Contents

Preface
Part I
Overview

1. Financial Markets: Functions, Institutions, and Traded Assets
 1.1 What is the purpose of finance?
 1.2 Traded assets
 - 1.2.1 The balance sheet
 - 1.2.2 Assets vs. securities
 - 1.2.3 Equity
 - 1.2.4 Fixed income
 - 1.2.5 FOREX markets
 - 1.2.6 Derivatives
 1.3 Market participants and their roles
 - 1.3.1 Commercial vs. investment banks
 - 1.3.2 Investment funds and insurance companies
 - 1.3.3 Dealers and brokers
 - 1.3.4 Hedgers, speculators, and arbitrageurs
 1.4 Market structure and trading strategies
 - 1.4.1 Primary and secondary markets
 - 1.4.2 Over-the-counter vs. exchange-traded derivatives
 - 1.4.3 Auction mechanisms and the limit order book
 - 1.4.4 Buying on margin and leverage
 - 1.4.5 Short-selling
 1.5 Market indexes
Problems
Further reading
Bibliography

2. Basic Problems in Quantitative Finance
 2.1 Portfolio optimization
 - 2.1.1 Static portfolio optimization: Mean–variance efficiency
 - 2.1.2 Dynamic decision-making under uncertainty: A stylized consumption–saving model
 2.2 Risk measurement and management
CONTENTS

2.2.1 Sensitivity of asset prices to underlying risk factors 81
2.2.2 Risk measures in a non-normal world: Value-at-risk 84
2.2.3 Risk management: Introductory hedging examples 93
2.2.4 Financial vs. nonfinancial risk factors 100
2.3 The no-arbitrage principle in asset pricing 102
 2.3.1 Why do we need asset pricing models? 103
 2.3.2 Arbitrage strategies 104
 2.3.3 Pricing by no-arbitrage 108
 2.3.4 Option pricing in a binomial model 112
 2.3.5 The limitations of the no-arbitrage principle 116
2.4 The mathematics of arbitrage 117
 2.4.1 Linearity of the pricing functional and law of one price 119
 2.4.2 Dominant strategies 120
 2.4.3 No-arbitrage principle and risk-neutral measures 125
S2.1 Multiobjective optimization 129
S2.2 Summary of LP duality 133
Problems 137
Further reading 139
Bibliography 139

Part II
Fixed-income assets

3 Elementary Theory of Interest Rates 143
 3.1 The time value of money: Shifting money forward in time 146
 3.1.1 Simple vs. compounded rates 147
 3.1.2 Quoted vs. effective rates: Compounding frequencies 150
 3.2 The time value of money: Shifting money backward in time 153
 3.2.1 Discount factors and pricing a zero-coupon bond 154
 3.2.2 Discount factors vs. interest rates 158
 3.3 Nominal vs. real interest rates 161
 3.4 The term structure of interest rates 163
 3.5 Elementary bond pricing 165
 3.5.1 Pricing coupon-bearing bonds 165
 3.5.2 From bond prices to term structures, and vice versa 168
 3.5.3 What is a risk-free rate, anyway? 171
 3.5.4 Yield-to-maturity 174
 3.5.5 Interest rate risk 180
 3.5.6 Pricing floating rate bonds 188
 3.6 A digression: Elementary investment analysis 190
 3.6.1 Net present value 191
 3.6.2 Internal rate of return 192
3.6.3 Real options 193
3.7 Spot vs. forward interest rates 193
 3.7.1 The forward and the spot rate curves 197
 3.7.2 Discretely compounded forward rates 197
 3.7.3 Forward discount factors 198
 3.7.4 The expectation hypothesis 199
 3.7.5 A word of caution: Model risk and hidden assumptions 202
S3.1 Proof of Equation (3.42) 203
Problems 203
Further reading 205
Bibliography 205

4 Forward Rate Agreements, Interest Rate Futures, and Vanilla Swaps 207
 4.1 LIBOR and EURIBOR rates 208
 4.2 Forward rate agreements 209
 4.2.1 A hedging view of forward rates 210
 4.2.2 FRAs as bond trades 214
 4.2.3 A numerical example 215
 4.3 Eurodollar futures 216
 4.4 Vanilla interest rate swaps 220
 4.4.1 Swap valuation: Approach 1 221
 4.4.2 Swap valuation: Approach 2 223
 4.4.3 The swap curve and the term structure 225
Problems 226
Further reading 226
Bibliography 226

5 Fixed-Income Markets 229
 5.1 Day count conventions 230
 5.2 Bond markets 231
 5.2.1 Bond credit ratings 233
 5.2.2 Quoting bond prices 233
 5.2.3 Bonds with embedded options 235
 5.3 Interest rate derivatives 237
 5.3.1 Swap markets 237
 5.3.2 Bond futures and options 238
 5.4 The repo market and other money market instruments 239
 5.5 Securitization 240
Problems 244
Further reading 244
Bibliography 244

6 Interest Rate Risk Management 247
 6.1 Duration as a first-order sensitivity measure 248
 6.1.1 Duration of fixed-coupon bonds 250
CONTENTS

6.1.2 Duration of a floater 254
6.1.3 Dollar duration and interest rate swaps 255
6.2 Further interpretations of duration 257
 6.2.1 Duration and investment horizons 258
 6.2.2 Duration and yield volatility 260
 6.2.3 Duration and quantile-based risk measures 260
6.3 Classical duration-based immunization 261
 6.3.1 Cash flow matching 262
 6.3.2 Duration matching 263
6.4 Immunization by interest rate derivatives 265
 6.4.1 Using interest rate swaps in asset–liability management 266
6.5 A second-order refinement: Convexity 266
6.6 Multifactor models in interest rate risk management 269

Problems 271
Further reading 272
Bibliography 273

Part III
Equity portfolios

7 Decision-Making under Uncertainty: The Static Case 277
 7.1 Introductory examples 278
 7.2 Should we just consider expected values of returns and monetary outcomes? 282
 7.2.1 Formalizing static decision-making under uncertainty 283
 7.2.2 The flaw of averages 284
 7.3 A conceptual tool: The utility function 288
 7.3.1 A few standard utility functions 293
 7.3.2 Limitations of utility functions 297
 7.4 Mean–risk models 299
 7.4.1 Coherent risk measures 300
 7.4.2 Standard deviation and variance as risk measures 302
 7.4.3 Quantile-based risk measures: V@R and CV@R 303
 7.4.4 Formulation of mean–risk models 309
 7.5 Stochastic dominance 310
S7.1 Theorem proofs 314
 S7.1.1 Proof of Theorem 7.2 314
 S7.1.2 Proof of Theorem 7.4 315
Problems 315
Further reading 317
Bibliography 317

8 Mean–Variance Efficient Portfolios 319
 8.1 Risk aversion and capital allocation to risky assets 320
CONTENTS

8.1.1 The role of risk aversion 324
8.2 The mean–variance efficient frontier with risky assets 325
 8.2.1 Diversification and portfolio risk 325
 8.2.2 The efficient frontier in the case of two risky assets 326
 8.2.3 The efficient frontier in the case of \(n \) risky assets 329
8.3 Mean–variance efficiency with a risk-free asset: The separation property 332
8.4 Maximizing the Sharpe ratio 337
 8.4.1 Technical issues in Sharpe ratio maximization 340
8.5 Mean–variance efficiency vs. expected utility 341
8.6 Instability in mean–variance portfolio optimization 343
S8.1 The attainable set for two risky assets is a hyperbola 345
S8.2 Explicit solution of mean–variance optimization in matrix form 346
Problems 348
Further reading 349
Bibliography 349

9 Factor Models 351
 9.1 Statistical issues in mean–variance portfolio optimization 352
 9.2 The single-index model 353
 9.2.1 Estimating a factor model 354
 9.2.2 Portfolio optimization within the single-index model 356
 9.3 The Treynor–Black model 358
 9.3.1 A top-down/bottom-up optimization procedure 362
 9.4 Multifactor models 365
 9.5 Factor models in practice 367
S9.1 Proof of Equation (9.17) 368
Problems 369
Further reading 371
Bibliography 371

10 Equilibrium Models: CAPM and APT 373
 10.1 What is an equilibrium model? 374
 10.2 The capital asset pricing model 375
 10.2.1 Proof of the CAPM formula 377
 10.2.2 Interpreting CAPM 378
 10.2.3 CAPM as a pricing formula and its practical relevance 380
 10.3 The Black–Litterman portfolio optimization model 381
 10.3.1 Black–Litterman model: The role of CAPM and Bayesian Statistics 382
 10.3.2 Black-Litterman model: A numerical example 386
 10.4 Arbitrage pricing theory 388
 10.4.1 The intuition 389
 10.4.2 A not-so-rigorous proof of APT 391
 10.4.3 APT for Well-Diversified Portfolios 392
 10.4.4 APT for Individual Assets 393
10.4.5 Interpreting and using APT 394
10.5 The behavioral critique 398
 10.5.1 The efficient market hypothesis 400
 10.5.2 The psychology of choice by agents with limited rationality 400
 10.5.3 Prospect theory: The aversion to sure loss 401
S10.1 Bayesian statistics 404
 S10.1.1 Bayesian estimation 405
 S10.1.2 Bayesian learning in coin flipping 407
 S10.1.3 The expected value of a normal distribution 408
Problems 411
Further reading 413
Bibliography 413

Part IV Derivatives

11 Modeling Dynamic Uncertainty 417
 11.1 Stochastic processes 420
 11.1.1 Introductory examples 422
 11.1.2 Marginals do not tell the whole story 428
 11.1.3 Modeling information: Filtration generated by a stochastic process 430
 11.1.4 Markov processes 433
 11.1.5 Martingales 436
 11.2 Stochastic processes in continuous time 438
 11.2.1 A fundamental building block: Standard Wiener process 438
 11.2.2 A generalization: Lévy processes 440
 11.3 Stochastic differential equations 441
 11.3.1 A deterministic differential equation: The bank account process 442
 11.3.2 The generalized Wiener process 443
 11.3.3 Geometric Brownian motion and Itô processes 445
 11.4 Stochastic integration and Itô’s lemma 447
 11.4.1 A digression: Riemann and Riemann–Stieltjes integrals 447
 11.4.2 Stochastic integral in the sense of Itô 448
 11.4.3 Itô’s lemma 453
 11.5 Stochastic processes in financial modeling 457
 11.5.1 Geometric Brownian motion 457
 11.5.2 Generalizations 460
 11.6 Sample path generation 462
 11.6.1 Monte Carlo sampling 463
 11.6.2 Scenario trees 465
S11.1 Probability spaces, measurability, and information 468
13.5.4 Vega 552
13.6 The role of volatility 553
 13.6.1 The implied volatility surface 553
 13.6.2 The impact of volatility on barrier options 555
13.7 Options on assets providing income 556
 13.7.1 Index options 557
 13.7.2 Currency options 558
 13.7.3 Futures options 559
 13.7.4 The mechanics of futures options 559
 13.7.5 A binomial view of futures options 560
 13.7.6 A risk-neutral view of futures options 562
13.8 Portfolio strategies based on options 562
 13.8.1 Portfolio insurance and the Black Monday of 1987 563
 13.8.2 Volatility trading 564
 13.8.3 Dynamic vs. Static hedging 566
13.9 Option pricing by numerical methods 569
Problems 570
Further reading 575
Bibliography 576

14 Option Pricing: Incomplete Markets 579
 14.1 A PDE approach to incomplete markets 581
 14.1.1 Pricing a zero-coupon bond in a driftless world 584
 14.2 Pricing by short-rate models 588
 14.2.1 The Vasicek short-rate model 589
 14.2.2 The Cox–Ingersoll–Ross short-rate model 594
 14.3 A martingale approach to incomplete markets 595
 14.3.1 An informal approach to martingale equivalent measures 598
 14.3.2 Choice of numeraire: The bank account 600
 14.3.3 Choice of numeraire: The zero-coupon bond 601
 14.3.4 Pricing options with stochastic interest rates: Black’s model 602
 14.3.5 Extensions 603
 14.4 Issues in model calibration 603
 14.4.1 Bias–variance tradeoff and regularized least-squares 604
 14.4.2 Financial model calibration 609
Further reading 612
Bibliography 612

Part V
Advanced optimization models

15 Optimization Model Building 617
 15.1 Classification of optimization models 618
<table>
<thead>
<tr>
<th>15.2</th>
<th>Linear programming 625</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.2.1</td>
<td>Cash flow matching 627</td>
</tr>
<tr>
<td>15.3</td>
<td>Quadratic programming 628</td>
</tr>
<tr>
<td>15.3.1</td>
<td>Maximizing the Sharpe ratio 629</td>
</tr>
<tr>
<td>15.3.2</td>
<td>Quadratically constrained quadratic programming 631</td>
</tr>
<tr>
<td>15.4</td>
<td>Integer programming 632</td>
</tr>
<tr>
<td>15.4.1</td>
<td>A MIQP model to minimize TEV under a cardinality constraint 634</td>
</tr>
<tr>
<td>15.4.2</td>
<td>Good MILP model building: The role of tight model formulations 636</td>
</tr>
<tr>
<td>15.5</td>
<td>Conic optimization 642</td>
</tr>
<tr>
<td>15.5.1</td>
<td>Convex cones 644</td>
</tr>
<tr>
<td>15.5.2</td>
<td>Second-order cone programming 650</td>
</tr>
<tr>
<td>15.5.3</td>
<td>Semidefinite programming 653</td>
</tr>
<tr>
<td>15.6</td>
<td>Stochastic optimization 655</td>
</tr>
<tr>
<td>15.6.1</td>
<td>Chance-constrained LP models 656</td>
</tr>
<tr>
<td>15.6.2</td>
<td>Two-stage stochastic linear programming with recourse 657</td>
</tr>
<tr>
<td>15.6.3</td>
<td>Multistage stochastic linear programming with recourse 663</td>
</tr>
<tr>
<td>15.6.4</td>
<td>Scenario generation and stability in stochastic programming 670</td>
</tr>
<tr>
<td>15.7</td>
<td>Stochastic dynamic programming 675</td>
</tr>
<tr>
<td>15.7.1</td>
<td>The dynamic programming principle 676</td>
</tr>
<tr>
<td>15.7.2</td>
<td>Solving Bellman’s equation: The three curses of dimensionality 679</td>
</tr>
<tr>
<td>15.7.3</td>
<td>Application to pricing options with early exercise features 680</td>
</tr>
<tr>
<td>15.8</td>
<td>Decision rules for multistage SLPs 682</td>
</tr>
<tr>
<td>15.9</td>
<td>Worst-case robust models 686</td>
</tr>
<tr>
<td>15.9.1</td>
<td>Uncertain LPs: Polyhedral uncertainty 689</td>
</tr>
<tr>
<td>15.9.2</td>
<td>Uncertain LPs: Ellipsoidal uncertainty 690</td>
</tr>
<tr>
<td>15.10</td>
<td>Nonlinear programming models in finance 691</td>
</tr>
<tr>
<td>15.10.1</td>
<td>Fixed-mix asset allocation 692</td>
</tr>
</tbody>
</table>

Problems 693
Further reading 695
Bibliography 696

<table>
<thead>
<tr>
<th>16</th>
<th>Optimization Model Solving 699</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1</td>
<td>Local methods for nonlinear programming 700</td>
</tr>
<tr>
<td>16.1.1</td>
<td>Unconstrained nonlinear programming 700</td>
</tr>
<tr>
<td>16.1.2</td>
<td>Penalty function methods 703</td>
</tr>
<tr>
<td>16.1.3</td>
<td>Lagrange multipliers and constraint qualification conditions 707</td>
</tr>
<tr>
<td>16.1.4</td>
<td>Duality theory 713</td>
</tr>
<tr>
<td>16.2</td>
<td>Global methods for nonlinear programming 715</td>
</tr>
</tbody>
</table>
16.2.1 Genetic algorithms 716
16.2.2 Particle swarm optimization 717
16.3 Linear programming 719
 16.3.1 The simplex method 720
 16.3.2 Duality in linear programming 723
 16.3.3 Interior-point methods: Primal-dual barrier method for LP 726
16.4 Conic duality and interior-point methods 728
 16.4.1 Conic duality 728
 16.4.2 Interior-point methods for SOCP and SDP 731
16.5 Branch-and-bound methods for integer programming 732
 16.5.1 A matheuristic approach: Fix-and-relax 735
16.6 Optimization software 736
 16.6.1 Solvers 737
 16.6.2 Interfacing through imperative programming languages 738
 16.6.3 Interfacing through non-imperative algebraic languages 738
 16.6.4 Additional interfaces 739
Problems 739
Further reading 740
Bibliography 741

Index 743
This book arises from slides and lecture notes that I have used over the years in my courses Financial Markets and Instruments and Financial Engineering, which were offered at Politecnico di Torino to graduate students in Mathematical Engineering. Given the audience, the treatment is naturally geared toward a mathematically inclined reader. Nevertheless, the required prerequisites are relatively modest, and any student in engineering, mathematics, and statistics should be well-equipped to tackle the contents of this introductory book. The book should also be of interest to students in economics, as well as junior practitioners with a suitable quantitative background.

We begin with quite elementary concepts, and material is introduced progressively, always paying due attention to the practical side of things. Mathematical modeling is an art of selective simplification, which must be supported by intuition building, as well as by a healthy dose of skepticism. This is the aim of remarks, counterexamples, and financial horror stories that the book is interspersed with. Occasionally, we also touch upon current research topics.

Book structure

The book is organized into five parts.

1. **Part One, Overview**, consists of two chapters. Chapter 1 aims at getting unfamiliar readers acquainted with the role and structure of financial markets, the main classes of traded assets (equity, fixed income, and derivatives), and the main types of market participants, both in terms of institutions (e.g., investment banks and pension funds) and roles (e.g., speculators, hedgers, and arbitrageurs). We try to give a practical flavor that is essential to students of quantitative disciplines, setting the stage for the application of quantitative models. Chapter 2 overviews the basic problems in finance, like asset allocation, pricing, and risk management, which may be tackled by quantitative models. We also introduce the fundamental concepts related to arbitrage theory, including market completeness and risk-neutral measures, in a simple static and discrete setting.

2. **Part Two, Fixed-income assets**, consists of four chapters and introduces the simplest assets depending on interest rates, starting with plain bonds. The fundamental concepts of interest rate modeling, including the term

1In case of need, the mathematical prerequisites are covered in my other book: Quantitative Methods: An Introduction for Business Management. Wiley, 2011.
structure and forward rates, as well as bond pricing, are covered in Chapter 3. The simplest interest rate derivatives (forward rate agreements and vanilla swaps) are covered in Chapter 4, whereas Chapter 5 aims at providing the reader with a flavor of real-life markets, where details like day count and quoting conventions are relevant. Chapter 6 concludes this part by showing how quantitative models may be used to manage interest rate risk. In this part, we do not consider interest rate options, which require a stronger mathematical background and are discussed later.

3. Part Three, **Equity portfolios**, consists of four chapters, where we discuss equity markets and portfolios of stock shares. Actually, this is not the largest financial market, but it is arguably the kind of market that the layman is more familiar with. Chapter 7 is a bit more theoretical and lays down the foundations of static decision-making under uncertainty. By static, we mean that we make one decision and then we wait for its consequences, finger crossed. Multistage decision models are discussed later. In this chapter, we also introduce the basics of risk aversion and risk measurement. Chapter 8 is quite classical and covers traditional mean–variance portfolio optimization. The impact of statistical estimation issues on portfolio management motivates the introduction of factor models, which are the subject of Chapter 9. Finally, in Chapter 10, we discuss equilibrium models in their simplest forms, the capital asset pricing model (CAPM), which is related to a single-index factor model, and arbitrage pricing theory (APT), which is related to a multifactor model. We do not discuss further developments in equilibrium models, but we hint at some criticism based on behavioral finance.

4. Part Four, **Derivatives**, includes four chapters. We discuss dynamic uncertainty models in Chapter 11, which is more challenging than previous chapters, as we have to introduce the necessary foundations of option pricing models, namely, stochastic differential equations and stochastic integrals. Chapter 12 describes simple forward and futures contracts, extending concepts that were introduced in Chapter 4, when dealing with forward and futures interest rates. Chapter 13 covers option pricing in the case of complete markets, including the celebrated and controversial Black–Scholes–Merton formula, whereas Chapter 14 extends the basic concepts to the more realistic setting of incomplete markets.

5. Part Five, **Advanced optimization models**, is probably the less standard part of this book, when compared to typical textbooks on financial markets. We deal with optimization model building, in Chapter 15, and optimization model solving, in Chapter 16. Actually, it is difficult to draw a sharp line between model building and model solving, but it is a fact of life that advanced software is available for solving quite sophisticated models, and the average user does not need a very deep knowledge of the involved algorithms, whereas she must be able to build a model. This is the motivation for separating the two chapters.
 Needless to say, the choice of which topics should be included or omitted is debatable and based on authors’ personal bias, not to mention the need to keep a book size within a sensible limit. With respect to introductory textbooks on financial markets, there is a deeper treatment of derivative models. On the other hand, more challenging financial engineering textbooks do not cover, e.g., equilibrium models and portfolio optimization. We aim at an intermediate treatment, whose main limitations include the following:

- We only hint at criticism put forward by behavioral finance and do not cover market microstructure and algorithmic trading strategies.
- From a mathematical viewpoint, we pursue an intuitive treatment of financial engineering models, as well as a simplified coverage of the related tools of stochastic calculus. We do not rely on rigorous arguments involving self-financing strategies, martingale representation theorems, or change of probability measures.
- From a financial viewpoint, by far, the most significant omission concerns credit risk and credit derivatives. Counterparty and liquidity risk play a prominent role in post-Lehman Brothers financial markets and, as a consequence of the credit crunch started in 2007, new concepts like CVA, DVA, and FVA have been introduced. This is still a field in flux, and the matter is arguably not quite assessed yet.
- Another major omission is econometric time series models.

Adequate references on these topics are provided for the benefit of the interested readers.

My choices are also influenced by the kind of students this book is mainly aimed at. The coverage of optimization models and methods is deeper than usual, and I try to open readers’ critical eye by carefully crafted examples and counterexamples. I try to strike a satisfactory balance between the need to illustrate mathematics in action and the need to understand the real-life context, without which quantitative methods boil down to a solution in search of a problem (or a hammer looking for nails, if you prefer). I also do not disdain just a bit of repetition and redundancy, when it may be convenient to readers who wish to jump from chapter to chapter. More advanced sections, which may be safely skipped by readers, are referred to as supplements and their number is marked by an initial “S.”

In my Financial Engineering course, I also give some more information on numerical methods. The interested reader might refer to my other books:

Acknowledgements

In the past years, I have adopted the following textbooks (or earlier editions) in my courses. I have learned a lot from them, and they have definitely influenced the writing of this book:

Other specific acknowledgements are given in the text. I apologize in advance for any unintentional omission.

Additional material

Some end-of-chapter problems are included and fully worked solutions will be posted on a web page. My current URL is

- http://staff.polito.it/paolo.brandimarte/

A hopefully short list of errata will be posted there as well. One of the many corollaries of Murphy’s law states that my URL is going to change shortly after publication of the book. An up-to-date link will be maintained on the Wiley web page:

- http://www.wiley.com/

For comments, suggestions, and criticisms, all of which are quite welcome, my e-mail address is

- paolo.brandimarte@polito.it

Paolo Brandimarte

Turin, September 2017