$\begin{array}{ccc} Numerical & Methods \ in \\ Finance & and & Economics \end{array}$

A MATLAB-Based Introduction Second Edition

Paolo Brandimarte

A Wiley-Interscience Publication

JOHN WILEY & SONS, INC.

New York / Chichester / Weinheim / Brisbane / Singapore / Toronto

This book is dedicated to Commander Straker, Lieutenant Ellis, and all SHADO operatives. Thirty-five years ago they introduced me to the art of using both computers \underline{and} gut feelings to make decisions.

Contents

Pr	reface	to the Second Edition	xvii
Fr	om th	ne Preface to the First Edition	xxiii
$P\epsilon$	art I	Background	
1	Mot	ivation	3
	1.1	Need for numerical methods	4
	1.2	Need for numerical computing environments: why MATLAB?	9
	1.3	Need for theory	13
		For further reading	20
		References	21
2	Fine	ancial Theory	23
	2.1	Modeling uncertainty	25
	2.2	Basic financial assets and related issues	30
		2.2.1 Bonds	30
		2.2.2 $Stocks$	31
			vii

	2.2.3	Derivatives	33
	2.2.4	Asset pricing, portfolio optimization, and risk management	37
2.3		income securities: analysis and portfolio nization	42
	2.3.1	Basic theory of interest rates: compounding and present value	42
	2.3.2	Basic pricing of fixed-income securities	49
	2.3.3	Interest rate sensitivity and bond portfolio immunization	57
	2.3.4	MATLAB functions to deal with fixed- income securities	60
	2.3.5	Critique	64
2.4	Stock	portfolio optimization	65
	2.4.1	Utility theory	66
	2.4.2	Mean-variance portfolio optimization	73
	2.4.3	MATLAB functions to deal with mean-	
		variance portfolio optimization	74
	2.4.4	Critical remarks	81
	2.4.5	Alternative risk measures: Value at Risk	0.0
0.5	3.6 1.1	and quantile-based measures	83
2.5		ing the dynamics of asset prices	88
	2.5.1	From discrete to continuous time	88
	2.5.2	Standard Wiener process	91
	2.5.3	Stochastic integrals and stochastic differential equations	93
	2.5.4	Ito's lemma	96
	•	Generalizations	100
2.6		atives pricing	102
~~~	2.6.1	Simple binomial model for option pricing	105
	2.6.2	, , ,	108
	2.6.3	Risk-neutral expectation and Feynman-	
		Kač formula	111
	2.6.4	Black-Scholes model in MATLAB	113
	2.6.5	A few remarks on Black-Scholes formula	116
	2.6.6	Pricing American options	117
2.7	Introd	uction to exotic and path-dependent options	118
	2.7.1	Barrier options	119
	2.7.2	Asian options	123
	2.7.3	$Lookback\ options$	123

CONTENTS	ix
----------	----

	2.8	An or	utlook on interest-rate derivatives	124
		2.8.1	Modeling interest-rate dynamics	126
		2.8.2	Incomplete markets and the market price	
			of risk	127
			erther reading	130
		Refere	ences	131
Pa	art II	$Num\epsilon$	erical Methods	
3	Basi	cs of $N$	Jumerical Analysis	137
	3.1	-	re of numerical computation	138
		3.1.1	Number representation, rounding, and	
			truncation	138
		3.1.2	Error propagation, conditioning, and	
			instability	141
		3.1.3	Order of convergence and computational	110
	മെ	Calmin	complexity	143
	3.2		ng systems of linear equations	145
		3.2.1 3.2.2	Vector and matrix norms Condition number for a matrix	146 149
		3.2.2	Direct methods for solving systems of	149
		0.2.0	linear equations	154
		3.2.4	Tridiagonal matrices	159
		3.2.5	Iterative methods for solving systems of	
		01,010	linear equations	160
	3.3	Funct	tion approximation and interpolation	173
		3.3.1	Ad hoc approximation	177
		3.3.2	$Elementary\ polynomial\ interpolation$	179
		3.3.3	Interpolation by cubic splines	183
		3.3.4	Theory of function approximation by least	
			squares	188
	3.4		ng non-linear equations	191
		3.4.1		192
		3.4.2		195
		3.4.3	Optimization-based solution of non-linear equations	198
		3.4.4	Putting two things together: solving a functional equation by a collocation	
			method	204

#### x CONTENTS

		3.4.5	$Homotopy\ continuation\ methods$	204
		For $fu$	rther reading	206
		Refere	nces	207
/ +	Nun	nerical .	Integration: Deterministic and Monte Car	lo
	Met			209
	4.1	Deter	ministic quadrature	211
		4.1.1	$Classical\ interpolatory\ formulas$	212
		4.1.2	$Gaussian\ quadrature$	214
		4.1.3	Extensions and product rules	219
		4.1.4	Numerical integration in MATLAB	220
	4.2	Monte	e Carlo integration	221
	4.3	Gener	rating pseudorandom variates	225
		4.3.1	Generating pseudorandom numbers	226
		4.3.2	Inverse transform method	230
		4.3.3	$Acceptance-rejection \ method$	233
		4.3.4	Generating normal variates by the polar	235
	, ,	Catting	approach	
	4.4		g the number of replications nce reduction techniques	240
	4.5		$Antithetic\ sampling$	244
		•	1 0	244 251
		•	Control varieties	251 $252$
		•	Control variates	
			Variance reduction by conditioning	255
			Stratified sampling	260
	16	-	Importance sampling	261 267
	4.6	•	-Monte Carlo simulation	207
		4.6.1	Generating Halton low-discrepancy sequences	269
		4.6.2	Generating Sobol low-discrepancy	200
		4.0.2	sequences	281
		For fu	rther reading	286
		Refere		287
5	Fini	te Diffe	rence Methods for Partial Differential	
,		ations	Tence Memous joi i artiui Differentiul	289
	$\frac{-1}{5.1}$		luction and classification of PDEs	290
	5.2		rical solution by finite difference methods	293
		5.2.1	Bad example of a finite difference scheme	295

		5.2.2	Instability in a finite difference scheme	297
	5.3	Explic	it and implicit methods for the heat	
		equati	on	303
		5.3.1	Solving the heat equation by an explicit	
			method	304
		5.3.2	Solving the heat equation by a fully	200
		<b>r</b> o o	implicit method	309
		5.3.3	Solving the heat equation by the Crank- Nicolson method	313
	5.4	Solvin	g the bidimensional heat equation	314
	$5.\overline{5}$		rgence, consistency, and stability	320
			rther reading	324
		Referen	· · · · · · · · · · · · · · · · · · ·	324
		J		,
6	Conv	vex Opt	imization	327
	6.1	-	fication of optimization problems	328
		6.1.1	Finite- vs. infinite-dimensional problems	328
		6.1.2	Unconstrained vs. constrained problems	333
		6.1.3	Convex vs. non-convex problems	333
		6.1.4	Linear vs. non-linear problems	335
		•	Continuous vs. discrete problems	337
		6.1.6	Deterministic vs. stochastic problems	337
	6.2	Nume	rical methods for unconstrained optimization	338
		6.2.1	Steepest descent method	339
		6.2.2	The subgradient method	340
		6.2.3	Newton and the trust region methods	341
		6.2.4	No-derivatives algorithms: quasi-Newton	•
		·	method and simplex search	342
		6.2.5	Unconstrained optimization in MATLAB	343
	6.3	Metho	ds for constrained optimization	346
		6.3.1	Penalty function approach	346
		6.3.2	$Kuhn-Tucker\ conditions$	351
		6.3.3	Duality theory	357
		6.3.4	Kelley's cutting plane algorithm	363
		6.3.5	Active set method	365
	6.4	Linear	r $programming$	366
		6.4.1	Geometric and algebraic features of linear	
			programming	368
		6.4.2	Simplex method	<i>370</i>

		6.4.3 Duality in linear programming	372
		6.4.4 Interior point methods	375
	6.5	Constrained optimization in MATLAB	377
		6.5.1 Linear programming in MATLAB	378
		6.5.2 A trivial LP model for bond portfolio	
		management	380
		6.5.3 Using quadratic programming to trace	
		efficient portfolio frontier	383
		6.5.4 Non-linear programming in MATLAB	385
	6.6	Integrating simulation and optimization	387
	S6.1	Elements of convex analysis	389
		S6.1.1 Convexity in optimization	389
		S6.1.2 Convex polyhedra and polytopes	393
		For further reading	396
		References	397
Da	t III	Principa Equity Ontions	
Гα	71 111	Pricing Equity Options	
7	Optic	on Pricing by Binomial and Trinomial Lattices	401
	7.1	Pricing by binomial lattices	402
		7.1.1 Calibrating a binomial lattice	403
		7.1.2 Putting two things together: pricing a pay-later option	410
		7.1.3 An improved implementation of binomial	
		lattices	411
	7.2	Pricing American options by binomial lattices	414
	7.3	Pricing bidimensional options by binomial lattices	417
	7.4	Pricing by trinomial lattices	422
	7.5	Summary	425
		For further reading	426
		References	426
8	Onti	on Pricing by Monte Carlo Methods	429
U	8.1	Path generation	430
	0.1	8.1.1 Simulating geometric Brownian motion	431
		8.1.2 Simulating hedging strategies	435
		8.1.3 Brownian bridge	439 439
	Q O	Pricing an exchange option	439 443
	8.2	1 ricing an exchange option	443

	CONTENTS	xiii
8.3	Pricing a down-and-out put option	446
	8.3.1 Crude Monte Carlo	446
	8.3.2 Conditional Monte Carlo	447
	8.3.3 Importance sampling	450
8.4	Pricing an arithmetic average Asian option	454
	8.4.1 Control variates	455
	8.4.2 Using Halton sequences	458
8.5	Estimating Greeks by Monte Carlo sampling	468
	For further reading	472
	References	473
9 Opti	on Pricing by Finite Difference Methods	475
9.1	Applying finite difference methods to the Black– Scholes equation	475
9.2	Pricing a vanilla European option by an explicit	410
0.2	method	478
	9.2.1 Financial interpretation of the instability of the explicit method	481
9.3	Pricing a vanilla European option by a fully	·
0.7	implicit method	482
9.4	Pricing a barrier option by the Crank-Nicolson method	485
9.5	Dealing with American options	486
0.0	For further reading	491
	References	491
Part IV	Advanced Optimization Models and Methods	
10 Dun	amic Programming	495
	The shortest path problem	496
10.2		500
_ 5 - 7	10.2.1 The optimality principle and solving the functional equation	501
10.3	•	501
10.3	Solving stochastic decision problems by dynamic programming	504
10.4	American option pricing by Monte Carlo	
•	simulation	511
	10.4.1 A MATLAB implementation of the least	
	sauares approach	517

		10.4.2 Some remarks and alternative approaches	519
		For further reading	521
		References	522
11	Line	ar Stochastic Programming Models with Recourse	525
11	11.1	Linear stochastic programming models	526
	11.2	Multistage stochastic programming models for	020
	11.2	portfolio management	530
		11.2.1 Split-variable model formulation	532
		11.2.2 Compact model formulation	540
		11.2.3 Asset and liability management with transaction costs	544
	11.3	Scenario generation for multistage stochastic	
		programming	546
		11.3.1 Sampling for scenario tree generation	547
		11.3.2 Arbitrage free scenario generation	550
	11.4	L-shaped method for two-stage linear stochastic	
		programming	555
	11.5	A comparison with dynamic programming	558
		For further reading	559
		References	560
12	Non-	Convex Optimization	563
	12.1	Mixed-integer programming models	564
		12.1.1 Modeling with logical variables	565
		12.1.2 Mixed-integer portfolio optimization	
		models	571
	12.2	Fixed-mix model based on global optimization	576
	12.3	Branch and bound methods for non-convex optimization	578
		12.3.1 LP-based branch and bound for MILP models	584
	12.4	Heuristic methods for non-convex optimization	591
		For further reading	597
		References	598

### Part V Appendices

Appendi	x A Introduction to MATLAB Programming	603
A.1	$MATLAB\ environment$	603
A.2	MATLAB graphics	614
	MATLAB programming	616
Appendi	x B Refresher on Probability Theory and Statistics	623
B.1	Sample space, events, and probability	623
B.2	Random variables, expectation, and variance	625
	B.2.1 Common continuous random variables	628
B.3	Jointly distributed random variables	632
B.4	Independence, covariance, and conditional	
•	expectation	633
B.5	Parameter estimation	637
B.6	Linear regression	642
	For further reading	645
	References	645
Appendi	x C Introduction to AMPL	647
C.1	Running optimization models in AMPL	648
C.2	Mean variance efficient portfolios in AMPL	649
C.3	The knapsack model in AMPL	652
C.4	Cash flow matching	655
•	For further reading	655
	References	656
Index		657

### Preface to the Second Edition

After the publication of the first edition of the book, about five years ago, I have received a fair number of messages from readers, both students and practitioners, around the world. The recurring keyword, and the most important thing to me, was useful. The book had, and has, no ambition of being a very advanced research book. The basic motivation behind this second edition is the same behind the first one: providing the newcomer with an easy, but solid, entry point to computational finance, without too much sophisticated mathematics and avoiding the burden of difficult C++ code, also covering relatively non-standard optimization topics such as stochastic and integer programming. See also the excerpt from the preface to the first edition. However, there are a few new things here:

- a slightly revised title;
- completely revised organization of chapters;
- significantly increased number of pages.

The title mentions both Finance and Economics, rather than just Finance. To avoid any misunderstanding, it should be made quite clear that this is essentially a book for students and practitioners working in Finance. Nevertheless, it can be useful to Ph.D. students in Economics as well, as a complement to more specific and advanced textbooks. In the last four years, I have been giving a course on numerical methods within a Ph.D. program in Economics, and I typically use other available excellent textbooks covering advanced algorithms¹ or offering well-thought MATLAB toolboxes² which can be used to solve a wide array of problems in Economics. From the point of view of my students in such a course, the present book has many deficiencies: For instance, it does not cover ordinary differential equations and it does not deal with computing equilibria or rational expectations models; furthermore, practically all of the examples deal with option pricing or portfolio management. Nevertheless, given my experience, I believe that they can benefit from a more detailed and elementary treatment of the basics, supported by simple examples. Moreover, I believe that students in Economics should also get

 $^{^{1}}$ K.L. Judd, Numerical Methods in Economics, MIT Press, 1998.

²M.J. Miranda and P.L. Fackler, Applied Computational Economics and Finance, MIT Press, 2002.

at least acquainted with topics from Operations Research, such as stochastic programming and integer programming. Hence, the "and Economics" part of the title suggests potential use of the book as a complement, and by no means as a substitute.

The book has been reorganized in order to ease its use within standard courses on numerical methods for financial engineering. In the first edition, optimization applications were dealt with extensively, in chapters preceding those related to option pricing. This was a result of my personal background, which is mainly Computer Science and Operations Research, but it did not fit very well with the common use of a book on computational finance. In the present edition, advanced optimization applications are left to the last chapters, so they do not get into the way of most financial engineering students. The book consists of twelve chapters and three appendices.

- Chapter 1 provides the reader with motivations for the use of numerical methods, and for the use of MATLAB as well.
- Chapter 2 is an overview of financial theory. It is aimed at students in Engineering, Mathematics, or Operations Research, who may be interested in the book, but have little or no financial background.
- Chapter 3 is devoted to the basics of classical numerical methods. In some sense, this is complementary to chapter 2 and it is aimed at people with a background in Economics, who typically are not exposed to numerical analysis. To keep the book to a reasonable size, a few classical topics were omitted because of their limited role in the following chapters. In particular, I do not cover computation of eigenvalues and eigenvectors and ordinary differential equations.
- Chapter 4 is devoted to numerical integration, both by quadrature formulas and Monte Carlo methods. In the first edition, quadrature formulas were dealt with in the chapter on numerical analysis, and Monte Carlo was the subject of a separate chapter. I preferred giving a unified treatment of these two approaches, as this helps understanding their respective strengths and weaknesses, both for option pricing and scenario generation in stochastic optimization. Regarding Monte Carlo as a tool for integration rather than simulation is also helpful to properly frame the application of low-discrepancy sequences (which is also known under the more appealing name of quasi-Monte Carlo simulation). There is some new material on Gaussian quadrature, an extensive treatment of variance reduction methods, and some application to vanilla options to illustrate simple but concrete applications immediately, leaving more complex cases to chapter 8.
- Chapter 5 deals with basic finite difference schemes for partial differential equations. The main theme is solving the heat equation, which

is the prototype example of the class of parabolic equations, to which Black—Scholes equation belongs. In this simplified framework we may understand the difference between explicit and implicit methods, as well as the issues related to convergence and numerical stability. With respect to the first edition, I have added an outline of the Alternating Direction Implicit method to solve the two-dimensional heat equation, which is useful background for pricing multidimensional options.

- Chapter 6 deals with finite-dimensional (static) optimization. This chapter can be safely skipped by students interested in the option pricing applications described in chapters 7, 8, and 9. However, it may be useful to students in Economics. It is also necessary background for the relatively advanced optimization models and methods which are covered in chapters 10, 11, and 12.
- Chapter 7 is a new chapter which is devoted to binomial and trinomial lattices, which were not treated extensively in the first edition. The main issues here are proper implementation and memory management.
- Chapter 8 is naturally linked to chapter 4 and deals with more advanced applications of Monte Carlo and low-discrepancy sequences to exotic options, such as barrier and Asian options. We also deal briefly with the estimation of option sensitivities (the Greeks) by Monte Carlo methods. Emphasis is on European-style options; pricing American options by Monte Carlo methods is a more advanced topic which must be analyzed within an appropriate framework, which is done in chapter 10.
- Chapter 9 applies the background of chapter 5 to option pricing by finite difference methods.
- Chapter 10 deals with numerical dynamic programming. The main reason for including this chapter is pricing American options by Monte Carlo simulation, which was not covered in the first edition but is gaining more and more importance. I have decided to deal with this topic within an appropriate framework, which is dynamic stochastic optimization. In this chapter we just cover the essentials, which means discrete-time and finite-horizon dynamic programs. Nevertheless, we try to offer a reasonably firm understanding of these topics, both because of their importance in Economics and because understanding dynamic programming is helpful in understanding stochastic programming with recourse, which is the subject of the next chapter.
- Chapter 11 deals with linear stochastic programming models with recourse. This is becoming a standard topic for people in Operations Research, whereas people in Economics are much more familiar with dynamic programming. There are good reasons for this state of the matter, but from a methodological point of view I believe that it is very

important to compare this approach with dynamic programming; from a practical point of view, stochastic programming has an interesting potential both for dynamic portfolio management and for option hedging in incomplete markets.

- Chapter 12 also deals with the relatively exotic topic of non-convex optimization. The main aim here is introducing mixed-integer programming, which can be used for portfolio management when practically relevant constraints call for the introduction of logical decision variables. We also deal, very shortly, with global optimization, i.e., continuous non-convex optimization, which is important when we leave the comfortable domain of easy optimization problems (i.e., minimizing convex cost functions or maximizing concave utility functions). We also outline heuristic principles such as local search and genetic algorithms. They are useful to integrate simulation and optimization and are often used in computational economics.
- Finally, we offer three appendices on MATLAB, probability and statistics, and AMPL. The appendix on MATLAB should be used by the unfamiliar reader to get herself going, but the best way to learn MATLAB is by trying and using the online help when needed. The appendix on probability and statistics is just a refresher which is offered for the sake of convenience. The third appendix on AMPL is new, and it reflects the increased role of algebraic languages to describe complex optimization models. AMPL is a modeling system offering access to a wide array of optimization solvers. The choice of AMPL is just based on personal taste (and the fact that a demo version is available on the web). In fact, GAMS is probably much more common for economic applications, but the concepts are actually the same. This appendix is only required for chapters 11 and 12.

Finally, there are many more pages in this second edition: more than 600 pages, whereas the first edition had about 400. Actually, I had a choice: either including many more topics, such as interest-rate derivatives, or offering a more extended and improved coverage of what was already included in the first edition. While there is indeed some new material, I preferred the second option. Actually, the original plan of the book included two more chapters on interest-rate derivatives, as many readers complained about this lack in the first edition. While writing this increasingly long second edition, I switched to plan B, and interest-rate derivatives are just outlined in the second chapter to point out their peculiarities with respect to stock options. In fact, when planning this new edition, many reviewers warned that there was little hope to cover interest-rate derivatives thoroughly in a limited amount of pages. They require a deeper understanding of risk-neutral pricing, interest rate modeling, and market practice. I do believe that the many readers interested in this

Interest-rate derivatives are not the only significant omission. I could also mention implied lattices and financial econometrics. But since there are excellent books covering those topics and I see this one just as an entry point or a complement, I felt that it was more important to give a concrete understanding of the basics, including some less familiar topics. This is also why I prefer using MATLAB, rather than C++ or Visual Basic. While there is no doubt that C++ has many merits for developing professional code, both in terms of efficiency and object orientation, it is way too complex for newcomers. Furthermore, the heavy burden it places on the reader tends to overshadow the underlying concepts, which are the real subject of the book. Visual Basic would be a very convenient choice: It is widespread, and it does not require yet another license, since it is included in software tools that almost everyone has available. Such a choice would probably increase my royalties as well. Nevertheless, MATLAB code can exploit a wide and reliable library of numerical functions and it is much more compact. To the very least, it can be considered a good language for fast prototyping. These considerations, as well as the introduction of new MATLAB toolboxes aimed at financial applications, are the reasons why I am sticking to my original choice. The increasing number of books using MATLAB seems to confirm that it was a good one.

Acknowledgments. I have received much appreciated feedback and encouragement from readers of the first edition of the book. Some pointed out typos, errors, and inaccuracies. Offering apologies for possible omissions, I would like to thank I-Jung Hsiao, Sandra Hui, Byunggyoo Kim, Scott Lyden, Alexander Reisz, Ayumu Satoh, and Aldo Tagliani.

**Supplements.** As with the first edition, I plan to keep a web page containing the (hopefully short) list of errata and the (hopefully long) list of supplements, as well as the MATLAB code described in the book. My current URL is:

• http://staff.polito.it/paolo.brandimarte

For comments, suggestions, and criticisms, my e-mail address is

• paolo.brandimarte@polito.it

One of the many corollaries of Murphy's law says that my URL is going to change shortly after publication of the book. An up-to-date link will be maintained both on Wiley Web page:

• http://www.wiley.com/mathematics

and on The MathWorks' web page:

• http://www.mathworks.com/support/books/

PAOLO BRANDIMARTE Turin, March 2006

## From the Preface to the First Edition

Crossroads are hardly, if ever, points of arrival; but neither are they points of departure. In some sense, crossroads may be disappointing, indeed. You are tired of driving, you are not at home yet, and by Murphy's law there is a far-from-negligible probability of taking the wrong turn. In this book, different paths cross, involving finance, numerical analysis, optimization theory, probability theory, Monte Carlo simulation, and partial differential equations. It is not a point of departure, because although the prerequisites are fairly low, some level of mathematical maturity on the part of the reader is assumed. It is not a point of arrival, as many relevant issues have been omitted, such as hedging exotic options and interest-rate derivatives.

The book stems from lectures I give in a Master's course on numerical methods for finance, aimed at graduate students in Economics, and in an optimization course aimed at students in Industrial Engineering. Hence, this is not a research monograph; it is a textbook for students. On the one hand, students in Economics usually have little background in numerical methods and lack the ability to translate algorithmic concepts into a working program; on the other hand, students in Engineering do not see the potential application of quantitative methods to finance clearly.

Although there is an increasing literature on high-level mathematics applied to financial engineering, and a few books illustrating how cookbook recipes may be applied to a wide variety of problems through use of a spreadsheet, I believe there is some need for an intermediate-level book, both interesting to practitioners and suitable for self-study. I believe that students should:

- Acquire *reasonably* strong foundations in order to appreciate the issues behind the application of numerical methods
- $\bullet$  Be able to translate and check ideas quickly in a computational environment
- Gain confidence in their ability to apply methods, even by carrying out the apparently pointless task of using relatively sophisticated tools to pricing a vanilla European option
- Be encouraged to pursue further study by tackling more advanced subjects, from both practical and theoretical perspectives

The material covered in the book has been selected with these aims in mind. Of course, personal tastes are admittedly reflected, and this has something to

do with my Operations Research background. I am afraid the book will not please statisticians, as no econometric model is developed; however, there is a wide and excellent literature on those topics, and I tried to come up with a complementary textbook.

The text is interspersed with MATLAB snapshots and pieces of code, to make the material as lively as possible and of immediate use. MATLAB is a flexible high-level computing environment which allows us to implement non-trivial algorithms with a few lines of code. It has also been chosen because of its increasing potential for specific financial applications.

It may be argued that the book is more successful at raising questions than at giving answers. This is a necessary evil, given the space available to cover such a wide array of topics. But if, after reading this book, students will want to read others, my job will have been accomplished. This was meant to be a crossroads, after all.

**PS1.** Despite all of my effort, the book is likely to contain some errors and typos. I will maintain a list of errata, which will be updated, based on reader feedback. Any comment or suggestion on the book will also be appreciated. My e-mail address is: paolo.brandimarte@polito.it.

**PS2.** The list of errata will be posted on a Web page which will also include additional material and MATLAB programs. The current URL is

• http://staff.polito.it/paolo.brandimarte

An up-to-date link will be maintained on Wiley Web page:

• http://www.wiley.com/mathematics

**PS3.** And if (what a shame ...) you are wondering who Commander Straker is, take a look at the following Web sites:

- http://www.ufoseries.com
- http://www.isoshado.org

Paolo Brandimarte Turin, June 2001