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Nomenclature

A surface [m2]

b dimensionless factor [−]

Bo buoyancy parameter [−]

cp specific heat capacity [J kg−1 K−1]

C robust correlation coefficient [−]

d diameter of mini/micro channel [m]

e dimensionless error [−]

f generic thermophysical properties

F corrective tensor due to density fluctuations [−]

g acceleration due to gravity [m s−2]

G mass flow rate [kg s−1]

Gr Grashof number [−]

h specific enthalpy [J kg−1]

H generic source term

I identity matrix [−]

k turbulent kinetic energy [J kg−1]

L length of the mini/micro channel [m]

M identifier of turbulent closure model

N natural number

N+ set of positive natural numbers

p pressure [Pa]

Pr Prandtl number [−]

q thermal flux [W m−2]

Q set of fractional numbers

r radial coordinate [m]

R set of real numbers
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Re Reynolds number [−]

S stress tensor [N m−2]

T temperature [K]

u velocity component along axial direction [m s−1]

v velocity component along radial direction [m s−1]

V volume [m3]

w velocity vector [m s−1]

x axial coordinate [m]

y distance from the wall [m]

z generic quantity

Greek symbols

α convective heat transfer coefficient [W m−2 K−1]

β modified compressibility factor [kg J−1]

δ Kroneker’s symbol

ε turbulent dissipation rate [m2 s−3]

φ correction factor due to density fluctuations [−]

ϕ non-ideal gas parameter [−]

Φ rounding function

λ thermal conductivity [W m−1 K−1]

µ dynamic viscosity [N s m−2]

η radial location of pseudo-critical temperature [m]

ω generic solving variable

Ω computational domain

ρ density [kg m−3]

σ intensity index [J kg−1]

θ temperature difference [K]

χ ratio of geometric progression [−]

ζ sign of enthalpy gradient [−]
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Subscripts and superscripts

a axial/center-line condition

b bulk condition

BR Bellmore and Reid

c critical condition

exp experimental condition

l laminar condition

L referring to whole length of mini/micro channel

λ referring to thermal conductivity

m minimum value

µ referring to dynamic viscosity

RNG RNG k − ε model

SKE standard k − ε model

S, N,E, W cardinal directions

t turbulent condition

T total/stagnation condition

w wall condition

Notation

∂x partial derivative along axial direction = ∂/∂x

∂r partial derivative along radial direction = ∂/∂r

z1 ⊗ z2 diadic product

〈z〉 ≡ z time averaging

4



1 Introduction

Turbulent convective heat transfer in ducts at supercritical pressure is encoun-
tered in a wide variety of engineering situations. Only some of them involve
strong dependence of thermodynamic and transport properties on temperature
that occurs near the critical point. In these cases, strong coupling between en-
ergy and momentum equation gives rise to unconventional effects, which are
defined as critical phenomena. Some engineering applications which involve
critical phenomena are: supercritical extraction; enhanced oil recovery; super-
critical pollution oxidation; transcritical refrigerating cycles and supercritical
coolants. In particular, recent researches in refrigeration technology have pro-
duced many experimental data for heat transfer near the critical point.
Increasing attention to environmental issues induces to reconsider natural flu-
ids as alternative refrigerants. The carbon dioxide is a non-flammable and
non-toxic fluid, which represents the primary candidate for air-conditioning
with natural fluid [1]. Since in common refrigerating cycles, the heat rejection
temperatures are usually above the critical temperature of carbon dioxide
(Tc = 304.13 K), the heat rejection process usually occurs at a supercriti-
cal pressure (pc = 7.377 MPa) in order to maximize the cooling capacity.
The high working pressure and the favorable heat transfer properties of car-
bon dioxide allow to use extruded flat tubes with circular/elliptical ducts,
which have diameters much smaller than usual ducts (d < 2 mm) [2]. Size
reduction justifies the conventional name of mini/micro channels. Inside each
mini/micro channel, the gas cooling process takes place without phase change,
since the working fluid is at a supercritical pressure. In order to design a high-
efficiency heat exchanger for heat rejection, a deep understanding of turbulent
convective heat transfer for supercritical carbon dioxide in cooled mini/micro
channels is needed.
The highest temperature at which condensation/evaporation occurs is known
as the critical temperature. Both theoretical and experimental evidences exist
which indicate that the idea of a definite critical point, with unambiguous
critical temperature, pressure and volume is probably only an approxima-
tion; actually there appears to be a critical region [4]. In this critical region
the thermophysical properties have a strong dependence on temperature. For
each supercritical pressure, the value of temperature at which the specific heat
reaches a peak is called pseudo-critical temperature Tpc. At the pseudo-critical
temperature, the thermal conductivity shows a weaker peak too. When the
bulk temperature decreases below the pseudo-critical temperature for the con-
sidered supercritical pressure, the fluid instantaneously changes from a gas-like
state to a liquid-like state [3]. In particular both the density and dynamic vis-
cosity abruptly increase, in order to match the liquid-like behavior. As a result
of the strong dependence of physical properties on temperature, convective
heat transfer at supercritical pressure is generally more complex than comm-
mon applications. High specific heat, significant thermal expansion, enhanced
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buoyancy and wall variations of thermal conductivity can produce important
influences on convection [5]. Moreover if the physical properties change with
temperature, it becomes necessary to take into account the influence of vari-
able physical properties on the turbulent diffusivity expressions [6].
The previous effects probably justify the great discrepancies among differ-
ent phenomenological correlations, which have been suggested throughout the
last years. A comprehensive review of the heat transfer and pressure drop
characteristics can be found in a specific paper [7]. In the following the main
results will be summarized and recent developments, not included in cited
paper, will be discussed. Initially only few correlations were specifically devel-
oped to calculate the heat transfer coefficients during cooling configurations
near the critical point. Krasnoshchekov et al. [8] carried out the first exper-
imental study on the heat transfer characteristics during turbulent flow in a
horizontal tube with carbon dioxide at supercritical pressure under cooling
conditions. Baskov et al. [9] found that their measurements for vertical tube
were systematically lower than those calculated using the previous formula.
They excluded the effect of buoyancy by comparing the results for ascending
and descending tubes and suggested a new improved correlation. Petrov and
Popov [10] numerically developed a correlation for configurations where free
convection is negligible and found good agreement with experimental data.
More recently, Pettersen et al. [11] experimentally found for extruded flat
tubes with mini/micro channels and carbon dioxide at supercritical pressure
that a usual correlation, originally developed for constant properties, can be
suitably applied. Pitla et al. [12] suggested to improve this conventional cor-
relation by averaging the results obtained with constant properties evaluated
at the wall and bulk temperature. Finally, Yoon et al. [15] found that all
previous studies generally under-predict their measures and proposed a new
phenomenological correlation, which adopts the same functional dependence
originally proposed by Krasnoshchekov et al. [8]. This brief review clearly
shows a circular nature. Moreover only Liao and Zhao [13] investigated a sin-
gle horizontal mini/micro channel with supercritical carbon dioxide and found
that size reduction causes a heat transfer impairment, which cannot be pre-
dicted by correlations developed for usual ducts. Liao and Zhao [13] measured
the variation of Nusselt number Nub with the bulk mean temperature for
various tube diameters, keeping fixed the Reynolds number Reb, the Prandtl
number Prb and the difference between the bulk and wall temperature. The
Nusselt number was found to decrease as the tube size became smaller and
this means that a heat transfer impairment due to size reduction could exist.
Liao and Zhao pointed out that buoyancy effect could be responsible of this
phenomenon. Since the density considerably changes with temperature near
the critical point, free convection can influence heat transfer in supercritical
forced flow too. Theoretical considerations lead to the following criterion for
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negligible buoyancy effects in horizontal tubes [14]:

Gr

Re2
b

=

(
ρw

ρb

− 1

)
g d

u2
b

< 1× 10−3 (1)

The Grashof number Gr represents the relative strength of secondary flow
induced by the buoyancy force. Considering that the buoyancy parameter
Gr/Re2

b is proportional to the tube diameter d, for each operative configura-
tion a critical diameter exists and all tubes characterized by smaller diameters
are free of buoyancy effects. Liao and Zhao found that, for their experimental
tests, this critical diameter is comparable to the upper diameter, which iden-
tifies the conventional class of mini/micro channels. They conclude that the
heat transfer impairment could be caused, partially at least, by the fact that
the buoyancy effect becomes less important for small tubes. In particular, in
the region near the pseudo-critical temperature, the experimental data show
wall thermal fluxes much lower than those predicted by correlation of Petrov
and Popov [10]. In spite of the fact that the buoyancy effect was not included
in the original correlation of Petrov and Popov, Liao and Zhao suggest that
the correlation fails when free convection becomes weak or absent, because it
was developed based on data for large-diameter tubes where this effect should
be significant.
This explanation is not completely satisfactory. For horizontal tubes, buoyancy
causes circumferential variations of heat transfer. When buoyancy effects are
relevant, the upper part of the tube is characterized by impaired heat transfer
while the lower one by enhanced heat transfer, both because of stratification
of the flow [5]. The small amount of available data does not allow to predict
clearly the net results of the two circumferential parts with regards of total
heat transfer. Some evidences exist which buoyancy reduces the total heat
transfer in horizontal tubes, though not in a very pronounced manner [6].
Firstly if tested mini/micro channels are characterized by negligible buoyancy
effects, a small increase of heat transfer should be expected comparing with
large-diameter tubes, contrary to experimental data. Secondly the correlation
of Petrov and Popov does not take into account buoyancy effects. In a prelim-
inary work, Petrov and Popov [16] solved numerically a system of equations
which included also buoyancy in order to reproduce the experimental results
of Baskov et al. [9]. The numerical calculations confirmed that the natural
convection only slightly affects the heat transfer for the ranges of parame-
ters considered in this experiment. For this reason, in the original where their
correlation was suggested, the buoyancy was dropped out from the system
of equations and no buoyancy parameter was included in the interpolation
formula [10]. The effect of free convection was considered only in a following
paper [17].
According to experimental data, mini/micro channels for considered condi-
tions reveal a peculiar behavior in comparison with large-diameter tubes, i.e.
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heat transfer impairment, which has not been completely explained. Numeri-
cal investigation is an useful tool to test additional effects which could explain
heat transfer impairment by overcoming some experimental difficulties. On the
track of the work of Petrov and Popov, the present paper aims to investigate
numerically the turbulent convective heat transfer in mini/micro channels for
carbon dioxide at supercritical pressure. A new approach to take into account
the effects of variable physical properties on turbulence is suggested, in order
to widen the available numerical tools. Three numerical models are solved on
a meaningful experimental plan in order to test their suitability to explain
heat transfer impairment in considered conditions. Finally, a comparison with
phenomenological correlations developed for usual ducts is also reported.

2 Physical models

Since the explanation of Liao and Zhao for heat transfer impairment lies in
the fact that buoyancy is negligible for some working conditions of mini/micro
channels, in the following only pure forced convective regime will be consid-
ered. This means that the limiting condition (1) is punctually verified. If the
gravitational field is neglected, the problem of turbulent convective heat trans-
fer inside horizontal circular tubes shows no angular dependence.
Because of size reduction, the ratio between surface roughness and characteris-
tic diameter increases. Topology of mini/micro channel inner surface becomes
more important at smaller diameters and could affect heat transfer too. Exper-
imental data for aluminum mini/micro channels, with the smallest diameter
considered in the following, show only negligible discrepancies (6 %) between
measured pressure drops and Blasius’s correlation, which was developed for
hydraulically smooth regime [11]. It is reasonable to suppose that stainless
steel mini/micro channels considered by Liao and Zhao were characterized by
lower roughness. This hypothesis is confirmed by the fact that Liao and Zhao
correlation is a modified version of Dittus-Boelter correlation, which does not
take into account roughness [13]. Finally, if a roughness effect exists, the anal-
ogy between fluid flow and heat transfer induces to suppose that it should
enhance heat transfer, contrary to experimental evidence. In the following the
mini/micro channel will be considered hydraulically smooth over the entire
investigated range of Reynolds number.
Turbulent forced convection heat transfer is described by the instantaneous
conservation equations of continuity, momentum and energy. When the physi-
cal properties rapidly change with temperature, as it happens near the critical
point, turbulent regime is characterized by high-frequency fluctuations of phys-
ical properties, in addition to common fluctuations of velocity components and
temperature. Reynolds averaging, i.e. time averaging, of governing equations
produces additional unknown quantities, which must be calculated in terms of
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solving variables. In particular, effects due to density are stronger than those
due to diffusivities, such as dynamic viscosity and thermal conductivity [18].
For this reason, Favre averaging, i.e. density-weighted averaging, appears more
suitable because density fluctuations are automatically taken into account by
averaging procedure [7]. The problem is only apparently simplified because, in
the final system of equations, the density-averaged quantities appear, which
differ from common time-averaged ones. In particular, the phenomenologi-
cal coefficients of turbulent closure models come from an empirical fitting of
time-averaged measures and they are inapplicable to reduced turbulent quan-
tities due to Favre averaging. Although superior in principle, in this work the
density-weighted averaging will be abandoned for more usual time-averaging,
essentially because extensive validation data are lacking.
On introducing the Reynolds decomposition for velocity w = w+w′ and den-
sity ρ = ρ + ρ′ into instantaneous conservation equations and time-averaging
the results, the governing equations of continuity, momentum and energy are
obtained.

∇ · [ ρ (w + w∗)] = 0 (2)

∇ · [ ρ w ⊗ (w + w∗)] = −∇p +∇ · S (3)

∇ ·
[

ρ hT (w + w∗)
]

= −∇ · q +∇ · (S w) (4)

where w∗ = ρ′w′ / ρ is the characteristic velocity for density fluctuations,
S = Sl +St is the effective stress tensor and q = ql +qt is the effective thermal
flux. Laminar and turbulent components for both effective stress tensor and
effective thermal flux are defined as follow.

Sl = µ
(
∇w +∇wT

)
− (2/3 µ∇ ·w) I (5)

St = −ρ w′ ⊗w′ − ρ′w′ ⊗w − ρ′w′ ⊗w′ (6)

ql = −λ ∇ T (7)

qt = ρ h′Tw′ + ρ′h′T w + ρ′h′Tw′ (8)

The last equation can be easily simplified by considering that h′T z′ − h′z′ =
1/2 w′ ·w′ z′ << h′z′, where z can be indifferently ρ, u or v. Some of the
previous terms due to turbulent fluctuations can be expressed by means of
turbulent-viscosity hypothesis and gradient-diffusion hypothesis [19].

−ρ w′ ⊗w′ = µt/µ Sl (9)

ρ h′w′ = λt/λ ql (10)
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A tensor Fµ can be introduced to describe the effects due to density fluctua-
tions on effective stress tensor S = (I + µt/µ Fµ)Sl. In the same way, a tensor
Fλ can be introduced to describe the effects due to density fluctuations on
effective thermal flux q =

(
I + λt/λ Fλ

)
ql.

Fµ = I +
(
ρ′w′ ⊗w + ρ′w′ ⊗w′

) (
ρ w′ ⊗w′

)−1
(11)

Fλ = I +
(
ρ′h′ w + ρ′h′w′

)
⊗ h′w′/

(
ρ h′w′ · h′w′

)
(12)

In particular, density fluctuations affect both the diffusive and the convective
terms into equations (2, 3, 4). Since Fµ is not symmetric, then effective stress
tensor S is not simmetric too.
Keeping in mind the geometrical configuration realized by mini/micro chan-
nels, a two dimensional computational domain Ω ∈ R2 will be considered and
a set of cylindrical coordinates will be adopted to describe it Ω = {(x, r) ∈
R2 : 0 ≤ x ≤ L , 0 ≤ r ≤ R}. The components of velocity vector will
be accordingly renamed w = (u, v). Because of the simplifying assumptions
in boundary layer theory [20], the momentum and energy equations can be
simplified to yield approximate solutions for this case.

∇xr · [ ρ (w + w∗)] = 0 (13)

∇xr · [ ρ u (w + w∗)] = −d p

d x
+

1

r

∂

∂r
(r Sxr) (14)

∇xr ·
[

ρ hT (w + w∗)
]

= +
1

r

∂

∂r
(r u Srx − r qr) (15)

Since the laminar stress tensor reduces to Sl
ij = µ ∂ru (1− δij), then all the

components of effective stress tensor can be expressed in terms of transverse
velocity gradient Sij = [µ (1− δij) + µt F µ

ik (1− δkj)] ∂ru. In the same way, the
concept of thermal boundary layer simplifies the calculation of thermal fluxes.
Since the laminar thermal flux reduces to ql

i = λ ∂rT (1− δi1), then all the
components of effective thermal flux can be expressed in terms of transverse
temperature gradient qi =

[
λ (1− δi1) + λt F λ

ik (1− δk1)
]

∂rT . In the following
some components of the tensors, which describe density fluctuations, are re-
ported, because they are involved in the calculation of effective diffusive terms
Sxr, Srx and qr in simplified equations (14, 15).

F µ
xx = 1 +

ρ′u′ v

ρ u′v′
+

ρ′u′v′

ρ u′v′
(16)

F µ
rr = 1 +

ρ′v′ u

ρ u′v′
+

ρ′u′v′

ρ u′v′
(17)
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F λ
rr = 1 +

ρ′h′ v

ρ h′v′
+

ρ′h′v′

ρ h′v′
(18)

The residual components of effective stress tensor may differ Sxr 6= Srx because
they involve different components of tensor which describes density fluctua-
tions F µ

xx 6= F µ
rr. The term F µ

xx directly affects the turbulent viscosity, while
the term F µ

rr describes the effect of density fluctuations on viscous heating
and it can be usually neglected. For this reason, all considered models assume
F µ

rr ≈ 1 and consequently Srx ≈ (1 + µt/µ) Sl
rx = (1 + µt/µ) Sl

xr. Moreover
density fluctuations are differently involved into convection along main direc-
tions. In order to estimate this discrepancy, an auxiliary radial velocity v0

is introduced, which represents the radial velocity field obtained neglecting
the density fluctuations. Assuming fixed the mean density distribution, this
auxiliary function satisfies the following equation.

∂

∂ x
(ρ u) +

1

r

∂

∂ r
(r ρ v0) = 0 (19)

Along axial direction, the effect of density fluctuations can be clearly neglected
|u∗| << |u|. Along radial direction, considering equations (13, 19) and apply-
ing proper boundary conditions, a relation among actual, characteristic and
auxiliary radial velocities can be found v + v∗ = v0. In the region near the
critical point, strong density fluctuations ensure |v∗| >> |v0|. For all the fol-
lowing calculations, this condition has been verified for at least one order of
magnitude. In this case, an easy correlation yields v + v∗ ≈ 0 and it can
be applied to simplify expressions (16, 18). Finally, the density fluctuations
must be related to common fluctuations involved into turbulent closure mod-
els. The key idea is to expand the equation of state ρ(h, p) by considering
fluctuations of independent variables ρ − ρ = ∂hρ|p (h − h) + ∂pρ|h (p − p).
Neglecting pressure variations, the residual term can be expressed by means of
a modified compressibility β = −∂hρ|p/ρ, in order to find the final correlation
ρ′ = −ρ β h′. This correlation can be applied into the definition of character-
istic velocity due to density fluctuations w∗ = −β h′w′, which influences the
convective terms, and into the definitions of correction factors F µ

xx and F λ
rr,

which influence the diffusive terms.

F µ
xx = 1− β2 h′u′ h′v′

u′v′
− β

h′u′v′

u′v′
(20)

F λ
rr = 1− β2 h′h′ − β

h′h′v′

h′v′
(21)

For calculation of effective diffusivities, a turbulent closure model is needed.
How physical properties changing with temperature influence the turbulent
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diffusivity expressions has not been systematically investigated [6]. Therefore,
many different assumptions have been proposed for models based on mixing
length concept, which were originally developed for fluid with constant proper-
ties [20]. Semi-empirical correlations exist which express turbulent diffusivities
as functions of a dimensionless distance from the wall y+ = (R− r)

√
ρz τw/µz,

which can be useful to characterize the fluid-wall interaction [20]. Some au-
thors assumed that the original correlations may be used without changes, if
proper values of physical properties are considered to compute dimensionless
distance y+. Deissler [21] suggested to use the wall properties (ρz = ρw and
µz = µw), Sastry [22] the local properties (ρz = ρ and µz = µ) and Goldmann
[23] proposed an integral formulation between previous extremes, based on a
theoretical hypothesis on local turbulence characteristics.

y+ =

R∫
R−r

√
ρ τw

µ
dr (22)

The method suggested by Goldmann produces better agreement with experi-
mental heat transfer data [6].
The discussed features are shared by all considered models. Essentially they
differ for the way of computing the usual turbulent diffusivities with variable
thermophysical properties and the corrective factors due to density fluctu-
ations. Three physical models will be considered: the model of Petrov and
Popov [16,10], the model of Bellmore and Reid [24] and finally the suggested
model.
Petrov and Popov applied the mixing length model to calculate the turbulent
diffusivities. They adopted the Sastry’s approach to take into account variable
thermophysical properties but considered an additional corrective procedure
to compute effective values, based on the discrepancy between shear stresses
computed with constant and variable properties. They totally neglected the
effects due to density fluctuations and so implicitly assumed F µ

xx = F λ
rr = 1.

Bellmore and Reid applied the mixing length model too and adopted the Gold-
mann approach to take into account variable thermophysical properties. They
suggested an innovative method to include density fluctuations in the equa-
tions of turbulent transport. The main topics of mixing length theory will be
summarized in order to understand the approach suggested by Bellmore and
Reid. In the following expressions, a new formal convention for time averaging
will be temporarily considered 〈z〉 ≡ z. The mixing length theory is based
on two heuristic assumptions [20].

〈u′v′〉 = +Cuv 〈|u′|〉〈|v′|〉 (23)

〈h′v′〉 = −ζ Chv 〈|h′|〉〈|v′|〉 (24)
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where ζ = ∂r h/|∂r h|, 0 < Cuv < 1 and 0 < Chv < 1. The signs in both
expressions are due to experimental evidence. In particular the sign in equa-
tion (23) depends on the fact that v is the velocity component along radial
direction pointing into the wall. If the average absolute deviations 〈|x|〉 were
substituted by the standard deviations 〈x2〉1/2 in the heuristic assumptions,
the correlation coefficients would appear. If the velocity fluctuations are nor-
mally distributed, there is a definite relationship between the average absolute
deviation and the standard deviation [25]. Unfortunately no proof exists ensur-
ing that velocity fluctuations are always normally distributed, particularly for
channel flow which is characterized by inhomogeneous turbulence [19]. For this
reason, robust statistics, i.e. average absolute deviation, is preferable and the
expressions (23, 24) will be considered as the definitions of robust correlation
coefficients. Each average absolute deviation can be expressed by transverse
velocity gradient or transverse enthalpy gradient: this means 〈|u′|〉 = lu |∂r u|,
〈|v′|〉 = lv |∂r u| and 〈|h′|〉 = lh |∂r h|. Introducing these expressions into pre-
vious assumptions (23, 24) and grouping the unknown terms, two essential
quantities emerge: the mixing length lm = (Cuv lu lv)

1/2 and the turbulent
Prandlt number Prt = Cuv lu/(Chv lh).

〈u′v′〉 = l2m |∂r u|2 (25)

〈h′v′〉 = −ζ (l2m/Prt) |∂r h| |∂r u| (26)

Both quantities are supplied by turbulent closure models, based on mixing
length concept. Bellmore and Reid essentially interpreted the definitions of
robust correlation coefficients in a factorized form.

〈u′v′〉 = ∆u ∆v (27)

〈h′v′〉 = ∆h ∆v (28)

where ∆u = b1 〈|u′|〉, ∆v = b2 〈|v′|〉 and ∆h = −ζ b3 〈|h′|〉. The congruence
with the original heuristic assumptions implies that b1 b2 = Cuv and b2 b3 =
Chv but these constrains are not enough to determine unambiguously the
constants bi. The equation (25) suggests that the velocity fluctuations along
both directions produce comparable effects. The condition ∆u = ∆v allows
to produce an additional constrain b1 lu = b2 lv. In this way, the values of
the constants are found: b1 = (Cuv lv/lu)

1/2, b2 = (Cuv lu/lv)
1/2 and b3 =

Chv C−1/2
uv (lv/lu)

1/2. The main advantage of the recasted forms (27, 28) is that
each function ∆z depends only on the fluctuations of the same variable z′ and
it can be calculated by means of the mixing length theory. In analogy with this
factorization, Bellore and Reid suggested the following general decomposition.

〈(u′)n1(v′)n2(h′)n3〉 = (∆u)n1 (∆v)n2 (∆h)n3 (29)
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where ni ∈ N+. For example, considering n1 = n3 = 1 and n2 = 0, the
expression for turbulent thermal diffusivity along axial direction can be found.

〈h′u′〉 = ∆h ∆u = −ζ (Chv lv/lu) 〈|h′|〉〈|u′|〉 = −ζ Chu 〈|h′|〉〈|u′|〉 (30)

In the same way, we can proceed with all turbulent terms involved into ex-
pressions (20, 21), which can be calculated by means of the general decom-
position (29). The characteristic velocity due to density fluctuations can be
expressed too, by taking into account equations (28, 30).

F µ
xx = F λ

rr = φBR = 1 + ζ β σBR − β2 σ2
BR (31)

u∗BR = v∗BR = ζ β
(
l2m |∂r u| /Prt

)
|∂r h| (32)

where σBR = (lm/Prt) |∂r h| can be considered an index of intensity for density
fluctuations. We can now discuss the effects due to density fluctuations. Since
β σBR is usually a small quantity also near the critical point, we can suppose
φBR ≈ 1 + ζ β σBR. This means that during cooling conditions (ζ < 0), the
density fluctuations reduce the turbulent diffusivities (φBR < 1), while during
heating conditions (ζ > 0) they substantially increase turbulent diffusivities
(φBR > 1). Additional convective terms along axial direction are negligible.
The radial velocity field in absence of density fluctuations v0 can be discussed
by equation (19). Let us define a vectorial velocity in absence of density fluc-
tuations w0 = (u, v0). For mini/micro channels, the density gradient can be
reasonably assumed orthogonal to this velocity w0 · ∇ρ ≈ 0, because w0 is
approximately oriented along stream lines. In this way, equation (19) easily
allows to find that −ζ v0 ≥ 0. On the other hand, the correlation ζ v∗ ≥ 0
yields for definition. Taking into account that v ≈ −v∗, a similar correlation
for effective radial velocity is found −ζ v ≥ 0. Since |v| >> |v0|, then the
density fluctuations increase convective radial terms both during cooling con-
ditions (v >> v0 ≥ 0) and heating conditions (v << v0 ≤ 0).
Both the previous models are unsatisfying for some reasons. The distinguishing
features will be organized into three different categories: the turbulent closure
model for common terms due to time averaging, the procedure to take into
account variable physical properties and finally the turbulent closure model
for additional terms due to density fluctuations. Both previous models use tur-
bulent models based on mixing length concept. Despite some generalizations
were proposed, these models have some drawbacks [19]. Firstly, they strongly
depend on the geometry of the flow considered to find practical relations for
mixing length and so they are not general. Secondly, they prescribe that tur-
bulent diffusivities are zero where there is no velocity gradient, as it happens
for the centerline of mini/micro channel. This second feature is contrary to
experimental evidence and it could be relevant for considered application.
About variable physical properties, the previous models differ for the consid-
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ered operative procedure, but they substantially adopt common correlations
by reducing the problem to calculate a modified y+. In particular, they do not
modify the functional nature of the correlations. Instead variable properties
probably modify the local turbulent phenomena, which only a model based
on differential equations can describe. Finally, only the model of Bellmore and
Reid considers the density fluctuations. This model is based on the possibility
to calculate average absolute deviations by means of mixing length concept.
This possibility is not accessible by most widespread turbulence models and
it would require to know statistical distribution for each variable. So the dis-
cussed method is only valid for the simplest turbulent model and it is not
directly generalizable. Moreover, the expression (30), which has been deduced
according to generalized decomposition (29), is contrary to gradient-diffusion
hypothesis (10) because it depends on radial enthalpy gradient instead of axial
one.
A different approach is suggested. Before proceeding to describe the constitu-
tive hypothesis, some explanations on the mathematical meaning of general
decomposition suggested by Bellmore and Reid (29) are needed. Within frame-
work of mixing length theory, the turbulent closure model can be considered
a tool which allows to calculate robust correlation coefficients Cuv = l2m/(lu lv)
and Chv = l2m/(Prt l

2
v). Analogously, when the equation (30) is considered, the

general decomposition reduces to suppose Chu = Chv lv/lu. The coefficients bi

involved in factorized heuristic assumptions (27, 28) can be expressed as func-
tions of second-order mixed robust correlation coefficients Chv, Chu and Cuv,
which are the non-zero lowest-order coefficients. Substituting these expressions
into equation (29), a modified expression is found.

〈(u′)n1(v′)n2(h′)n3〉 = (−ζ)n3 Cq1

hv Cq2

hu Cq3
uv 〈|u′|〉n1〈|v′|〉n2〈|h′|〉n3 (33)

where qi = (1 − 2 δij) nj/2 ∈ Q. Mathematically the general decomposi-
tion (29) is equivalent to suppose that higher-order robust correlation co-
efficients are proper combinations of lower-order ones. Since by definition
ni = (1 − δij) qj and remembering the expressions for lower-order correlation
coefficients (27, 28, 30), the previous equation can be modified.

〈(u′)n1(v′)n2(h′)n3〉 = (−ζ)n3 |〈h′v′〉|q1 |〈h′u′〉|q2 〈u′v′〉q3 (34)

This correlation has been rigorously demonstrated within the framework of the
theory developed by Bellmore and Reid and so it can be considered equivalent
to decomposition (29). The main advantage is that it involves only quanti-
ties, which are calculated by all turbulent closure models because they emerge
from time averaging of flow equations with constant properties. Essentially
the previous relation assumes a general dependency of terms due to density
fluctuations from usual terms due to velocity fluctuations. It can be considered
as a constitutive hypothesis without any dependence on a particular turbu-
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lent model. In the following the turbulent-viscosity hypothesis (9) and the
gradient-diffusion hypothesis (10) will be considered in order to produce a
meaningful example without loss of generality. Applying constitutive hypoth-
esis (34) to all turbulent terms involved into expressions (20, 21), we find again
the same formal expression for corrective factor φ which influences effective
diffusivities (31), but with a different intensity index σ.

σ =

√√√√ λ2
t

ρ µt

|∂x T ∂r T |
|∂r u|

(35)

In the same way, we can proceed for the characteristic velocity.

u∗ = ζ β (λt/ρ) |∂x T | << v∗ = ζ β (λt/ρ) |∂r T | (36)

Since these relations involve temperature gradient, contrarily to previous ones
which involve enthalpy gradient, the effects due to compressibility must be dis-
cussed. For both axial and radial direction, the generic component of enthalpy
gradient can be expressed by means of temperature and pressure changes
∂i h = cp T [ ∂i T/T − ϕ ∂i p/p ], where cp is the specific heat cp = ∂T h|p and
the dimensionless parameter ϕ takes into account non-ideal gas effects.

ϕ =
β cp T − 1

ρ cp T/p
(37)

In all the following calculations, this parameter is included into the range
0 < ϕ < 0.21. Since the relative temperature changes are much greater than
relative pressure changes ∂i T/T >> ∂i p/p, then the compressibility effects on
enthalpy can be neglected and an approximate relation yields ∂i h ≈ cp ∂i T .
According to boundary layer theory, this approximation is even more satisfied
along radial direction. For comparing the previous results with those obtained
by Bellmore and Reid, the correlations (31, 32) will be directly generalized
by expressing mixing length and turbulent Prandtl number as functions of
turbulent diffusivities. Remembering that lm = µ

1/2
t (ρ |∂r u|)−1/2 and Prt =

µt |∂r h| (λt |∂r T |)−1, the generalized expressions for the intensity index and
for the components of characteristic velocity can be found.

σBR =

√√√√ λ2
t

ρ µt

|∂r T |2
|∂r u|

(38)

u∗BR = v∗BR = ζ β (λt/ρ) |∂r T | (39)

Despite the simplicity of deduction procedure, the expressions (38, 39) can
be calculated by any turbulent model too. Unfortunately they substantially
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describe in the same way the effects due density fluctuations along axial and
radial direction. If density fluctuations are due to enthalpy fluctuations and
the latter ones satisfy the gradient-diffusion hypothesis (10), which is strongly
anisotropic, it is not clear why the effects due density fluctuations should be
isotropic. Since the original formulation of Bellmore and Reid was developed
for boundary layer flow, the generalized expressions (38, 39) overestimate the
effect of axial density fluctuations and they can not be universally valid. Here
the essential feature of suggested model emerges. The correlations (35, 36)
involve the axial gradient to predict the effects due to density fluctuations
along axial direction. This feature essentially predicts a lower effect of den-
sity fluctuations on turbulent diffusivities since σ << σBR, because usually
|∂x T | << |∂r T |. About effects on convective terms, the two formulations are
formally equivalent for radial direction v∗ = v∗BR, while they again differ with
regards of axial direction u∗ << u∗BR. Since the latter effect is negligible in
considered application, the essential difference between the two approaches for
simulation of mini/micro channels lies in the description of effective diffusivi-
ties and, in particular, in the fact that |φ− 1| << |φBR − 1|.
Any closure turbulent model can applied to calculate turbulent diffusivities
into equations (35, 36). As discussed previously, it is recommended to adopt
models based on differential equations. They can easily take into account ef-
fects due to variable physical properties because they need no particular cor-
relations, as those involved in mixing length model developed for constant-
property flows [19]. Additional differential equations increase the computa-
tional effort but there is no need to include additional terms due to fluctuating
properties within these equations, since they are directly formulated for time-
averaged quantities. In the following a couple of two-equation models will be
considered in order to compare the effects due to the description of turbu-
lent diffusivities. The standard k − ε model [26] is considered because of its
popularity in many engineering fields. It is based on the solution of two sepa-
rate transport equations which allow to compute turbulence kinetic energy (k)
and its dissipation rate (ε) in order to estimate turbulent diffusivities [27]. The
other considered model is the RNG k − ε model [28] which can be rigorously
developed by means of renormalization group theory. Briefly RNG k−ε model
significantly improves the accuracy for near-wall flows, by considering more
accurate transport equations and a variable ratio between turbulent viscos-
ity and turbulent thermal conductivity, contrarily to previous model. Original
formulation included the possibility to apply two-equation approach very close
to the wall too, i.e. at low Reynolds numbers. In the discussed simulations,
this possibility will not be used. In this way, the two models are based on
the same number of equations in all calculation sub-domains. Since both the
two-equation models were formulated for fully-developed turbulence, they are
not usually applied in the near-wall region [27]. In the region where the effect
of molecular viscosity can not be neglected (approximately 0 < y+ < 60),
an additional resolution technique must be supplied. Usually a smaller num-
ber of equations is used in this region. Semi-empirical algebraic correlations,
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which involve no differential equation, were developed for flows with constant
properties and they are conventionally defined as wall functions. As previously
discussed for mixing length correlations, variable physical properties compro-
mise the suitability of wall functions in considered application. The minimum
successful strategy, i.e. one-equation model, will be adopted in the near-wall
region. The whole calculation domain is subdivided into a viscosity-affected
region, which is a little wider than laminar viscous sublayer in order to include
the transition layer, and a fully-turbulent region [Pope]. In the latter region,
the standard k − ε and the RNG k − ε models can be applied, while in the
viscosity-affected region the turbulent diffusivities are assumed as exclusive
functions of turbulence kinetic energy [29,30]. A proper blending function [31]
between previous calculation procedures completes the method, which is usu-
ally referred as two layer zonal model.
A proper set of boundary conditions are need to solve the system of equations.
At the inlet boundary, some unknown quantities, which describe the fluid
flow, are supposed uniformly distributed along radial direction: u(0, r) = u0,
v(0, r) = 0 and T (0, r) = T0. In same way, we can proceed for turbulent quan-
tities involved into two-equation models, i.e. the turbulence kinetic energy
k(0, r) = k0 and the turbulence dissipation rate ε(0, r) = ε0. Usual relations
are used to calculate turbulence quantities by means of more convenient quan-
tities involved into fluid flow, such as the average Reynolds number and the
mean axial velocity [27]. At the outlet boundary, the only calculation unknow
which was not considered within inlet conditions, i.e. the pressure, is imposed
p(L) = pL. Since the solution is necessarily axisymmetric, no radial gradient is
allowed for any solved quantity at the centerline of the mini/micro channel. At
the wall boundary a given thermal flux ∂r T = qw/λ or, alternatively, a given
wall temperature T (x, R) = Tw is considered. Velocity components are spec-
ified according to no-slip boundary condition: u(x, R) = 0 and v(x, R) = 0.
Since near the wall laminar boundary layer exists, similar conditions yield for
turbulent quantities: k(x, R) = 0 and ε(x, R) = 0. The previous set of physi-
cal conditions is insufficient to determine a well-posed mathematical problem:
additional informations are produced by linear extrapolation of interior com-
putational domain. This strategy allows a more stable resolution process than
other one, based on splitting between physical quantities at the inlet and ex-
trapolated quantities at the outlet. Since the pressure gradients along short
mini/micro channels are negligible, this strategy will not reduce the physical
accuracy.
For fluid at supercritical pressure near the critical point, the precise measure-
ment of physical properties is not easy. Technical advances probably justify
some discrepancies among physical property databases, developed during the
last years. These inaccuracies could obviously affect the numerical simulations.
In particular the correlation of Petrov and Popov was derived by interpola-
tion of some numerical tests, which adopted a merging database based on
two different sets of experimental data [10]. They tried to overcome the lack
of description for thermal conductivity near the pseudo-critical temperature,
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which characterized the experimental results of Altunin [32]. In the following
calculations, a recently developed database for thermophysical properties of
carbon dioxide is considered [database]. For this database, the estimated un-
certainty ranges are 0.15 ÷ 1.5 % in specific heat capacity, less than 5 % in
thermal conductivity, 0.03÷ 0.05 % in density and finally 0.3÷ 5 % in viscos-
ity. In the previous ranges, the highest values refer to liquid-like states or the
highest pressures.

3 Numerical discretization and solution procedure

The governing equations for continuity (13), momentum (14) and energy (15)
are discretized, according to finite volume method [34]. Essentially the solu-
tion domain is subdivided into a finite number of small control volumes. In
order to avoid unrealistic solutions, there is a significant benefit to be obtained
by arranging unknowns for velocity components on different grid from the one
used for all other variables. This strategy, called staggered grid, is adopted
[35]. This means that unknown velocity components are located at the faces
of control volumes, which surround the computational nodes for residual vari-
ables. Since there are two different computational grids, some interpolations
are needed to complete lacking information. In particular to solve the mo-
mentum equation (14), the face-centered values for pressure are interpolated
using momentum equation coefficients and this allows to estimate the effec-
tive viscosity at the volume-centered node [27]. Some interpolations are need
for convective terms too. In this case, the convective term in the momentum
equation is non-linear and it seems to complicate the resolution process. Since
the final solution process will be essentially iterative, the non-linear terms can
be approximated at each iteration. The outer iteration can be used to estimate
the non-linear coefficients. This essentially linearizes the momentum equation
and makes it similar to the other ones [34]. The general upwind scheme is
adopted to calculate the convective terms for all linearized equations [35]. It
sets the face-centered values for all variables equal to the volume-centered val-
ues in the upstream volumes. The identification of upstream volumes is done
according to approximated velocity field. The previously discussed turbulent
models, which take into account the effects due to density fluctuations, in-
volve in the governing equations additional source terms. How to discretize
these source terms is reported into Appendix A.
Before proceeding with resolution process, how to choose discretization strat-
egy is discussed. For the considered application, both the thermophysical
database and the computational domain must be properly discretized. Since
for short mini/micro channels the pressure drops are negligible, the thermo-
physical properties can be considered as functions only of temperature. Phys-
ical properties can be grouped into two different sets. The first set, which
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includes the specific heat cp, the thermal conductivity λ and the modified
compressibility β, involves thermophysical properties which show a peak near
the pseudo-critical temperature for a given range of supercritical pressures.
For this reason they are defined non-monotonic properties. The second set,
which includes density ρ and dynamic viscosity µ, involves thermophysical
properties which decrease monotonically with temperature. The considered
database [33] discriminates property changes due to very small temperature
differences, which near the critical temperature are approximately compara-
ble to 1 mK. The high-resolution capacity of this database produces a great
amount of information, which would slow down the upgrade of physical prop-
erties during resolution process. For this reason, piecewise linear approxima-
tions will be adopted and the distribution of nodal values will be properly
chosen. If the generic property f(T ) is considered, the problem reduces to
find the optimal distribution Ti where 1 ≤ i ≤ Nf and the corresponding
one fi = f(Ti) which ensure desired accuracy. Between two consecutive nodal
values Ti and Ti+1, the function will be approximated by means of a linear
function f̃i , i+1(T ) = fi− (fi+1− fi) (T −Ti)/(Ti+1−Ti) where Ti < T < Ti+1.
A local relative error ẽi , i+1 = max ( |f − f̃i , i+1|/f ) can be assigned to the
same temperature range and a global relative error e = max i(ẽi , i+1) can be
assigned to the whole temperature range by considering every i into range
1 ≤ i ≤ Nf − 1. If the initial temperature T1 is given, the optimal distribution
can be unambiguously defined as the minimum number of nodal values which
guaranties that global relative error is upper-bounded ef ≤ e0

f . The parame-
ter e0

f is the error threshold for considered piecewise linear approximation of
generic property f(T ). This parameter determines the smallest temperature
difference involved into whole approximation ∆Tm(e0

f ) = min i (Ti+1 − Ti) for
every i into range 1 ≤ i ≤ Nf − 1. For definition ∆Tm(0) represents the res-
olution of original database. Each piecewise approximation allows to reduce
the number of nodal values by increasing the smallest temperature difference
∆Tm(e0

f ) ≥ ∆Tm(0). Now this approach will be turned over. The total num-
ber Nf of nodal values will be considered a fixed constrain for all the physical
properties and for all supercritical pressures. This constrain depends on what
run time can be considered acceptable in considered application. In this way,
the highest error thresholds will appear for non-monotonic properties and for
the lowest supercritical pressure, i.e. where the strongest changes exist. In the
following calculations, the error thresholds are 0.3 ÷ 5.6 % for heat capacity,
0.1 ÷ 2 % for thermal conductivity, 0.1 ÷ 0.5 % for modified compressibility
and 0.1÷ 0.5 % for both monotonic properties. For density and specific heat,
the piecewise linear approximations produce errors greater than estimated
uncertainties for the same quantities. In particular error threshold for heat ca-
pacity appears quite high. The minimum temperature difference involved into
this approximation is sensitively greater than resolution of original database
∆Tm(0.056) = 5 mK > 1 mK, but it is smaller than temperature differences
which the discretized computational domain allows to estimate.
According to boundary layer theory, the unknown quantities are characterized
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by axial gradients which are much smaller than radial ones. For this reason,
an axially homogeneous mesh and a characteristic length of generic control
volume ∆x comparable to radial dimension can be adopted. Three different
meshes were considered in order to test the dependence of the results on this
parameter and they produced approximately the same results. For this reason,
the range ∆x/R ≈ 0.13÷ 1.4 is suggested.
The radial direction needs additional care. As previously discussed, variable
thermophysical properties induce to prefer one-equation model in comparison
with wall functions for near-wall treatment. The discretized domain should
be very fine near the wall in order to solve this equation into laminar vis-
cous sublayer (y+ < 5). Usually the thickness of the control volume adjacent
to the wall ∆rw is determinated such that the dimensionless distance y+

w of
the centroid is approximately unitary [36]. In this case, no ambiguity exists
for calculation of physical properties since the considered point is very close
to the wall. This practice allows to estimate thickness of the control volume
adjacent to the wall.

∆rw ≈ ∆r+
w = min

x

 2√
ρw τw/µ2

w

 (40)

Radially homogeneous mesh would increase enormously the computational
time. For this reason, the thickness of the control volume adjacent to the axis
of the mini/micro channel ∆ra is assumed much greater than previous one
∆ra >> ∆rw. A geometric progression with ratio χ = (R −∆ra)/(R −∆rw)
can be assumed to properly blend the previous extremes. The total number
of elements Na,w depends only on extreme thicknesses.

Na,w = 1 + Φ

{
ln(∆rw/∆ra)

ln [(R−∆ra)/(R−∆rw)]

}
(41)

where Φ : R → N rounds the argument to the nearest natural number to-
wards infinity.
For turbulent convective heat transfer at supercritical pressure near the crit-
ical point, the condition y+

w ≈ 1 is not the only one and it could not be the
more severe. Since the easiest way to approximate the solution between two
consecutive nodal values is to consider a linear function [35], an error could
occur in estimating the physical properties if too coarse meshes are consid-
ered. If very high-density meshes are avoided [7], only a local grid refinement
can completely solve this problem [34]. In the following an easy strategy is
suggested for this particular application in order to find quickly the proper
mesh. The basic idea is to guarantee that temperature difference between
two adjacent control volumes is small enough to produce acceptable errors
in estimating maximum specific heat. In the worst case, the peak of specific
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heat is included midway between two consecutive nodal values. The mini-
mum temperature difference ∆Tc is selected such as to estimate the maximum
value of specific heat within the limits due to error threshold considered in
the discretization of thermophysical database. This local constrain involves
only the maximum value of specific heat, depends on the peak width and it
may differ from ∆Tm which derives from a global constrain. For the lowest
supercritical pressure considered in this study (7.412 MPa), an acceptable
value is ∆Tc ≈ 2 ∆Tm(0.056) = 10 mK. If the considered calculation in-
volves the pseudo-critical temperature, i.e. T0 ≥ Tpc ≥ Tw for cooling or
T0 ≤ Tpc ≤ Tw for heating, the equation T (x, r) = Tpc implicitly defines the
coordinates of pseudo-critical temperature all over the computational domain.
If the pseudo-critical temperature is involved into a given transverse section
of mini/micro channel, then the radial coordinate, which identifies this tem-
perature, is unique. The previous relation can be made explicit by considering
r = η(x). According to assumed boundary conditions, the initial value is
known η (0) = R. Since this function is monotonically decreasing dx η ≤ 0,
the inverse function exists x = η−1(r). Taking advantage of this result, the
local constrain can be expressed for every radial coordinate which identifies
the pseudo-critical temperature within computational domain.

∆r < ∆rc =
∆Tc

|∂r T (η−1, r)|
(42)

Contrarily to criterion (40), the previous one depends on solution because the
position η−1(r) of pseudo-critical temperature is not given at the beginning.
Two main cases can be distinguished. If the axial change within computa-
tional domain is small |dx η| << R/L, then the final value does not differ
consistently from initial value η(L) ≈ R. This condition is realized when small
thermal fluxes at the wall or wall temperatures close to pseudo-critical tem-
perature are considered. In this case, the condition (42) can be applied for
a very thin buffer region δw > R − η(L) where the grid can be homoge-
neously constructed finer than remaining domain. The radial discretization
step can be selected by considering the more severe between the previous con-
strains (40, 42). The remaining domain can be discretized by means of usual
geometric progression. The generic radial temperature gradient |∂r T (x, r)| in-
volving the pseudo-critical temperature is reported into Fig. 1. Contrarily to
constant property fluids, the temperature gradient is non-monotonic and a
local minimum occurs for pseudo-critical temperature at r = η(x). In this
example, which corresponds to the first validation test discussed in the follow-
ing section, the pseudo-critical temperature is well confined within the buffer
region δw = 20 ∆rw. It is interesting to note that |∂r T (η−1, r)| decreases mov-
ing away from the wall. For this reason, the critical discretization step ∆rc

increases moving away from the wall. It will be more difficult to satisfy the
condition (42) at the inlet of mini/micro channel because in this region the
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Fig. 1. Effect of pseudo-critical temperature on radial temperature gradients. Dif-
ferent axial locations are considered x/L = 0.136 ÷ 0.955. Adopted mesh is
homogeneously defined for (R − r)/∆rw < 20 according to critical condition
∆rw/R = ∆r m

c /R = 1 × 10−5 and then made coarser by geometric progression.

pseudo-critical temperature is located near the wall. Practically this problem
can be overcome by considering a modest forcing of previous condition. As-
suming that the condition (42) is satisfied only for x > xc where xc << L,
i.e. only for r < rc where R − rc << δw, the limiting threshold for radial dis-
cretization into buffer region due to pseudo-critical temperature can be found
∆r m

c = ∆Tc / |∂r T (η−1
c , rc)|. Considering xc/L = 0.136 in the previous exam-

ple, the limiting radial discretization in the buffer region due to pseudo-critical
temperature is much more severe than usual one (40) due to low-Reynolds tur-
bulence models ∆r m

c / ∆r+
w ≈ 0.129.

If the radial position of pseudo-critical temperature changes substantially
within computational domain, then the final value differs from initial value
η(L) < R or eventually, for an axial coordinate xa, the pseudo-critical tem-
perature intersects the centerline η(xa) = 0. It is not possible to define in this
case a buffer region where the pseudo-critical temperature is confined. How-
ever in this case the weak strategy of satisfying condition (42) only for x > xc

where xc << L implies that the limiting threshold for radial discretization
is located farer from the wall because ηc/xc ∝ |dx η| >> R/L. If the ra-
dial thickness required by the most severe threshold were the same previously
considered, this moving away from the wall would simply increase the high-
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Fig. 2. Critical discretization steps due to pseudo-critical temperature. The limiting
threshold is ∆r m

c /R = 5 × 10−4 at xc/L = 0.018. Different radial meshes with the
same number of nodes are also reported. Labels ”1p” and ”3p” refer to the number
of constitutive geometric progressions. The normalization value ∆r0/R = 2×10−5 is
assumed equal to the minimum among first-wall thicknesses for considered meshes.

resolution portion of the mesh. Instead |∂r T (η−1, r)| decreases moving away
from the wall and for this reason the limiting threshold ∆r m

c allows in this
case coarser meshes. In Fig. 2 a comparison among different meshes, which
refers to the experimental runs discussed in the following section, is reported
together with critical discretization steps due to pseudo-critical temperature.
Despite the fact that xc is much smaller than the value previously considered
in the first validation test xc/L = 0.018 << 0.136, the limiting radial thresh-
old is weaker ∆r m

c /R = 5 × 10−4 >> 1 × 10−5. Unfortunately in this case
the condition (42) must be satisfied for the whole computational domain and
also when the radial discretization proceeds towards the centerline. The first
idea is to construct a mesh characterized by an higher resolution at the wall
and then verifies that the geometric progression satisfies the condition (42)
for any radial coordinate. This strategy corresponds to the single-progression
mesh reported in Fig. 2. If preliminary results allow to estimate the limiting
condition due to pseudo-critical temperature, multiple-progression meshes can
be considered to optimally distribute nodal values along radial direction. Also
in this case, the limiting radial discretization due to pseudo-critical tempera-
ture is much more severe than usual one (40) due to low-Reynolds turbulence
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models ∆r m
c / ∆r+

w ≈ 0.167.
If a first estimation of the solution is given, then the previous considerations
allow to choose a refined mesh, which properly satisfies the constrains due to
pseudo-critical temperature. Since in many cases these constrains are the most
severe which affect the solution process, usually the refined mesh ensures the
mesh-independence of the solutions. Therefore this strategy reduces to con-
sider a couple of meshes to solve the problem: a first guess mesh to estimate
the solution and a second refined mesh, which depends on how the radial posi-
tion of pseudo-critical temperature changes in the computational domain, i.e.
if |dx η| << R/L or |dx η| >> R/L. Let us consider again the first validation
test, which will be presented moreover. Since in this case the wall thermal flux
is fixed, the wall temperature distribution can be used to check if the solu-
tion is mesh-independent. Since all meshes share the same axial discretization,
each wall temperature distribution can be compared with the final solution by
reporting the averaged value and the standard deviation of wall temperature
discrepancies. A first guess mesh with 60 radial nodes and y+

w ≈ 1 produces
wall temperature discrepancies equal to 121.0 ± 90.0 mK, which are much
higher than ∆Tc = 10 mK. The problem is not overcome by simply refining
mesh at the wall: a second guess mesh with 80 radial nodes and y+

w ≈ 0.1 pro-
duces wall temperature discrepancies equal to 55.0 ± 79.0 mK. As previously
reported for this case, if the same radial nodes are organized so as to real-
ize a buffer region which always includes the pseudo-critical temperature, the
mesh performance is improved and the wall temperature discrepancies reduce
to 0.5 ± 0.4 mK. The final solution considered in the previous comparisons
was obtained by considering 20 additional radial nodes, which substantially
do not improve further the accuracy. The suggested strategy allows to restrict
the number of grid nodes to the minimum needed to describe properly the ef-
fects of pseudo-critical temperature. The greatest mesh used in the numerical
simulations reported moreover is characterized by 118 radial nodes, which are
much less than those prescribed by single-progression high-density meshes [7].
Since the discretization strategy is defined, the whole resolution process can
proceed. The discretized governing equations for continuity, momentum and
energy are solved sequentially in order to realize a solution loop. The SIM-
PLE algorithm [27] is adopted. It prescribes a relationship between velocity
and pressure values which enforces mass conservation and allows to obtain
the pressure field. Because these equations are non-linear and highly-coupled
by the dependence of thermophysical properties on temperature, several iter-
ations of the solution loop must be performed before a converged solution is
obtained. To take into account the effect of density fluctuations on turbulent
diffusivities, they are corrected at the end of each iteration by means of param-
eter φ, calculated according to turbulent models previously discussed. When
all the unknown variables are updated by corrective quantities which are small
enough to satisfy a given convergence criterion, the solution loop terminates.
The convergence criterion is equal to 1 × 10−3 for the validation cases [36],
which are characterized by fixed wall thermal flux, and it is equal to 1× 10−5
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for the experimental runs, which are characterized by fixed wall temperature.
For each discretized equation, a Gauss-Seidel linear equation solver is used in
conjunction with an algebraic multi-grid method to solve the resultant scalar
system of equations for the solving variables [27]. In order to prevent diver-
gence, the velocity components in the momentum equations, the temperature
in the energy equation and the transport properties are updated by corrective
quantities smaller than those due to pure calculation. The reduction factor is
called under-relaxation factor. Near the critical point, Lee and Howell [36] sug-
gest to renew iteratively with an under-relaxation factor the thermophysical
properties too. The under-relaxation of the thermophysical properties causes
the velocity and the temperature fields to respond rather slowly during solu-
tion process. This practice realizes a multi-level under-relaxation which allows
to control strong instabilities emerging when too coarse meshes are adopted
to describe fluid flow near the critical point. If the mesh is chosen according
to suggested strategy, there is no need of multi-level under-relaxation and the
usual practice can be adopted.

4 Results and discussion

4.1 Comparison with other predictions and experimental data for local heat
transfer coefficient

The present paper aims to investigate the turbulent convective heat transfer
in mini/micro channels for carbon dioxide at supercritical pressure in order
to numerically verify the existence of heat transfer impairment. Before pro-
ceeding in this direction, a comparison with other numerical predictions and
experimental data is needed. This comparison allows firstly to verify the reli-
ability of numerical results and secondly to test if the suggested approach for
density fluctuations is more efficient than usual approach. The experiments
oriented to characterize the convective heat transfer usually aim to measure
the local heat transfer coefficient and/or the average heat transfer coefficient.
Two common practices are considered. In the first case, the wall thermal flux
is imposed and the measurement of the local heat transfer coefficient reduces
to the measurement of the wall temperature. In the second case, the wall tem-
perature is imposed by means of a thermostatic device and the measurement
of the average heat transfer coefficient is obtained from the heat balance be-
tween the wall heat flux and the bulk enthalpy increase of the fluid. In both
cases, the bulk enthalpy increase of the fluid is supposed much larger than
changes of kinetic and potential energy or the axial heat diffusion at each end
of the duct. If the local heat transfer coefficients are known, then the average
heat transfer coefficient can be calculated by line integration along the axis
but not vice versa. For this reason, the comparison with experimental mea-
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Fig. 3. Effect of radial discretization on the solution. The predicted profiles for
specific heat capacity and fluid temperature are both reported in a thin layer near
the wall. Both meshes are based on geometric progression. The coarse mesh, which
realizes y+

w ≈ 1, is not suitable to describe the peak in specific heat. The reported
markers are representative of grid nodes.

surements of local heat transfer coefficients is more meaningful to verify the
reliability of the numerical results. Moreover since the numerical results will
be used to discriminate among some phenomenological correlations oriented
to average heat transfer coefficients, an independent validation step, which
involves local heat transfer coefficients, is needed. Due to experimental diffi-
culties, there have been few measurements inside a tube of radial temperature
profiles which involve the pseudo-critical temperature. This consideration is
even more true for mini/micro channels where the characteristic sizes are pro-
hibitive (d < 2 mm). For this reason, the experimental data for a common
duct due to Wood and Smith [37] will be considered. They considered an
upward flow of carbon dioxide under heating conditions in a tube with com-
mon diameter (d = 22.91 mm) and measured radial temperature profiles by
keeping fixed the wall thermal flux. The same set of data was considered for
validation purposes by Lee and Howell [36]. Only in this case, the effect of
gravity has been added to momentum equation, since condition (1) does not
hold.
In Fig. 3 the effect of radial discretization on the solution is reported. Once
again the coarse mesh based on condition (40) shows to be not suitable for de-
scribing the peak of specific heat capacity. Since the concavity of temperature
profile changes because of the peak in specific heat, the coarse mesh introduces
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Fig. 4. Comparison of predicted profiles of dimensionless temperature calculated by
means of different models with experimental data of Wood and Smith [37] in a thin
layer near the wall. The reported cases are different because of the wall thermal
flux, which is 63.05 kW/m2 for Test A and 204.91 kW/m2 for Test B. The label
”RNG” means RNG k− ε model and the label ”SKE” means standard k− ε model.
The reported markers are not representative of grid nodes.

some errors in predicting the temperature profile and consequently the local
heat transfer coefficient. In this particular case, the coarse mesh induces to
think that the model of Bellmore and Reid works better than it really does.
In this example, the radial discretization induces some errors in the wall tem-
perature which are of the same order of magnitude of uncertainties involved
into experimental measurements. The coarse mesh shows a strong unstable
behavior because the solution process tries to cut off the peak in specific heat,
which behaves like a local numerical noise breaking the smooth solution. This
probably justifies the need of multi-level under-relaxation in the numerical
simulations performed by Lee and Howell [Howell]. In the following only fine
meshes will be considered.
A comparison of predicted profiles of dimensionless temperature calculated by
means of different models with experimental data of Wood and Smith [37] in
a thin layer near the wall is shown in Fig. 4. The reported cases are differ-
ent because of the wall thermal flux, which is 63.05 kW/m2 for Test A and
204.91 kW/m2 for Test B. Because of the high mass flow rate (Re = 9.3×105),
the pseudo-critical temperature is positioned near the wall and it is well con-
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Fig. 5. Comparison of predicted profiles of dimensionless temperature calculated by
means of different models with experimental data of Wood and Smith [37] at a given
axial location. The reported cases differ are different because of the wall thermal
flux, which is 63.05 kW/m2 for Test A and 204.91 kW/m2 for Test B. The label
”RNG” means RNG k− ε model and the label ”SKE” means standard k− ε model.
The reported markers are not representative of grid nodes.

fined within a small buffer region. In both tests the model of Bellmore and
Reid underestimates the wall temperature Tw < T exp

w . This result partially
contradicts the conclusion of Lee and Howell [36], which was probably due to
previously discussed effects of discretization. The suggested approach for tak-
ing into account the effects of density fluctuations has been applied together
with both the standard k − ε model and the RNG k − ε model. In both tests
the standard k − ε model overestimates the wall temperature Tw > T exp

w . On
the other hand, the RNG k − ε model produces the best results and this is
even more true for the smallest wall thermal flux. This conclusion confirms
one the peculiar feature of RNG k−ε model, which is to improve the near-wall
description by taking into account the low-Reynolds-number effects [27]. The
suggested approach allows to formulate numerical predictions of wall temper-
ature which differ from experimental data by ± 20 %. This threshold allows
to discriminate among different phenomenological correlations. It is interest-
ing to note that experimental data are approximately midway-located into
uncertainty range due to turbulent closure models. In order to complete the
comparison of predicted profiles of dimensionless temperature with experi-
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Table 1
Comparison among numerical predictions of local heat transfer coefficients, experi-
mental data of Wood and Smith [37] (label ”W&S”) and other numerical predictions
of Lee and Howell [36] (label ”L&H”). The considered models are: the model of Bell-
more and Reid [24] (label ”B&R”); the RNG k − ε model (label ”RNG”) and the
standard k − ε model (label ”SKE”). The best results are bold-faced.

Test A: qw = 63.05 kW/m2, Tb = 302.82 K, Re = 9.3× 105

W&S L&H This Work This Work This Work

Parameters (Exp.) (B&R) (B&R) (RNG) (SKE)

Tw [K] 305.76 305.60 305.29 305.94 306.51

α [kW/m2K] 21.45 23.88 25.53 20.21 17.09

eα [%] 0 +11.3 +19.0 −5.8 −20.3

Test B: qw = 204.91 kW/m2, Tb = 303.15 K, Re = 9.3× 105

W&S L&H This Work This Work This Work

Parameters (Exp.) (B&R) (B&R) (RNG) (SKE)

Tw [K] 327.37 323.20 320.97 323.38 331.88

α [kW/m2K] 8.46 10.62 11.50 10.13 7.13

eα [%] 0 +25.5 +35.9 +19.7 −15.7

mental data of Wood and Smith [37], the whole radial profiles are reported
into Fig. 5. The numerical predictions due to suggested approach are in good
agreement with experimental data. In both tests the standard k − ε model
reproduces better the dimensionless temperature profile in the bulk region.
Despite the fact that in this case the local heat transfer coefficient is mainly
due to wall temperature, this result suggests to consider in the following both
the two-equation models, such as to better describe the turbulent diffusivities.
This practice is confirmed by another reason. The final goal of this section is to
estimate the local heat transfer coefficient α = qw/(Tw−Tb), which is conven-
tionally positive under heating conditions. If the wall thermal flux is imposed,
then only the wall temperature Tw depends on the calculation because the
bulk temperature Tb is unambiguously determinated by the inlet temperature
T0 and by the wall thermal flux qw. This does not mean that the model, which
reproduces better the wall temperature, will necessarily ensure the lowest er-
ror on local heat transfer coefficient. Let us introduce the numerical error on
wall temperature as ew = (T exp

w − Tw)/(T exp
w − Tb) and the numerical error on

local heat transfer coefficient as eα = (α − αexp)/αexp. Since |ew| << 1, then
the numerical error on local heat transfer coefficient eα can be developed near
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zero.

eα =
ew

1− ew

= ew + e2
w + o (e2

w) (43)

This means that the numerical models which overestimate the wall temper-
ature, i.e. which are characterized by ew < 0, induce smaller errors on local
heat transfer coefficient than the numerical models which underestimate it by
the same absolute quantity ew > 0. This conclusion advantages the standard
k − ε model because it usually overestimates the wall temperature. If the dif-
ference between performances of these models is small, then this conclusion
must be taken into account to estimate local heat transfer coefficients. In Ta-
ble 1, the predicted values for both wall temperatures and local heat transfer
coefficients are reported. For Test B, despite the fact that the RNG k − ε
model works better to predict the wall temperature than the standard k − ε
model |eRNG

w | < |eSKE
w |, the conclusion on local heat transfer coefficient is ex-

actly turned off |eRNG
α | > |eSKE

α |. In the following calculation, both the RNG
k − ε model and the standard k − ε model will be considered.

4.2 Comparison with other predictions and experimental data for average
heat transfer coefficient

In this section, the discussed models will be adopted to predict the heat trans-
fer under cooling conditions in mini/micro channels for carbon dioxide at
supercritical pressure. The numerical results will be compared with some phe-
nomenological correlations which allow to estimate the average heat transfer
coefficients. Since these correlations generally produce conflicting predictions,
it would be interesting to determine if the numerical results systematically
show better agreement with a particular correlation. These calculations could
help to settle the controversy on the existence of a heat transfer impairment in
mini/micro channels in comparison with usual ducts. In all these calculations,
the effects due to gravity field have not been intentionally included in order
to verify if the buoyancy gives causes the heat transfer impairment. The basic
problem is to decide what pattern of test conditions will best reveal aspects
of investigated phenomena and will best allow a meaningful comparison with
phenomenological correlations. This is a typical example of experimental de-
sign [38]. To perform a general experimental design, a fixed number of discrete
values (”levels”) for each of a number of variables (”factors”) is selected and
then all the possible combinations are experimentally considered. The goal
of the experimental design is to characterize how the investigated quantity
(”response”) depends on considered factors. If there are l1 levels for the first
variable, l2 for the second,... and lk for the kth, the complete arrangement of
l1× l2×· · ·× lk experimental runs is called an l1× l2×· · ·× lk factorial design.
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For the present application, there are five factors usually considered by all
phenomenological correlations: the working pressure p; the bulk temperature
Tb(x); the wall temperature Tw(x); the diameter of mini/micro channel d and
finally the mass flow rate G. In the experimental runs, the wall temperature
Tw(x) = Tw will be assumed uniformly distributed along axial direction and
the final goal will be the calculation of the wall thermal flux qw(x). According
to this strategy, the inlet bulk temperature Tb(0) = T0 is the selectable fac-
tor. As previously discussed, the numerical prediction of turbulent convective
heat transfer involves some proper hypotheses for describing turbulence: the
turbulence model M completes the set of factors. For the present application,
the average heat transfer coefficient can be considered as the response. Unfor-
tunately the definition of the average heat transfer coefficient α∗L is not unique
because it is essentially conventional. All the definitions share the same feature
limL→0 α∗L = α. In the present work, the following definition will be adopted:

αL =

(∫ L
0 qw dx

)
/L

(θ0 − θL) / ln (θ0/θL)
(44)

where θ0 = Tb(0) − Tw and θL = Tb(L) − Tw. The denominator of the pre-
vious expression should not trouble. The strong dependence of specific heat
capacity on temperature near the critical point precludes the possibility to
apply some elementary heat transfer models but it does not prevent to define
a logarithmic mean temperature difference. The adopted average heat transfer
coefficient αL can not be directly compared with α∗L due to the phenomenologi-
cal correlations because the spurious comparison would be affected by both the
experimental content and the differing definitions. In the present work, when
a comparison between the numerical result and a phenomenological correla-
tion is needed, the mini/micro channel is axially discretized into infinitesimal
portions with length dL and within each one the limit value α ≈ limL→dL α∗L
for local heat transfer coefficient is considered. Finally a coefficient coherent
with definition (44) due to the phenomenological correlation is reconstructed.
The major trends of the response can be usually investigated by means of
only two levels. About the pressure, this means that a slightly supercritical
pressure and a much higher pressure are considered. About the bulk tempera-
ture, the levels should allow to take into account the effects of pseudo-critical
temperature but, in this case, two levels are not enough. Let us consider the
following function:

cw
p (T ) =

1

T − Tw

T∫
Tw

h(T, p) dT (45)

This function allows to define the specific heat at wall conditions cww
p =

limT→Tw cw
p (T ) and the average specific heat cwb

p = cw
p (Tb). Many authors agree
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on the importance of the ratio cwb
p /cww

p between the average specific heat and
the specific heat at wall conditions to characterize the heat transfer near the
critical point [9,13,15]. Obviously this means that the heat transfer depends
on the eventual presence of the pseudo-critical temperature in the range de-
fined by wall and bulk conditions. Moreover this means that a configuration
with the wall temperature close to the pseudo-critical value is not equiva-
lent to a configuration with the bulk temperature close to the pseudo-critical
value. These configurations are different because of the distortion of the ra-
dial temperature profile. Practically the ratio cwb

p /cww
p discriminates the cases

characterized by Tb(x) ≈ Tpc, which implies cwb
p > cww

p , and the other cases
characterized by Tw(x) ≈ Tpc, which implies cwb

p < cww
p . The factorial design

must take into account both the configurations too. Three inlet bulk temper-
atures are selected: the first very close to pseudo-critical value T0 ≈ Tpc; the
second higher than previous one, so as that the wall temperature can be close
to pseudo-critical value Tw ≈ Tpc and the third greatly higher. About the wall
temperature, two levels are always considered and the difference T0 − Tw is
increased far from the pseudo-critical temperature where the heat transfer is
weaker. Since the effects due to gravity field are neglected, the equation (1)
allows to reduce the number of free parameters. The buoyancy parameter can
be factorized Gr/Re2

0 = BoT BoG. The first term BoT depends on the bulk
and the wall temperatures, which have been previously selected, while the
second term BoG depends on the mini/micro channel diameter and the mass
flow rate.

BoT =
ρwρ0 − ρ2

0

ρ2
pc

(46)

BoG =
π2

16

gρ2
pcd

5

G2
(47)

Since the selected factorial design implies BoT ≤ 6.09×10−1, the equation (1)
reduces to BoG ≤ 1.64× 10−3. In the following BoG = 1.31× 10−3 is assumed
and two levels for the mini/micro channel diameter (d < 2 mm), or equiva-
lently two levels for the mass flow rate, are selected. Finally three turbulence
models are included: the approach of Bellmore and Reid and the suggested
approach, together with both the RNG k − ε model and the standard k − ε
model. The previous assumptions define a 2 × 3 × 2 × 2 × 3 factorial design,
which requires 2× 3× 2× 2× 3 = 72 runs.
The numerical predictions of average heat transfer coefficient αL are grouped
by means of the selected levels for the supercritical pressure and for the diam-
eter of mini/micro channel: in Table 2 the experimental runs 1−18; in Table 3
the experimental runs 19− 36; in Table 4 the experimental runs 37− 54 and
finally in Table 5 the experimental runs 55 − 72. Before proceeding to com-
pare these results with experimental data and other numerical predictions, a
sensitivity analysis on considered factors is reported. About the turbulence
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Table 2
Numerical predictions of average heat transfer coefficient αL for experimental runs
1−18 defined by the factorial design. The lowest supercritical pressure (7.412 MPa)
and the smallest mini/micro channel diameter (0.787 mm) are considered. The
adopted models are: the model of Bellmore and Reid [24] (label ”B&R”); the RNG
k − ε model (label ”RNG”) and the standard k − ε model (label ”SKE”). The
pseudo-critical temperature is Tpc = 304.328 K.

Factorial Design Results

p T0 Tw d (G) M qw |∆Tb| αL

[MPa] [K] [K] [mm] [g/s] [kW/m2] [K] [kW/m2K]

1 7.412 305 302 0.787 0.571 B&R 111.92 0.69 42.359

2 7.412 305 302 0.787 0.571 RNG 115.57 0.69 43.803

3 7.412 305 302 0.787 0.571 SKE 99.38 0.67 37.519

4 7.412 305 298 0.787 0.571 B&R 172.60 1.97 28.955

5 7.412 305 298 0.787 0.571 RNG 176.55 2.19 30.244

6 7.412 305 298 0.787 0.571 SKE 159.10 1.38 25.307

7 7.412 312 309 0.787 0.571 B&R 18.71 2.33 12.004

8 7.412 312 309 0.787 0.571 RNG 17.52 2.19 10.484

9 7.412 312 309 0.787 0.571 SKE 15.91 2.01 8.772

10 7.412 312 305 0.787 0.571 B&R 58.35 5.65 16.991

11 7.412 312 305 0.787 0.571 RNG 54.49 5.41 14.972

12 7.412 312 305 0.787 0.571 SKE 48.65 5.02 12.236

13 7.412 360 353 0.787 0.571 B&R 17.55 6.01 5.704

14 7.412 360 353 0.787 0.571 RNG 16.76 5.74 5.013

15 7.412 360 353 0.787 0.571 SKE 15.87 5.44 4.383

16 7.412 360 340 0.787 0.571 B&R 50.23 16.56 5.344

17 7.412 360 340 0.787 0.571 RNG 49.86 16.47 5.243

18 7.412 360 340 0.787 0.571 SKE 47.12 15.60 4.575
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Table 3
Numerical predictions of average heat transfer coefficient αL for experimental
runs 19 − 36 defined by the factorial design. The lowest supercritical pressure
(7.412 MPa) and the biggest mini/micro channel diameter (1.417 mm) are consid-
ered. The adopted models are: the model of Bellmore and Reid [24] (label ”B&R”);
the RNG k− ε model (label ”RNG”) and the standard k− ε model (label ”SKE”).
The pseudo-critical temperature is Tpc = 304.328 K.

Factorial Design Results

p T0 Tw d (G) M qw |∆Tb| αL

[MPa] [K] [K] [mm] [g/s] [kW/m2] [K] [kW/m2K]

19 7.412 305 302 1.417 2.482 B&R 131.49 0.63 49.242

20 7.412 305 302 1.417 2.482 RNG 162.26 0.66 61.020

21 7.412 305 302 1.417 2.482 SKE 134.35 0.64 50.341

22 7.412 305 298 1.417 2.482 B&R 231.75 0.67 34.806

23 7.412 305 298 1.417 2.482 RNG 280.40 0.70 42.188

24 7.412 305 298 1.417 2.482 SKE 239.90 0.67 36.035

25 7.412 312 309 1.417 2.482 B&R 26.47 1.43 11.968

26 7.412 312 309 1.417 2.482 RNG 26.22 1.41 11.813

27 7.412 312 309 1.417 2.482 SKE 22.94 1.22 9.875

28 7.412 312 305 1.417 2.482 B&R 79.42 3.75 16.256

29 7.412 312 305 1.417 2.482 RNG 80.34 3.79 16.522

30 7.412 312 305 1.417 2.482 SKE 69.42 3.67 13.521

31 7.412 360 353 1.417 2.482 B&R 27.84 3.98 5.879

32 7.412 360 353 1.417 2.482 RNG 26.89 3.85 5.574

33 7.412 360 353 1.417 2.482 SKE 24.43 3.50 4.838

34 7.412 360 340 1.417 2.482 B&R 82.92 11.54 6.183

35 7.412 360 340 1.417 2.482 RNG 79.99 11.15 5.850

36 7.412 360 340 1.417 2.482 SKE 72.80 10.18 5.088
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Table 4
Numerical predictions of average heat transfer coefficient αL for experimental runs
37−54 defined by the factorial design. The highest supercritical pressure (12.0 MPa)
and the smallest mini/micro channel diameter (0.787 mm) are considered. The
adopted models are: the model of Bellmore and Reid [24] (label ”B&R”); the RNG
k − ε model (label ”RNG”) and the standard k − ε model (label ”SKE”). The
pseudo-critical temperature is Tpc = 327.1 K.

Factorial Design Results

p T0 Tw d (G) M qw |∆Tb| αL

[MPa] [K] [K] [mm] [g/s] [kW/m2] [K] [kW/m2K]

37 12.000 327 317 0.787 0.571 B&R 67.21 6.78 11.232

38 12.000 327 317 0.787 0.571 RNG 70.36 7.13 12.322

39 12.000 327 317 0.787 0.571 SKE 64.91 6.53 10.518

40 12.000 327 307 0.787 0.571 B&R 133.53 15.18 12.519

41 12.000 327 307 0.787 0.571 RNG 132.12 14.98 12.189

42 12.000 327 307 0.787 0.571 SKE 123.04 13.70 10.374

43 12.000 347 337 0.787 0.571 B&R 52.14 8.08 10.658

44 12.000 347 337 0.787 0.571 RNG 49.65 7.75 9.549

45 12.000 347 337 0.787 0.571 SKE 45.76 7.21 8.097

46 12.000 347 327 0.787 0.571 B&R 112.99 15.24 10.641

47 12.000 347 327 0.787 0.571 RNG 118.00 15.75 11.606

48 12.000 347 327 0.787 0.571 SKE 108.26 14.75 9.815

49 12.000 360 353 0.787 0.571 B&R 25.11 5.54 7.101

50 12.000 360 353 0.787 0.571 RNG 25.22 5.56 7.176

51 12.000 360 353 0.787 0.571 SKE 23.58 5.22 6.181

52 12.000 360 340 0.787 0.571 B&R 81.61 16.01 8.214

53 12.000 360 340 0.787 0.571 RNG 82.68 16.18 8.460

54 12.000 360 340 0.787 0.571 SKE 76.88 15.23 7.237
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Table 5
Numerical predictions of average heat transfer coefficient αL for experimental runs
55−72 defined by the factorial design. The highest supercritical pressure (12.0 MPa)
and the biggest mini/micro channel diameter (1.417 mm) are considered. The
adopted models are: the model of Bellmore and Reid [24] (label ”B&R”); the RNG
k − ε model (label ”RNG”) and the standard k − ε model (label ”SKE”). The
pseudo-critical temperature is Tpc = 327.1 K.

Factorial Design Results

p T0 Tw d (G) M qw |∆Tb| αL

[MPa] [K] [K] [mm] [g/s] [kW/m2] [K] [kW/m2K]

55 12.000 327 317 1.417 2.482 B&R 103.21 4.18 13.367

56 12.000 327 317 1.417 2.482 RNG 109.08 4.43 14.411

57 12.000 327 317 1.417 2.482 SKE 95.39 3.85 12.048

58 12.000 327 307 1.417 2.482 B&R 219.42 9.52 14.898

59 12.000 327 307 1.417 2.482 RNG 213.88 9.25 14.354

60 12.000 327 307 1.417 2.482 SKE 189.73 8.07 12.147

61 12.000 347 337 1.417 2.482 B&R 84.63 5.67 12.489

62 12.000 347 337 1.417 2.482 RNG 76.78 5.18 10.821

63 12.000 347 337 1.417 2.482 SKE 67.98 4.63 9.128

64 12.000 347 327 1.417 2.482 B&R 177.25 10.18 12.753

65 12.000 347 327 1.417 2.482 RNG 184.83 11.20 13.545

66 12.000 347 327 1.417 2.482 SKE 162.97 10.09 11.340

67 12.000 360 353 1.417 2.482 B&R 43.97 4.07 9.410

68 12.000 360 353 1.417 2.482 RNG 39.62 3.68 8.033

69 12.000 360 353 1.417 2.482 SKE 35.58 3.32 6.890

70 12.000 360 340 1.417 2.482 B&R 130.84 11.27 9.622

71 12.000 360 340 1.417 2.482 RNG 130.56 11.25 9.592

72 12.000 360 340 1.417 2.482 SKE 116.80 10.18 8.162

37



Fig. 6. The average heat transfer coefficients obtained by both the RNG k − ε
model and the standard k − ε model are jointly reported, in order to duplicate
the predictions for the same run. Some phenomenological correlations are consid-
ered [13,11,15]. For each subplot, the numerical error due to comparison with a
phenomenological correlation is reported too, in terms of mean value and standard
deviation.
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Table 6
Comparison among numerical predictions for average heat transfer coefficients, some
phenomenological correlations [13,11,12,15] and other numerical predictions [10].
The considered models are: the model of Bellmore and Reid [24] (label ”B&R”);
the RNG k− ε model (label ”RNG”) and the standard k− ε model (label ”SKE”).

Numerical Predictions

Mean ± Standard Deviation eL
α = (αL − αexp

L )/αexp
L [%]

Experimental Petrov & Popov This work

Correlations Correlation B&R RNG SKE

Liao & Zhao 50.6± 34.6 79.1± 48.3 76.2± 39.2 49.7± 34.8

Pettersen et al. 6.7± 25.4 25.9± 27.1 24.1± 23.3 5.1± 18.6

Pitla et al. 8.0± 36.1 25.5± 23.7 25.4± 31.7 6.3± 25.9

Yoon et al. −37.6± 6.2 −25.8± 11.8 −26.8± 7.4 −37.9± 6.2

description, the standard k− ε model systematically produces lower values for
average heat transfer coefficient in comparison with the RNG k − ε model.
In the previous section, the fact that the standard k − ε model overestimates
the effective temperature difference |Tb − Tw| has been outlined yet and it is
consistent with the present results. Moreover the numerical predictions due to
the RNG k − ε model are rather close to the predictions due to the model of
Bellmore and Reid. Usually the average heat transfer coefficients predicted by
the RNG k−ε model are slightly lower than those due to the model of Bellmore
and Reid, with the exception of the experimental runs which are characterized
by T0 ≈ Tpc and which reveal a reverse trend. When the pseudo-critical tem-
perature is close to bulk temperature, the radial temperature profile is highly
distorted and it looks similar to a step function. Near the wall this feature
implies a rapidly strained flow, which enhances the generation of turbulence
kinetic energy. The additional terms, which are included in the RNG k − ε
model to describe rapidly strained flows, probably justifies the increase in the
predicted values for average heat transfer coefficient. About the inlet tem-
perature difference |T0 − Tw|, the location of the pseudo-critical temperature
plays an important part. The experimental runs 4 and 10 (see Table 2) share
the same inlet temperature difference |T0 − Tw| = 7 K but for the first run
Tb(0) ≈ Tpc, which implies cwb

p /cww
p = 3.94, while for the second run Tw ≈ Tpc,

which implies cwb
p /cww

p = 0.35. The effect on the average heat transfer coef-
ficient is impressive: αL = 28.96 kW/m2K for the experimental run 4 and
αL = 16.99 kW/m2K for the experimental run 10. This confirms the common
practice to include the ratio cwb

p /cww
p in the phenomenological correlations and

to assign it a positive exponent interpolating the experimental data. About
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the diameter of mini/micro channel, or equivalently the mass flow rate, the
factorial design is based on the assumption to keep fixed the parameter BoG,
given by equation (47), so as to satisfy the threshold which allows to neglect
the buoyancy effects. This means that G2/d5 is constant and then the inlet
bulk velocity u0 ∝ G/d2 ∝ d1/2 modestly increases by doubling the diameter
of mini/micro channel. For this reason, the effects on the average heat trans-
fer coefficients are relatively modest too. About the supercritical pressure, the
peak of the specific heat at the pseudo-critical temperature enhances the con-
vective heat transfer and the enhancement is proportional to the magnitude
of the peak. The experimental runs 19 (see Table 3) and 55 (see Table 5)
both are characterized by Tb(0) ≈ Tpc, so that cwb

p /cww
p > 1. The effective tem-

perature difference for the first experimental run |T0 − Tw| = 3 K is smaller
than the one for the second experimental run |T0 − Tw| = 10 K. In spite of
this, the predicted wall thermal fluxes are comparable: qw = 131.5 kW/m2

for the experimental run 19 and qw = 103.21 kW/m2 for the experimental
run 55. The reason lies in the magnitude of the peak of the specific heat at
different supercritical pressures. The lowest supercritical pressure, considered
by the first experimental run, causes the specific heat to strongly change in
the radial direction cwb

p /cww
p = 4.62 while the highest supercritical pressure is

much less effective cwb
p /cww

p = 1.17.
In Table 6 the numerical results are compared with other numerical predictions
and some phenomenological correlations. The correlation suggested by Petrov
and Popov [10] is included within the numerical results, because it was devel-
oped by interpolation of some numerical simulations. At least for the selected
factorial design, this correlation reasonably agrees with the results due to the
suggested approach for turbulence, if the standard k − ε model is adopted.
This result highlights an interesting feature. The model of Bellmore and Reid,
the model assumed by Petrov and Popov and finally the suggested approach
differ from one another with reference to: how the variable thermophysical
properties affect the common turbulent terms due to time averaging; how the
turbulent terms can be calculated in terms of solving variables and how the
the additional turbulent terms due to density fluctuations are described. In
spite of this, the suggested approach reasonably reproduces both the previous
models if the RNG k − ε model or the standard k − ε model are assumed.
This means that the suggested approach is enough general to include different
models independently developed. As it will clearer moreover, some of the ad-
ditional topics included in this work produce moderate effects on the average
heat transfer coefficients and this could hide additional discrepancies among
the models. In Table 6, the experimental correlations due to Liao and Zhao
[13], Pettersen et al. [11], Pitla et al. [12] and Yoon et al. [15] are considered
too. These correlations are referable to three different categories. The first cor-
relation was specifically developed for a single mini/micro channel. The second
one derives from some experimental tests on a flat extruded tube, which in-
volves many mini/micro channels along axial directions. The correlation of
Pitla et al. improves the previous one by averaging the results obtained with

40



constant properties evaluated at the wall and bulk temperature. Unfortunately
this practice shifts the peak of the average heat transfer coefficient, which is no
more located at the pseudo-critical temperature. This result is not confirmed
by any theoretical explanation and it distinguishes this correlation from all
other ones. Finally the correlation of Yoon et al. was recently developed for
ducts with usual diameters. First of all, the numerical results seem to outline
that the buoyancy effects are not completely responsible of the heat transfer
impairment measured by Liao and Zhao for mini/micro channels. Despite the
fact that the gravity field slightly affects the selected runs and it is completely
neglected by numerical models, the final predictions systematically overesti-
mate the results due to the correlation of Liao and Zhao. This conclusion is
independent of turbulence model. If the experimental data are reliable, some
additional terms must be included into the model to justify the heat transfer
impairment for mini/micro channels. If a preference among phenomenological
correlations on the basis of numerical results is needed, the results due to the
RNG k−ε model and the standard k−ε model can be assembled. In Fig. 6 the
assembled numerical results are compared with the phenomenological correla-
tions. The assembled results seem to express a preference for the correlation
suggested by Pettersen et al. [11]. This result is not conclusive because the
experimental measurements for a single mini/micro channels should be more
reliable than the measurements for a flat extruded tube, which can involve up
to 25 mini/micro channels and can be characterized by non-homogeneities for
wall temperature. Anyway some numerical predictions show that the trans-
verse non-homogeneities for a flat extruded tube are much more smaller than
it could have been initially suppose [39].
Some concluding remarks on additional turbulent terms due to time averaging
of density fluctuations are discussed. In Fig. 7 the corrective factor for tur-
bulent diffusivities due to density fluctuations is reported. According to the
assumed boundary conditions, the transverse sections of mini/micro channel
closer to the inlet are characterized by stronger radial temperature gradi-
ents. This means they have higher indexes of intensity for density fluctuations
σBR and consequently more effective corrective factors for turbulent diffu-
sivities φBR. Nevertheless the maximum correction reported in Fig. 7 is less
than 3 %. This threshold is even smaller for the suggested approach because
|φ−1| << |φBR−1|, as previously discussed. For the present application, this
correction on turbulent diffusivities produces moderate effects on the average
heat transfer coefficients and this prevents a complete comparison among dis-
cussed models. In Fig. 8 some results are reported for radial component of the
characteristic velocity for density fluctuations, according to different models.
The formal expression of radial component of the characteristic velocity for
both the models is the same v∗ = v∗BR, as it can be easily verified by consider-
ing equations (36, 39). An estimation of the axial component of characteristic
velocity can be obtained by means of the radial component for both the mod-
els, remembering that u∗ << u∗BR = v∗BR. The RNG k−ε model overestimates
the modulus of radial component of the characteristic velocity for the sections
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Fig. 7. Radial profile of the corrective factor for turbulent diffusivities due to density
fluctuations in a thin layer near the wall, according to the model of Bellmore and
Reid [24]. Cooling conditions are considered. The reported markers are representa-
tive of grid nodes.

closer to the inlet, while it underestimates the same quantity proceeding along
the mini/micro channel. Also in this case, the additional terms, which are in-
cluded in the RNG k − ε model to describe rapidly strained flows, probably
justifies this increase in the radial component of the characteristic velocity for
more distorted temperature profiles. Despite the fact that the density fluctu-
ations strongly affect the radial component of the velocity v ≈ −v∗, the final
result on the average heat transfer coefficients is quite moderate.

5 Conclusions

A new approach to take into account the effects of variable physical properties
on turbulence is suggested, by generalizing the decomposition originally con-
sidered by the model of Bellmore and Reid. This approach allows to choose
freely the turbulent model for usual terms coming from time averaging of
velocity fluctuations and to describe coherently the additional terms due to
density fluctuations. In this way, the turbulence due to density fluctuations
is analyzed under a general point of view, which imposes no constrain to the
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Fig. 8. Normalized radial component of the characteristic velocity for density fluctu-
ations at the same locations, according to different models. The model of Bellmore
and Reid (label ”B&R”) and the suggested approach together with RNG k − ε
model (label ”RNG”) are considered. The reported markers are representative of
grid nodes.

description of usual terms. The suggested approach allows to reproduce some
of the results due to some classical models, if the proper turbulent model is
adopted.
Numerical calculations based on the suggested approach and on the original
model have been performed for carbon dioxide flowing within mini/micro chan-
nels under cooling conditions. In comparison with existing calculations, some
improvements have been considered: an updated database for thermophysical
properties near the critical point; some differential equations to investigate the
effects of variable thermophysical properties on turbulence; different turbulent
closure models for usual terms and for additional terms due to density fluc-
tuations. These refinements do not substantially improve the existing results.
This means that for the considered application the effects due density fluctu-
ations are smaller than it could have been initially supposed. The comparison
with phenomenological correlations confirms that a heat transfer impairment
for mini/micro channels exists but it is smaller than the impairment which
has been measured by some experimental investigations for the same devices.
The results are not completely exhaustive because of the discrepancies among
different correlations. The strong coupling between the heat transfer and the
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fluid flow due to variable thermophysical properties complicates the develop-
ment of a reliable correlation in terms of traditional dimensionless parameters.
For this reason, some recent attempts [40] to adopt the neural network regres-
sion technique to analyze the convective heat transfer near the critical point
appears greatly promising.
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A Appendix

On introducing the Reynolds decomposition for velocity and density into in-
stantaneous conservation equations and time-averaging the results, the gov-
erning equations of continuity (2), momentum (3) and energy (4) have been
obtained. The density fluctuations affect both the diffusive and the convective
terms into these equations. As previously pointed out, the corrective factor due
to density fluctuations for effective diffusivities can be easily included into a
segregated solver. On the other hand, the additional convective terms need a
proper discretization. All the convection terms due to density fluctuations can
be considered as additional sources into the previous equations and they can
be recasted in the following generic form:

Hω = −∇ · (ρ ω w∗) = − ∂

∂x
(ρ ω u∗)− ∂

∂r
(ρ ω v∗)− ρ ω v∗

r
(A.1)

where the quantity ω can be indifferently 1, u, v, or hT .
The generic source must be calculated by means of a conservative scheme,
coherently with the finite volume method which has been selected. Let us
consider a generic control volume, characterized by dimensions ∆x and ∆r
along main directions. The centroid of the selected control volume is identi-
fied by P (x, r) label. The centroids of the neighboring control volumes are
identified by similar labels: S(x, r−∆rS), E(x + ∆xE, r), N(x, r + ∆rN) and
W (x−∆xW , r). The midpoints of the faces of the selected control volume are
identified by lower-case labels and progressive numbers: s(x, r − ∆rs) ≡ 1,
e(x + ∆xe, r) ≡ 2, n(x, r + ∆rn) ≡ 3 and w(x − ∆xw, r) ≡ 4. The selected
control volume is characterized by a volume equal to ∆V . The generic i-th
face of the selected control volumes is characterized by a surface equal to ∆Ai.
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According to the introduced nomenclature, the divergence involved in the pre-
vious equation can be expressed:

Hω = − ∂

∂V

∫
∆V

∇ · (ρ ω w∗) dV = − ∂

∂V

∫
∂ ∆V

ρ ω w∗ · n dA (A.2)

The continuous expression can be discretized:

Hω = − 1

∆V

4∑
i=1

ρi ωi w
∗
i · ni ∆Ai (A.3)

This formula is conservative because it requires the estimation of the solving
variables only at the boundary of the control volume. This feature ensures
that the discretized equations for two adjoining control volumes involve the
same flux through the common face. Since the calculation is performed only
at the centroids of the control volumes, the solving variables at the midpoints
of the faces can be estimated by means of linear interpolations. All terms of
the summation can be explicitly reported:

Hω = ρ1 ω1 v∗1
r −∆rs

r ∆r
− ρ2 ω2 u∗2

∆x
− ρ3 ω3 v∗3

r + ∆rn

r ∆r
+

ρ4 ω4 u∗4
∆x

(A.4)

They can be grouped:

Hω = −ρ2 ω2 u∗2 − ρ4 ω4 u∗4
∆x

− ρ3 ω3 v∗3 − ρ1 ω1 v∗1
∆r

(A.5)

−ρ3 ω3 v∗3 ∆rn + ρ1 ω1 v∗1 ∆rs

r (∆rs + ∆rn)

The final expression is the discretized conservative form of the generic source.
In the definition (A.1), the last term ρ ω v∗/r is a peculiar feature of diverge
operator when a set of cylindrical coordinates is considered. It can not be
directly calculated by the values of solving variables at the boundary of the
control volume. It is not evident how to calculate this term in discretized
form, so as to ensure that the whole scheme is conservative. The previous
formula (A.5) fills this lack by prescribing to use a linear interpolation of the
volume-centered values along radial direction. It is interesting to note that the
use of the centroid values would appear an easier solution but it would not
produce a conservative scheme.
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