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Outline of this Talk

� Part 1 � Essential features of the Lattice Boltzmann 
Method. Simple implementation and derivation. Asymptotic 
analysis.

� Part 2 � The most suitable physical models for single–
phase mixtures with regards to consistency. Recovering 
Stefan–Maxwell model.

� Part 3 � Practical issues and applications:
– high performance computing (HPC) and practical issue 

of parallelization of LBM codes
– effective tortuosity in the flow of reactive mixtures in 

Solid Oxide Fuel Cells (SOFC)
– and the Direct Numerical Simulation (DNS) of decaying 

homogenous isotropic turbulence of mixtures 
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Mesoscopic Numerical Methods

� Recently new computational methods, generally 
referred to as mesoscopic methods (or equivalently 
particle–based methods), have been proposed in the 
scientific community in order to fill the gap between the 
microscopic and macroscopic descriptions of the fluid 
dynamics in multi–scale and multi–physics problems. 

� Notable examples include:
– the Lattice Gas Cellular Automata (LGCA)
– the Lattice Boltzmann Method (LBM)
– the Discrete Velocity Models (DVM)
– the Gas Kinetic Scheme (GKS)
– the Smoothed Particle Hydrodynamics (SPH)

Introduction
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Main Categories

Mesoscopic methods may be distinguished in two main 
categories:
� (Primitive) Numerical methods using expressions for 

the numerical fluxes, derived by simplified solutions 
of kinetic equations (equilibrium and/or small–
deviation solutions), for example GKS � they are not 
truly kinetic schemes, because the kinetic 
expressions are used for physically-based 
macroscopic averaging

� (Kinetic) Numerical methods formulated directly in 
terms of kinetic variables, for example LBM � they 
are truly kinetic schemes if and only if the adopted 
discretization allows to catch the kinetic phenomena

Introduction
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Lattice Boltzmann (LBM) in a Nutshell
– number of papers on International Journals: 2,000 in the 

period 1988–2007 (comparison: 10,000 papers on “ITER 
Fusion Project” and 28,000 papers on “Energy Saving”)

– number of books: 14 in the period 2000–2007
– main international conferences:

� International Conference on Mesoscopic Methods in 
Engineering and Science, ICMMES

� Discrete Simulation of Fluid Dynamics in Complex 
Systems, DSFD

– commercial codes: PowerFLOW (EXA, spin–off MIT)
– patents: mainly in bio–fluidics for medical applications

Introduction



6/50

LBM for incompressible Navier – Stokes

Playing Billiards
� Most of LBM models points to kinetic equations in order 

to solve fluidynamic equations in continuous regime 
(Navier – Stokes) � Does it worth the effort ?

Introduction

Navier-Stokes

Kinetic Equations
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Myths and Misunderstandings

� The distinction between primitive and kinetic methods is 
somehow conventional

� We can approximate the kinetic solutions by means of 
simplified expressions involving primitive variables, up to 
the accuracy of the numerical scheme � introducing 
these expressions in the kinetic scheme, we get an 
equivalent primitive scheme (~)

� The equivalence is not perfect because, even though the 
schemes share the same equations for both the leading 
terms and the leading errors, the stability region may not 
be the same (for example, Burnett and Boltzmann 
equations do not have the stability region � very bad 
news for CFD community with regards to MEMS)

Introduction
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Lattice Boltzmann 
Method (LBM): essential 
concepts and elementary 

derivation

Lattice Boltzmann Method
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How it works: the billiard-cue

Lattice Boltzmann Method

� Let us consider a 2D 
homogenous spatial grid

� Let us suppose that the 
gas particles are forced to 
jump only from a grid node 
to the neighboring ones

� The discrete distribution 
function provides, for each 
discrete direction, the 
normalized number of 
particles moving in that 
particular direction
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(1) Streaming Step

� Let us suppose to simulate 
the dynamics of the 
fictitious gas

� During an elementary time 
step, the particles jump to 
the neighboring nodes
according to their discrete 
velocity

� This step does not require 
any computation, but 
simply the rearrangement 
of the allocated memory

Lattice Boltzmann Method



11/50

LBM for incompressible Navier – Stokes

(2) Moment Calculation Step

Lattice Boltzmann Method

� The local density ρ is the sum 
of all the components of the 
distribution function 

ρ = Σ fi
� The local macroscopic 

velocity u is the sum of all the 
components of microscopic 
velocities, weighted by the 
corresponding distribution 
function (i.e. numerousness)

u = Σ vi fi



12/50

LBM for incompressible Navier – Stokes

(3) Relaxation Step

Lattice Boltzmann Method

� Particles must somehow 
interact each other

� The definition of the local 
equilibrium function is 
provided

fi
eq = fi

eq (ρ,u) 
� The distribution function is 

updated by trying to reduce 
the discrepancy between 
the actual value and the 
equibliurm one

fi
+ = fi – λ (fi – fi

eq)
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The (False) Miracle !!

� If the proper definition of the local equilibrium is 
provided, then the previous numerical scheme 
asymptotically approaches the Navier-Stokes system 
of equations in the incompressible limit

� Why is it so simple ? Kinetic theory allows one to re-
interpret the macroscopic fluid dynamics in terms of 
the natural trend of most of the complex systems to 
approach the local equilibrium conditions (at least try 
to)

� The definition of the local equilibrium (as prescribed by 
thermodynamics) effects the approach–to–equilibrium 
dynamics (in terms of the structure of the operators)

Lattice Boltzmann Method
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Emily Dickinson (& Stewart Harris)

‘Faith’ is a fine invention
When Gentlemen can see —
But Microscopes are prudent
In an Emergency.

Emily Dickinson

(kinetically interpreted by Stewart Harris)

Lattice Boltzmann Method
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Why it works: let us start…

� The Bhatnagar–Gross–Krook (BGK) model equation 
� inherits the main features of the full Boltzmann 

equation and 
� the fluid–dynamic description of the solution of 

BGK equation for small Knudsen numbers is 
obtained in a much simpler way

� In particular, the BGK model equation involves the 
same definition of the local equilibrium, i.e. the 
Maxwellian distribution function

Lattice Boltzmann Method
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Truncated Polynomial Expansion

� In the incompressible continuum limit, the Mach number 
as well as the Knudsen number is vanishingly small and 
the deviations of temperature and density are 
vanishingly small

� Hence we can employ truncated Hermite polynomial 
expansion of the local equilibrium distribution function

� If the equilibrium distribution is a polynomial, then it is 
possible to consider few discrete microscopic velocities
in order to ensure that the definitions of the 
macroscopic moments hold

Lattice Boltzmann Method



17/50

LBM for incompressible Navier – Stokes

D2Q9 Lattice and Equilibrium Definition

� The statistical moments (both lower-order conserved 
hydrodynamic and higher-order) are computed by 
means of a linear mapping

� The calculation of the conserved hydrodynamic 
moments is exact (e.g. mass is perfectly conserved)

Lattice Boltzmann Method

� Discrete equilibrium definition on the 
D2Q9 lattice (2D and 9 velocities)
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BGK equation for discrete velocity

� The mean collision time (the time between two 
successive molecular collisions) is taken as the 
characteristic time TC

� The molecular velocity is nondimensionalized by the 
characteristic thermal speed c, which is of the same 
order as the sound speed

� The space coordinate is nondimensionalized by c TC, 
which corresponds to the mean free path

� Consequently the nondimensionalized relaxation 
frequency λλλλC is of the order of unity

Lattice Boltzmann Method
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The Billiards Sideboard
� Many different hydrodynamic regimes exist and the 

kinetic theory can recover all of them by means of a 
proper scaling (general concept in kinetic theory �
Sone, 2002)

Lattice Boltzmann Method

Kinetic Equations� A proper scaling is 
an aprioristic 
estimation of the 
order of magnitude 
of the equation 
terms, prescribed 
by the considered 
physical situation



20/50

LBM for incompressible Navier – Stokes

Diffusive Scaling

� We will consider the case where both the Knudsen number is 
small and the Mach number (c/U) of the system is small as well

� In this case (ICNS), among all the possible candidates:
– the mean collision time TC,
– the time scale TF = L/c, acoustic dynamics,
– the time scale TS = L/U, diffusive (slow fluid) dynamics,

the most suitable time scale for studying the fluid dynamic 
phenomena is the diffusive scale

Lattice Boltzmann Method
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Taylor expansion 

� Like any other FD scheme, it is possible to apply the 
Taylor expansion to both time and space � Due to the 
adopted diffusive scaling, this (numerical) expansion
will generate terms of different order

Lattice Boltzmann Method

� Let us apply the forward Euler integration rule
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Knudsen Expansion

� The general expressions for the moments can be 
simplified taking into account the features of ICNS �
odd/even decomposition of the expansions of the 
hydrodynamic moments

Lattice Boltzmann Method

� Since we are interested in the fluid dynamic limit, it is 
reasonable to expand the distribution function in terms 
of the Knudsen number Kn = Tc/TF � Knudsen 
(physical) expansion
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Asymptotic Analysis

LBM Asymptotic Analysis = Taylor exp.+ Knudsen exp. !!

Lattice Boltzmann Method

� This allows to estimate the LBM deviations from equilibrium
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Macroscopic Equations
� Once the deviations from local equilibrium are known, then 

it is possible to recover both the leading equations for the 
numerical solution p0 and u0, as well as the leading 
equations for the numerical error (Asinari & Ohwada, 2007)

Lattice Boltzmann Method
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Comments on Recovered Equations

� The LBM scheme can be used as a solver of ICNS with 
second order accuracy in space and first order 
accuracy in time (due to the adopted scaling) 

� Concerning the continuity equation, the discussed 
example of LBM scheme for incompressible Navier–
Stokes system of equations shares many features with 
the artificial compressibility method (Chorin method)

� In the momentum equation, high–order spatial 
gradients appear, which substantially modify the 
stability region of the numerical scheme � these terms 
mix together numerical and kinetic effects 

Lattice Boltzmann Method
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The (True) Miracle !!

� It is possible to derive the operative equations 
expressed in terms of primitive variables � it is enough 
to drop out the Taylor expansion

� The macroscopic equations that we get are identical to 
those recovered by LBM scheme (!!) � only the 
numerical values of the coefficients are different �
concerning the deviations from equilibrium...

Lattice Boltzmann Method
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Simplified Kinetic 
Model Equations for 

Single–phase Mixtures

Single–phase Mixtures
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Preliminary Snapshot

� There is considerably more latitude in the choice of a 
linearization procedure in the case of a mixture than for 
a pure gas (Stewart Harris, 1971)…

Single–phase Mixtures
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Consistency for BGK-Type Models

� Basic consistency constraints (Aoki et al., 2002) in 
the design of simplified kinetic models for mixture 
modeling (LB model):
1. the ‘‘Indifferentiability Principle’’ holds (??);
2. the same relaxation equations for momentum and 

temperature derived by means of the full 
Boltzmann equations hold (~OK);

3. the equilibrium distributions are Maxwellians with 
common velocities and internal energies (~OK);

4. the non-negativity of densities is satisfied (NO);
5. the H theorem holds (NO).

Single–phase Mixtures
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Indifferentiability Principle

� The Indifferentiability Principle (dos Santos et al.,
1989) prescribes that, if a BGK-like equation for each 
species is assumed, this set of equations should 
reduce to a single BGK-like equation, when 
mechanically identical components are considered
(microscopic formulation, µIP)

� This essentially means that, when all the species are 
identical, one should recover at macroscopic levels 
the equations governing the single component gas 
dynamics (macroscopic formulation, MIP)

� This property is satisfied by the bilinearity of the 
collision operator in the full Boltzmann equations

Single–phase Mixtures
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MRT Corrected Hamel Model
� Cross collisions are described by an independent BGK–

like  collisional operator (similar to self collisions) �
theoretical background given by Hamel model (Asinari, 
2005) � it does not satisfy MIP

� In the MRT Corrected Hamel model (Asinari, 2006), it is 
possible to tune independently the kinematic viscosity ν
and the diffusion coefficient D

Single–phase Mixtures
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Consistency at Macroscopic Level: MIP
� MIP: summing the governing equations for the single 

species should yield the mixture equations governing the 
total density and the barycentric velocity

� Clearly MIP ⊂ µIP � In fact the macroscopic formulation 
of the Indifferentiability Principle refers only to the 
hydrodynamic moments

Single–phase Mixtures
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Simple Test Case: Maxwell-Stefan Model
� Baroclinic back coupling

induces an additional drag 
effect

� Small concentration 
overshoots driven by fast 
perturbations appear

Single–phase Mixtures
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(Finally) Applications !!

Applications
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� “Virginia Tech” (VA, U.S.A.): SYSTEM – X, 1100 
Apple XServe G5 dual processor nodes (2200 
CPUs, 2.3 GHz, 4 GB RAM, 80 GB HD), 
Mellanox switches and Cisco Gigabit Ethernet, 
the fastest supercomputer at any academic 
institution in the world with 12.25 Teraflops
(“Top500 Data” for 2004)

� “Politecnico di Torino” (Italy): ClusterLinux,
scalable grid computing facility, currently 100 
Pentium single processor nodes (100 CPUs, 2.8 
GHz, 512 MB RAM, 40 GB HD), LAN 100 
Megabit Ethernet

Cluster Facilities

Applications
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Scaling Performances

Applications
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Application 1:
Reactive Mixtures in Solid 
Oxide Fuel Cells (SOFC)

Applications: SOFC
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Application: Solid Oxide Fuel Cells

1/2O2

H2 H2 O

2e- ����

���� 2e-

Three–phase–boundaries
are the locations where the 
electro–chemical reactions 
take place � reactions at 
the wall induce a 
concentration driven flow

����1/2O2-���� 2e-
�� �� �� ��H2 H2O

Applications: SOFC
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Reconstructed Domain by Granulometry

Applications: SOFC

ENEA – Brasimone, dr. Ciampichetti
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Two-point Statistics

�� 3D reconstructed image 3D reconstructed image 
obtained by obtained by two two –– point point 
statisticsstatistics (porosity + (porosity + 
autocorrelation) of 2D autocorrelation) of 2D 
pictures: kindly provided pictures: kindly provided 
by dr. by dr. B.V. KasulaB.V. Kasula
(Virginia Tech, USA) (Virginia Tech, USA) 
using using IMAGOIMAGO ®® softwaresoftware

Applications: SOFC
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�� Hexahedral mesh Hexahedral mesh 
��

��

��

��

Fluid Flow at the Bottom

Applications: SOFC
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eff

D
D
ετ =

Spatial Dependence of Tortuosity

Applications: SOFC
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Application 2:
Direct Numerical Simulation 

(DNS) of Decaying 
Homogenous Isotropic 

Turbulence (DHIT)

Applications: DNS
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Approaches to Mixing Modeling
� Mixing phenomena can be classified in different 

categories, according to the interaction between 
transported quantities and main flow dynamics 
(Dimotakis, 2005): 
� Passive Scalar (PS), meaning that such mixing does 

not couple back on the flow dynamics (density-
matched gasses, trace markers, …);

� Active Scalar (AS), meaning that such mixing is 
actively effecting the flow dynamics (baroclinic 
effect, concentration-driven viscous coupling…);

� Reactive Active Scalar (RAS), which means that 
such mixing produces changes in the nature of the 
fluids (combustion, thermonuclear, …).

Applications: DNS
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Asymptotic Power-Law Decay

κκκκ(t)/κκκκ(t0)~(t/ t0)-n

εεεε(t)/εεεε(t0)~(t/ t0)-n-1

Applications: DNS
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Dissipative Eddies

Applications: DNS
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Kolmogorov Length Scale

κκκκ(t)/κκκκ(t0)~(t/ t0)-n   ���� nκκκκ

εεεε(t)/εεεε(t0)~(t/ t0)-n-1 ���� nεεεε

Applications: DNS
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Baroclinic Effect on Decay Dynamics

� (1): E(k,0) = 0.038 k4 exp(-0.14 k2), k ∈ [1,4] on 633

� (2): E(k,0) = 0.608 k4 exp(-0.56 k2), k ∈ [2,4] on 633

� (3): E(k,0) = 0.494 k4 exp(-0.14 k2), k ∈ [1,8] on 1233

� As far as the low Mach number limit is concerned 
(values up to 0.1 have been considered), the baroclinic 
effect does not substantially change the decay (Asinari 
& Luo, 2007) 

Applications: DNS
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Finally, why Mesoscopic Methods ?

1. Even in the rougher solvers, the numerical error 
preserves some flavors of the high–order kinetic 
dynamics � this makes the error more predictable
because its physically based

2. By improving the accuracy of the numerical 
discretization, the truly kinetic effects appear, even 
though the considered equation is the same � it is 
possible to tune locally the discretization in order to 
realize hybrid (kinetic–fluidynamic) solvers

3. By using highly accurate numerical discretization, 
these schemes become economical kinetic solvers
(minimum number of microscopic velocities)
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