Contents

	Pref	ace		vii
1	Find	ancial pr	roblems and numerical methods	3
	1.1	MATI	LAB environment	4
		1.1.1	Why MATLAB?	5
	1.2		income securities: analysis and portfolio nization	6
			Basic valuation of fixed-income securities	γ
		1.2.2	Interest rate sensitivity and bond portfolio immunization	14
		1.2.3	MATLAB functions to deal with fixed- income securities	17
		1.2.4	Critique	26
	1.3	Portfo	olio optimization	27
			Basics of mean-variance portfolio optimization	30
		1.3.2	MATLAB functions to deal with mean- variance portfolio optimization	32
		1.3.3	Critique	39
	1.4	Derive	atives	41
	·	1.4.1	Modeling the dynamics of asset prices	46
				i

ii CONTENTS

		1.4.2	Black-Scholes model	52
		1.4.3	Black-Scholes model in MATLAB	54
		1.4.4	Pricing American options by binomial	
			lattices	57
		1.4.5	Option pricing by Monte Carlo simulation	65
	1.5	Value	-at-risk	66
	S1.1	Stoch	astic differential equations and Ito's lemma	70
		Refere	ences	72
$\mathcal{2}$	Basi	cs of n	umerical analysis	75
	2.1	Natur	re of numerical computation	76
		2.1.1	Working with a finite precision arithmetic	76
		2.1.2	Number representation, rounding, and $truncation$	80
		2.1.3		82
		2.1.4		02
		2.1.4	complexity	83
	2.2	Solvir	ig systems of linear equations	84
		2.2.1		85
		2.2.2	Direct methods for solving systems of	
			linear equations	88
		2.2.3	$Tridiagonal\ matrices$	92
		2.2.4	Iterative methods for solving systems of linear equations	93
	2.3	Funct	ion approximation and interpolation	102
	2.4		ig nonlinear equations	109
	,		Bisection method	110
		•	Newton's method	111
		2.4.3	Solving nonlinear equations in MATLAB	112
	2.5	Nume	erical integration	115
		Refere		119
3	Opti	mizatio	on methods	121
	3.1	Classi	ification of optimization problems	121
		3.1.1	Finite- vs. infinite-dimensional problems	122
		3.1.2	Unconstrained vs. constrained problems	126
		3.1.3	Convex vs. nonconvex problems	127
		3.1.4	Linear vs. nonlinear problems	128
		3.1.5	Continuous vs. discrete problems	130

		3.1.6	Deterministic vs. stochastic problems	134
	3.2	Nume139	$rical\ methods\ for\ unconstrained\ optimization$	
		3.2.1	Steepest descent method	140
		3.2.2	-	141
		3.2.3	0	141
		3.2.4	No-derivatives algorithms: quasi-Newton method and simplex search	142
		3.2.5	Unconstrained optimization in MATLAB	144
	3.3	Methodote	ods for constrained optimization	146
		3.3.1	Penalty function approach	147
		3.3.2	Kuhn-Tucker conditions	152
		3.3.3	Duality theory	157
		3.3.4	Kelley's cutting plane algorithm	163
		3.3.5	Active set method	164
	3.4	Linear	r programming	166
		3.4.1	Geometric and algebraic features of linear programming	168
		3.4.2	Simplex method	170
		•	Duality in linear programming	172
		•	Interior point methods	174
		3.4.5	Linear programming in MATLAB	177
	3.5 Branch and bound methods for nonconvex optimization		h and bound methods for nonconvex	178
		3.5.1	LP-based branch and bound for MILP models	184
	3.6	Heuri	stic methods for nonconvex optimization	187
	3.7	• -		
			imming	192
	S3.1	Eleme	ents of convex analysis	195
		S3.1.1	Convexity in optimization	195
		S3.1.2	Convex polyhedra and polytopes	199
		Refere	ences	202
4	Prin	ciples d	of Monte Carlo simulation	205
	4.1	Monte	e Carlo integration	206
	4.2	Gener	$rating\ pseudorandom\ variates$	208
			$Generating\ pseudorandom\ numbers$	208
		4.2.2	Inverse transform method	210

iv CONTENTS

5

	4.2.3	Acceptance-rejection method	211
	4.2.4	Generating normal variates by the polar	
		approach	213
4.3	Settin	g the number of replications	216
4.4	Varia	nce reduction techniques	218
	4.4.1	Antithetic variates	218
	4.4.2	Common random numbers	222
	4.4.3	Control variates	224
	4.4.4	Variance reduction by conditioning	225
	4.4.5	Stratified sampling	225
	4.4.6		227
4.5	Quasi	-Monte Carlo simulation	232
•	4.5.1	Generating Halton's low-discrepancy	
	•	sequences	233
	4.5.2	Generating Sobol's low-discrepancy	
		sequences	239
4.6	Integr	ating simulation and optimization	244
	Refere	ences	247
Fini	te differ	rence methods for partial differential equation	1 <i>s249</i>
5.1		uction and classification of PDEs	250
5.2		rical solution by finite difference methods	254
	5.2.1	Bad example of a finite difference scheme	255
	-		

		5.2.2 Instability in a	finite difference scheme	257
	5.3		nethods for second-order	0.00
		PDEs		263
		5.3.1 Solving the heat method	equation by an explicit	264
		5.3.2 Solving the heat method	equation by an implicit	268
		5.3.3 Solving the heat	equation by the Crank-	
		Nicolson method	1 0	272
	5.4	Convergence, consisten	cy, and stability	273
	S5.1	Classification of secon	d-order PDEs and	
		characteristic curves		275
		References		277
6	Opti	nization models for port	folio management	279
	6.1	Mixed-integer program	ming models	281
	6.2	Multistage stochastic p	rogramming models	285
			-	

		6.2.1	Split-variable formulation	288
		6.2.2	Compact formulation	293
		6.2.3	Sample asset and liability management model formulation	297
		6.2.4	Scenario generation for multistage	
		-	stochastic programming	299
	6.3	Fixed-	mix model based on global optimization	305
		Refere	ences	308
γ	Opti	on valu	ation by Monte Carlo simulation	311
	7.1	Simul	ating asset price dynamics	312
	7.2		ng a vanilla European option by Monte simulation	315
		7.2.1	Using antithetic variates to price a vanilla European option	317
		7.2.2	Using antithetic variates to price a European option with truncated payoff	318
		7.2.3	Using control variates to price a vanilla European option	319
		7.2.4	Using Halton low-discrepancy sequences to price a vanilla European option	321
	7.3	Introd	uction to exotic and path-dependent options	322
		7.3.1		322
			Asian options	326
			Lookback options	327
	7.4		ng a down-and-out put	328
	7.5		ag an Asian option	336
		Refere	-	341
8	-		ation by finite difference methods	343
	8.1	Schole	ing finite difference methods to the Black- es equation	343
	8.2	metho		346
		8.2.1	Financial interpretation of the instability of the explicit method	348
	8.3		ng a vanilla European option by a fully it method	350
	8.4	Pricin metho	ng a barrier option by the Crank-Nicolson d	353

vi CONTENTS

8.5	Dealing with American options	354
	References	360
Appendi	x A Introduction to MATLAB programming	361
A.1	MATLAB environment	361
A.2	MATLAB graphics	368
A.3	MATLAB programming	369
Appendi	x B Refresher on probability theory	373
B.1	Sample space, events, and probability	373
B.2	Random variables, expectation, and variance	375
	B.2.1 Common continuous random variables	377
B.3	Jointly distributed random variables	380
B.4	Independence, covariance, and conditional	
,	expectation	382
B.5	Parameter estimation	385
	References	389

Index

391