now steady state, and that it is expressed in terms of both
mean and fluctuating quantities. Subtracting Eq. (2.63) from this leads to an equation for
the turbulence kinetic energy:

u-Vk+ V- (k) =-V-(pu) + vAk +u-R(u',u') . (2.65)

48
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k — € Models and Boundary Layers

Turbulent Kinetic Energy Budget

w-Vk+ V- (uF)=-V-(pu) +vAk + T R(u',u) (2.65)

: —
J‘

ys i85 (2.66)

2vust

where p' is fluctuating pressure divided by density, and the 5;; and s}; represent components
of mean and fluctuating strain rate tensors, respectively:

| (0w  Ou; 1 [0u, O
T:— ¢ , d ,r:_ — ¢ J . QGW
i 2 (&:j U 81@) | o "ij 2 (fj.'i:j U 81:) ey

e Turbulence Diffusion Transfer (T)
e Turbulence Production (P) - P= ¢ Equilibrium Turbulence
e Turbulence Dissipation (g)

49



(2.75)

e Since we have little in the way of sound theory for
modeling the velocity triple correlation, we (arbitrarily)
combine this with the pressure diffusion term and model
these together in the diffusion term of kinetic energy.

e There is no physical justification for this = there is no
reason why the turbulent quantities must satisfy an

50 advection — diffusion equation
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Standard k — e RANS Model

V-u=0,
u;+u-Vu=-Vp+ V- |(v+vr)Vu ,

ey i T Vi=P—c+ V- [(v+ /o) VH

5 g?
) <+ TV =P - Cor + V(v + vr/0.)Ve]

with production P given by

3-ui
P= -y Oz’
—u'u!, = 2urs;; — Eké--
P ] 3

i7

and

51 C,=0.09, C,=144, C,=192, o0,=10, o.=13.

(2.78a)

(2.78b)

(2.79)
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k — € Models and Boundary Layers

Standard k — ¢ RANS Model: Remarks

The model equations cannot be integrated all the way to
a solid boundary = The law of the wall must be
employed to provide velocity boundary conditions away
from solid boundaries (equations for k and € are not valid
In viscous sublayer; €?/k is singular close to the wall).

The model equations show a strong coupling with each
other (existence and uniqueness of solution?).

Assignment of boundary conditions is quite difficult for k
and ¢ (in particular for inlet conditions), because they are
statistical quantities more than physical.

Some improvements have been developed for this kind
of models (for example RNG models, based on
Renormalization Group Theory).
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Standard k — € RANS Model: Performance
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Fipure 2.3: Comparison of various k—= models for flow over a rib of square cross section.
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Law of the Wall for Wall-bounded Flows
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(a) (b)

Figure 1.7: Comparison of laminar and turbulent velocity profiles in a duct; (a) laminar, and (b)

turbulent.

e (At least) Two length scales are required to describe the
turbulent profile, because of the sharp deformation at the wall

e The velocity profile is linear in the viscous sublayer, while it is
nearly constant in the outer region = Hence a third profile is

4needed to math the previous ones.
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Length Scales

Let u(y) denote the time mean velocity, and let u, denote a velocity scale for the inner
region. (This should generally currespﬂnd to turbulent velocity fluctuations and might, for
example, be the square root of the turbulence kinetic energy. Here, as the notation suggests,
and will be evident later, we use the friction velocity.) Now observe that the two length
scales are a large advective scale associated with w (say, h/2, the half-height of the duct) and
a viscous scale corresponding to u,, viz., v/u.. In order for an intermediate scale to make
sense, it must be the case that the ratio of these two length scales be large; i.e.,

h 2 h T
2 _ oy,
viv 2
Then we are able to id a range of distances y from the yz such that

@ and simultaneous 0

55
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Log Law

where Cy is a constant that ultimately will be determined from experimental data. This can
be directly integrated to yield

= Cl hly—l— C;)? (1?0)

where (5 is an integration constant which also will need to be found from experimental data.

Modulo a few details which will be supplied later, Eq. (1.70) is the well-known “log law”
that matches the inner to the outer layer. As noted in [7], the range of length scales over
which the log law is valid corresponds to the inertial subrange of the Kolmogorov theory or,
equivalently, to approximately the Taylor microscales.

=
u, = 2 1.71
. (1.71)

Furthermore, we define

yy = and  uyp =7/u, (1.72)
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Figure 1.5: Turbulence energy wavenumber spectrum.
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Figure 1.8: Law of the wall.
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Law of the Wall: Application

e The log law formula can be used to compute the velocity
boundary condition at the outer edge of the buffer layer,
or even farther from the wall if extremely coarse gridding
In employed, instead of solving the equations in a very
thin boundary layer.

e At the same time, we reduce the computational demand
and avoid the problems due to singularities of k — ¢
models close to the wall.

e The simple law of the wall described here is not valid for
non similar boundary layers, and furthermore cannot be
used accurately in the presence of flow separation and/or
not fully—developed flows.
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Validation of Prototype Installation

Case study provided by llaria Giolo
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Validation of Prototype Installation
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Validation of Prototype Installation
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Validation of Prototype Installation
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Lift [N] Drag [N]
Aircraft with gas cooler
nacelle 8443.0069 10420.232
Aircraft without gas
cooler nacelle 8420.0861 10595.29
Force variation 0.27% 1.67%

64
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Further Readings

e S.B. Pope, Turbulent Flows, Cambridge
University Press, Cambridge, England (2000).
e D.C. Wilcox, Turbulence modeling for CFD,
(1998).
e R. Ferrari, G.R. Flierl, Turbulence in
Geophysical Systems, MIT OpenCourses:
— http://ocw.mit.edu/OcwWeb/ -

- Earth--Atmospheric--and-Planetary-Sciences/ >
- 12-820Spring-2005/CourseHome/index.htm
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