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Introduction Lattice Boltzmann Method (LBM)

Mesoscopic numerical methods

Mesoscopic methods (or particle-based methods) try to fill the gap
between the microscopic and macroscopic descriptions of the fluid
dynamics in multi-scale and multi-physics problems
Notable examples include:

the Lattice Gas Cellular Automata (LGCA)
the Lattice Boltzmann Method (LBM)
the Discrete Velocity Models (DVM)
the Gas Kinetic Scheme (GKS)
the Smoothed Particle Hydrodynamics (SPH)
the Dissipative Particle Dynamics (DPD)

Two main categories exist:
Primitive Methods (for example GKS) → the kinetic expressions are
used for physically–based macroscopic averaging
Kinetic Methods (for example LBM) → they may catch truly kinetic
physics, if large stencil and proper equilibrium are adopted
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Introduction Lattice Boltzmann Method (LBM)

Lattice Boltzmann Method (LBM) in a nutshell

Number of papers on International Journals: 2,000 in the period
1988-2007 (comparison: 10,000 papers on "‘ITER Fusion
Project"’ and 28,000 papers on "‘Energy Saving"’)
Number of books: 14 in the period 2000-2007
Patents: computational modeling and bio–fluidics
Industrial sector: automotive
International conferences:

International Conference on Mesoscopic Methods in Engineering
and Science, ICMMES
Discrete Simulation of Fluid Dynamics in Complex Systems, DSFD
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Introduction Is it worth the effort?

Where the investment is worth: automotive sector

PowerFLOW R© by EXA Corporation, formerly spin–off of MIT:
EXA has sustained a greater than 40% annual growth rate in
revenues since 2001 (EXA’s web site)
Applications: low–Mach number external aerodynamics,
under–hood thermal analysis and low–frequency aeroacoustics
(typically up to 500 Hz)
Advantages: very–user friendly mesh generation (it can handle
rough meshes) and good comparison with experimental data by
wind tunnel (industrial customers)
Disadvantages: large hardware requirements and high cost
Some customers: BMW, Audi, Fiat (Elasis),...
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Introduction Is it worth the effort?

Up to now, we mainly played billiards...

Most of LBM models points to kinetic equations in order to solve
fluidynamic equations in continuum regime, i.e. Navier-Stokes (NS).

Since the advantage over traditional CFD is thin, LBM should focus
more on the truly kinetic content, in order to try to achieve challenging
goals in micro–fluidics, with reasonable computational demand.
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Introduction Is it worth the effort?

Where the investment may be worth: micro–fluidics

1 The main challenge is to define a set of generalized gas dynamic
equations, which are suitable for microflows and applications.

2 From the kinetic point of view, this means to design a
quasi–equilibrium, which is an intermediate state in the path
towards the equilibrium, for controlling better the non–equilibrium
dynamics. A popular example involves a generalized temperature
as a second–order symmetric tensor.

3 Finally, it would be possible to design a Lattice Boltzmann
hierarchy of moment equations for solving the previous dynamics.
See discussion in Ansumali et al. [1].

One major difficulty is the determination of the boundary condition
for the moments because only the lowest few have clear physical
meanings.
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Analysis of the Lattice Boltzmann Method Discrete velocity model on D2Q9 lattice

Discrete velocity model on D2Q9 lattice

Let us consider the following discrete velocity model
∂f

∂t̃
+ ṽi

∂f

∂x̃i
=

Df

Dt̃
= Ã(feq − f), (1)

where ṽi = c̃ vi is a list of velocity components, namely

vx =
[

0 1 0 −1 0 1 −1 −1 1
]T

, (2)

vy =
[

0 0 1 0 −1 1 1 −1 −1
]T

, (3)

feq and f are lists of discrete populations corresponding to the
velocities in the considered lattice and, finally, Ã is a proper
collisional matrix, ruling the relaxation towards the equilibrium.
The Lagrangian derivative Df/Dt̃ can be approximated
numerically by the method of characteristics (MOC).
On a Cartesian homogeneous mesh, the lattice speed c̃ can be
tuned such that particles jump to the neighboring nodes according
to their discrete microscopic velocity.
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Analysis of the Lattice Boltzmann Method Discrete velocity model on D2Q9 lattice

Operator splitting → stream & collide paradigm

Pietro Asinari, PhD (Politecnico di Torino) LBM and Truncated Moment System 29-30 Sept. 2008, Black Forest 11 / 37



Analysis of the Lattice Boltzmann Method Discrete velocity model on D2Q9 lattice

“Faith” is a fine invention, but...

“Faith” is a fine invention
When Gentlemen can see,
But Microscopes are prudent
In an Emergency!

Emily Dickinson
(kinetically interpreted by Stewart Harris)

Our microscope will be the truncated moment system
proposed by Asinari and Ohwada [2]
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Analysis of the Lattice Boltzmann Method Relevant dimensionless numbers

Introducing relevant dimensionless numbers

Among all the relaxation frequencies, let us define λ̃ν that
controlling the kinematic viscosity in the continuum limit and
τ̃ = 1/λ̃ν . Recalling the previous quantities yields

τ̃
∂f

∂t̃
+ τ̃ c̃ vi

∂f

∂x̃i
= A(feq − f), (4)

where A = Ã/λ̃ν
e . Let us introduce the characteristic scales for the

flow field, i.e. T̃ and L̃, such that
∂f

∂t
= O(f),

∂f

∂xi
= O(f) (5)

where t = t̃/T̃ is the dimensionless time and xi = x̃i/L̃ is the
dimensionless space. These assumptions yield

Kn Ma
∂f

∂t
+ Kn vi

∂f

∂xi
= A(feq − f), (6)

where Kn = (τ̃ c̃)/L̃, Ma = Ũ/c̃ and Ũ = L̃/T̃ .
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Analysis of the Lattice Boltzmann Method Raw moments and equilibrium

Thinking in terms of moments

Let us introduce the generic discrete raw moment

r̄xx···x yy···y(
n times︷ ︸︸ ︷
xx · · ·x,

m times︷ ︸︸ ︷
yy · · · y ) = 〈vn

xvm
y f〉. (7)

Examples are: density ρ = 〈f〉 and momentum ρūi = 〈vif〉.
Let us introduce the following set of linearly–independent
moments to define the basis of the moment space, namely

r = [r̄0, r̄x, r̄y, r̄xx, r̄yy, r̄xy, r̄xxy, r̄xyy, r̄xxyy]
T . (8)

On the selected lattice, the discrete raw moments r can be
computed by means of simple linear combinations of the discrete
populations f , namely r = Mf where M is a matrix defined as

M = [1, vx, vy, v
2
x, v2

y , vxvy, vxv2
y , v

2
xvy, v

2
xv2

y ]
T . (9)
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Analysis of the Lattice Boltzmann Method Raw moments and equilibrium

Local discrete equilibrium

In the following, we assume ui = ũi/Ũ and consequently
ūi = Ma ui. Hence the local discrete equilibrium can be defined
(taking advantage of the results for the continuous equilibrium in
the infinity velocity space) as feq = M−1req, where

req =



r̄eq

r̄eq
x

r̄eq
y

r̄eq
xx

r̄eq
yy

r̄eq
xy

r̄eq
xxy

r̄eq
xyy

r̄eq
xxyy


=



ρ
Ma ρux

Ma ρuy

ρ/3 + Ma2 ρu2
x

ρ/3 + Ma2 ρu2
y

Ma2 ρuxuy

Ma ρuy/3 + Ma3 ρu2
xuy

Ma ρux/3 + Ma3 ρuxu2
y

ρ/9 + Ma2 ρ/3(u2
x + u2

y) + Ma4 ρu2
xu2

y


.

(10)
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Analysis of the Lattice Boltzmann Method Raw moments and equilibrium

Local generalized equilibrium

What about the relaxation process described by A?
Not clear yet, because many some degrees of freedom exist. It is
better to keep it as much general as possible by defining a local
generalized equilibrium feq∗ = f + A(feq − f) such that

Kn Ma
∂f

∂t
+ Kn vi

∂f

∂xi
= A(feq − f) + f − f = feq∗ − f. (11)

Constraints in the design of the local generalized equilibrium.
(consistency) It should recover the desired set of macroscopic
equations in the continuum limit
(stability) It should be as stable as possible at low viscosities. Not
clear (mathematically) how to get this feature (in general) for
non–linear equations: need for extensive numerical tests. Physical
ideas are very welcome: multiple–relaxation–time (MRT), entropic,
“cascaded” MRT,...
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Analysis of the Lattice Boltzmann Method Central moments and “cascaded” MRT

Closer look at the “cascaded” MRT

By realizing the insufficient degree of Galilean invariance of the
traditional MRT collision operators, Geier et al. [3] proposed to
relax differently the central moments, i.e. the moments shifted by
the macroscopic velocity, in a moving frame instead of the
traditional practice of relaxing the raw moments in the frame at
rest, leading to the so-called "cascaded" LBM.
The "cascaded" LBM uses a generalized local equilibrium in the
frame at rest, which depends on both conserved and
non–conserved moments, as pointed out in Asinari [4]. This new
equilibrium does not affect the consistency of the LBM, but it may
enhance the stability of the scheme.
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Analysis of the Lattice Boltzmann Method Central moments and “cascaded” MRT

Central moments

Let us introduce the generic discrete central moment

c̄xx···x yy···y(
n times︷ ︸︸ ︷
xx · · ·x,

m times︷ ︸︸ ︷
yy · · · y ) = 〈(vx − ūx)n(vy − ūy)mf〉, (12)

where the macroscopic velocity components are defined as

ūx = 〈vxf〉/〈f〉, ūy = 〈vyf〉/〈f〉.

Also in this case

c = [c̄0, c̄x, c̄y, c̄xx, c̄yy, c̄xy, c̄xxy, c̄xyy, c̄xxyy]
T . (13)

There is a simple mapping for passing from raw to central
moments, e.g.

c̄xxy = −ū2
xūy r̄0 + 2ūxūy r̄x+ū2

xr̄y−ūy r̄xx−2ūxr̄xy + r̄xxy, (14)
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Analysis of the Lattice Boltzmann Method Central moments and “cascaded” MRT

Central moment calculation

It is possible to prove that c = S r, where

S(ūx, ūy) =



1 0 0 0 0 0 0 0 0
−ūx 1 0 0 0 0 0 0 0
−ūy 0 1 0 0 0 0 0 0

ū2
x −2ūx 0 1 0 0 0 0 0

ū2
y 0 −2ūy 0 1 0 0 0 0

ūxūy −ūy −ūx 0 0 1 0 0 0

−ū2
xūy 2ūxūy ū2

x −ūy 0 −2ūx 1 0 0

−ūxū2
y ū2

y 2ūxūy 0 −ūx −2ūy 0 1 0

ū2
xū2

y −2ūxū2
y −2ū2

xūy ū2
y ū2

x 4ūxūy −2ūy −2ūx 1


.

(15)
The previous shift mapping has a very useful property, i.e.
S−1(ūx, ūy) = S(−ūx,−ūy). This is because the matrix S
represents a reversible translation in space.
The lower triangular structure of the mapping S explains the name
“cascaded”.
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Analysis of the Lattice Boltzmann Method Central moments and “cascaded” MRT

“Cascaded” MRT

In the “cascaded” MRT, the collision step is performed in the
central moment space. Let us define A such that
A = M−1S−1Λ SM , namely

feq∗ = f + M−1S−1Ω SM (feq − f), (16)

where

Ω = diag
(

[0, 0, 0],
[

ω+
e ω−e

ω−e ω+
e

]
, [1, ωo, ωo, ωe]

)
, (17)

where ω+
e = (ωξ + 1)/2, ω−e = (ωξ − 1)/2 and [ωξ, ωo, ωe]T are

three free tunable parameters, assumed O(1).
It is possible to prove that, in the continuum limit, the previous
choice leads to the kinematic viscosity ν = (3λν)−1 and the
second viscosity coefficient ν0 = (3λνωξ)−1 = ν/ωξ, where the
bulk viscosity is ξ := ν0 − ν in two dimensions.
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Analysis of the Lattice Boltzmann Method Central moments and “cascaded” MRT

Usual MRT schematic
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Analysis of the Lattice Boltzmann Method Central moments and “cascaded” MRT

“Cascaded” MRT schematic
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Analysis of the Lattice Boltzmann Method Truncated moment system

Mass and momentum

In the following, mass and momentum conservation (no mass
sources and no external forces) are assumed.
The equations for mass and momentum are

∂ρ

∂t
+

∂(ρui)
∂xi

= 0, (18)

Ma2 ∂(ρui)
∂t

+
∂r̄i j

∂xj
= 0. (19)

Clearly in order to recover Navier–Stokes (NS) system of
equations, it must hold ∂r̄i j/∂xj ∼ Ma2.
The actual expression of r̄i j depends on the dynamics of the
higher–order moments. There is a hierarchical system of moment
equations.
The assumption to consider a lattice, i.e. a finite set of Q discrete
velocities, is enough to produce a closure in the moment system.
In particular, only Q independent moment equations exist.
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Analysis of the Lattice Boltzmann Method Truncated moment system

Stress tensor

The components of the stress tensor satisfy the following
equations

Kn Ma
∂r̄xx

∂t
+ Kn Ma

∂(ρux)
∂x

+ Kn
∂r̄xxy

∂y
= r̄eq∗

xx − r̄xx, (20)

Kn Ma
∂r̄yy

∂t
+ Kn

∂r̄yyx

∂x
+ Kn Ma

∂(ρuy)
∂y

= r̄eq∗
yy − r̄yy, (21)

Kn Ma
∂r̄xy

∂t
+ Kn

∂r̄xxy

∂x
+ Kn

∂r̄yyx

∂y
= r̄eq∗

xy − r̄xy, (22)

where

r̄eq∗
xx = r̄xx + ω+

e (r̄eq
xx − r̄xx) + ω−e (r̄eq

yy − r̄yy), (23)

r̄eq∗
yy = r̄yy + ω−e (r̄eq

xx − r̄xx) + ω+
e (r̄eq

yy − r̄yy), (24)
r̄eq∗
xy = r̄eq

xy. (25)

The lattice deficiencies show up in the spatial fluxes.
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Analysis of the Lattice Boltzmann Method Truncated moment system

Third–order moments

Similarly for the third–order moments

Kn Ma
∂r̄xxy

∂t
+ Kn

∂r̄xy

∂x
+ Kn

∂r̄xxyy

∂y
= r̄eq∗

xxy − r̄xxy, (26)

Kn Ma
∂r̄yyx

∂t
+ Kn

∂r̄xxyy

∂x
+ Kn

∂r̄xy

∂y
= r̄eq∗

xyy − r̄xyy, (27)

where

r̄eq∗
xxy − r̄xxy = ωo(r̄eq

xxy − r̄xxy)

+Ma (ω+
e − ωo)uy(r̄eq

xx − r̄xx) + Ma ω−e uy(r̄eq
yy − r̄yy)

+2 Ma (ωe − ωo)ux(r̄eq
xy − r̄xy), (28)

r̄eq∗
xyy − r̄xyy = ωo(r̄eq

xyy − r̄xyy)

+Ma ω−e ux(r̄eq
xx − r̄xx) + Ma (ω+

e − ωo)ux(r̄eq
yy − r̄yy)

+2 Ma (ωe − ωo)uy(r̄eq
xy − r̄xy). (29)

Pietro Asinari, PhD (Politecnico di Torino) LBM and Truncated Moment System 29-30 Sept. 2008, Black Forest 25 / 37



Analysis of the Lattice Boltzmann Method Recovering Navier–Stokes

Continuum limit

Since we are interested in the continuum limit, i.e. Kn � 1, let us
search for a simplified expression for the stress tensor, involving
only terms O(Kn0) and O(Kn1).
Since r̄eq

ij − r̄ij = O(Kn Ma), then

r̄xxy = r̄eq
xxy + O(Kn Ma2), (30)

r̄xyy = r̄eq
xyy + O(Kn Ma2). (31)

Consequently

r̄eq∗
xx − r̄xx = Kn Ma

∂r̄eq
xx

∂t
+Kn Ma

∂(ρux)
∂x

+Kn
∂r̄eq

xxy

∂y
+O(Kn2 Ma2),

(32)

r̄eq∗
yy − r̄yy = Kn Ma

∂r̄eq
yy

∂t
+ Kn

∂r̄eq
yyx

∂x
+ Kn Ma

∂(ρuy)
∂y

+O(Kn2 Ma2),

(33)

r̄eq
xy− r̄xy = Kn Ma

∂r̄eq
xy

∂t
+Kn

∂r̄eq
xxy

∂x
+Kn

∂r̄eq
yyx

∂y
+O(Kn2 Ma2). (34)
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Analysis of the Lattice Boltzmann Method Recovering Navier–Stokes

Low Mach number assumption

Let us suppose Ma < 1, i.e. Ma has a fixed small value, then

r̄eq∗
xx − r̄xx = Kn Ma

2
3

∂(ρux)
∂x

+ O(Kn2 Ma2) + O(Kn Ma3), (35)

r̄eq∗
yy − r̄yy = Kn Ma

2
3

∂(ρuy)
∂y

+ O(Kn2 Ma2) + O(Kn Ma3), (36)

r̄eq
xy−r̄xy = Kn Ma

[
1
3

∂(ρuy)
∂x

+
1
3

∂(ρux)
∂y

]
+O(Kn2 Ma2)+O(Kn Ma3).

(37)
Introducing Sij = ν (∂jui + ∂iuj − ∂kuk) + ν0∂kuk yields

r̄eq
ij − r̄ij = Kn Ma ρ Sij + O(Kn2 Ma2) + O(Kn Ma3)

+O(Kn Ma ∂xρ) + O(Kn Ma ∂yρ). (38)

Four errors appear, but only the first is very small.
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Analysis of the Lattice Boltzmann Method Recovering Navier–Stokes

Recovering Navier–Stokes

The equations for mass and momentum in the continuum limit are

∂ρ

∂t
+

∂(ρui)
∂xi

= 0, (39)

∂(ρui)
∂t

+
∂

∂xj
(ρuiuj) +

1
Ma2

∂ρ/3
∂xi

=
1

Re
∂(ρSij)

∂xj

+O(Kn2) + O(Kn Ma) + O(Kn ∂xρ/Ma) + O(Kn ∂yρ/Ma),
(40)

where Re = Ma/Kn is the Reynolds number.
Finally, introducing p = (ρ− ρ0)/(3 Ma2) yields

∂(ρui)
∂t

+
∂

∂xj
(ρuiuj) +

∂p

∂xi
=

1
Re

∂(ρSij)
∂xj

+ O(Kn2) + O(Kn Ma).

(41)
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Engineering Applications Solid Oxide Fuel Cells (SOFC)

INTESE Laboratory at DENER
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Engineering Applications Solid Oxide Fuel Cells (SOFC)

Solid Oxide Fuel Cells (SOFC)
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Engineering Applications Solid Oxide Fuel Cells (SOFC)

Reconstructed topology by granulometry law
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Engineering Applications Solid Oxide Fuel Cells (SOFC)

Reconstructed topology by two-point statistics
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Engineering Applications Solid Oxide Fuel Cells (SOFC)

Fluid flow at the gas channel interface
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Engineering Applications Solid Oxide Fuel Cells (SOFC)

Spatial dependence of tortuosity

Additional details are reported in Asinari et al. [5]
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Engineering Applications Solid Oxide Fuel Cells (SOFC)

Conclusions

Concerning the Navier–Stokes solvers, LBM may show some
advantages over conventional methods, mainly because of the
possibility to deal with quite rough meshes. This may be a feature
which is not exclusive of LBM.
LBM seems to have promising features for catching rarefied
effects beyond Navier–Stokes. However this issue has not been
proved yet in a completely convincing way.
The truncated moment system represents a simple tool to analyze
LBM schemes: it is exact and it does not require a given scaling of
the dimensionless numbers.
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