
Solutions Manual
to accompany

Quantitative Methods

An Introduction
for Business Management

Provisional version of June 10, 2014

Paolo Brandimarte

A Wiley-Interscience Publication

JOHN WILEY & SONS, INC.
New York / Chichester / Weinheim / Brisbane / Singapore / Toronto

Contents

Preface vii

1 Quantitative Methods: Should We Bother? 1
1.1 Solutions 1
1.2 Computational supplement: How to solve the optimal mix

problem 3

2 Calculus 7
2.1 Solutions 7

3 Linear Algebra 15
3.1 Solutions 15

4 Descriptive Statistics: On the Way to Elementary Probability 25
4.1 Solutions 25

5 Probability Theories 29
5.1 Solutions 29
5.2 Additional problems 30
5.3 Solutions of additional problems 31

6 Discrete Random Variables 33
6.1 Solutions 33

v

vi CONTENTS

7 Continuous Random Variables 37
7.1 Solutions 37

8 Dependence, Correlation, and Conditional Expectation 43
8.1 Solutions 43

9 Inferential Statistics 47
9.1 Solutions 47

10 Simple Linear Regression 63
10.1 Solutions 63

11 Time Series Models 69
11.1 Solutions 69

12 Deterministic Decision Models 75
12.1 Solutions 75

13 Decision Making Under Risk 91
13.1 Solutions 91

14 Advanced Regression Models 99
14.1 Solutions 99

Appendix A R – A software tool for statistics 103

Appendix B Introduction to MATLAB 105
B.1 Working with vectors and matrices in the MATLAB

environment 105
B.2 MATLAB graphics 113
B.3 Solving equations and computing integrals 114
B.4 Statistics in MATLAB 116
B.5 Using MATLAB to solve linear and quadratic programming

problems 118

Appendix C Introduction to AMPL 121
C.1 Running optimization models in AMPL 122
C.2 Mean-variance efficient portfolios in AMPL 123
C.3 The knapsack model in AMPL 125

Preface

This solutions manual contains

• worked-out solutions to end-of-chapter problems in the book

• additional problems (solved)

• computational supplements illustrating the application of the following tools:

– Microsoft Excel

– R

– MATLAB

– AMPL

Some software tools are introduced in the appendices, where I am giving you a few hints
and clues about how they can be used to apply the methods described in the book. Some
of these tools are free, some have free student demos, some can be obtained at a reduced
price. Anyway, they are all widely available and I encourage you to try them. To the very
least, they can provide us with quantiles from probability distributions, and are much more
handy and precise than using old-style statistical tables.

The manual is work-in-progress, so be sure to check back every now and then whether a
new version has been posted.

This version is dated June 10, 2014

As usual, for comments, suggestions, and criticisms, my e-mail address is:

Paolo Brandimarte
paolo.brandimarte@polito.it

vii

1
Quantitative Methods: Should We Bother?

1.1 SOLUTIONS

Problem 1.1 We consider the strategy of trying Plan A first and then Plan B; a more
complete solution approach should rely on the decision tree framework of Chapter 13 (see
Problem 13.1).

Imagine that we are at the end of year 1, and say that the first movie has been a success.
If we try Plan B for the second movie, we invest 4000 now, and at the end of the second year
we will make 6600 with probability 0.5 + α and 0 with probability 1 − (0.5 + α) = 0.5 − α.
The expected NPV for this part of the strategy is

NPVh =
6600
1.1

× (0.5 + α) − 4000 = 6000 × α − 1000;

note that here we are discounting the cash flow at the end of year 2 back to the end of year
1. We go on with Plan B only if this NPV is positive, i.e.,

α ≥ 1000
6000

= 0.1667.

On the other branch of the tree, the first movie has been a flop. The second movie, if we
adopt plan B, yields the following NPV (discounted back to the end of year 1):

NPVf =
6600
1.1

× (0.5 − α) − 4000 = −6000 × α − 5000.

This will always be negative for α ≥ 0, which makes sense: With 50–50 probabilities, the
bet is not quite promising, and the situation does not improve after a first flop if this makes
the odds even less favorable, and we dismiss the possibility of producing the second movie.

Let us step back to the root node (beginning of year 1), where we apply Plan A. There,
the expected NPV is

− 2500 + 0.5× 4400 + NPVh

1.1
+ 0.5× 0

1.1
= −954.5455 + α × 2727.273,

1

2 QUANTITATIVE METHODS: SHOULD WE BOTHER?

which is positive if

α ≥ 954.5455
2727.273

= 0.35.

This condition is more stringent that the previous one. Thus, the conditional probability of
a second hit after the first one should not be less than 0.85 (which also implies that the the
conditional probability of a hit after a first flop is 0.15).

Problem 1.2 Rather than extending the little numerical example of Chapter 1, let us
state the model in general form (also see Chapter 12):

max
N∑

i=1

(pi − ci)xi,

s.t.
N∑

i=1

rimxi ≤ Rm, m = 1, . . . , M,

0 ≤ xi ≤ di, i = 1, . . . , N,

where:

• Items are indexed by i = 1, . . . , N

• Resources are indexed by m = 1, . . . , M

• di, pi, and ci are demand, selling price, and production cost, respectively, for item i

• rim is the unit requirement of resource m for item i, and Rm is the total availability
of resource m

In this model, we have a single decision variable, xi, representing what we produce and
sell. If we introduce the possibility of third-party production, we can no longer identify
production and sales. We need to change decision variables as follows:

• xi is what we produce

• yi is what we buy

We could also introduce a variable zi to denote what we sell, but since zi = xi + yi, we can
avoid this.1 Let us denote by gi > ci the cost of purchasing item i from the third-party
supplier. The model is now

max
N∑

i=1

[(pi − ci)xi + (pi − gi)yi]

s.t.
N∑

i=1

rimxi ≤ Rm m = 1, . . . , M

xi + yi ≤ di i = 1, . . . , N

xi, yi ≥ 0 i = 1, . . . , N

1However, in multiperiod problems involving inventory holding we do need such a variable; see Chapter 12.

COMPUTATIONAL SUPPLEMENT: HOW TO SOLVE THE OPTIMAL MIX PROBLEM 3

If we allow for overtime work, we change the first model by introducing the amount of
overtime Om on resource m, with cost qm:

max
N∑

i=1

(pi − ci)xi −
M∑

m=1

qmOm

s.t.
N∑

i=1

rimxi ≤ Rm + Om, m = 1, . . . , M,

0 ≤ xi ≤ di, i = 1, . . . , N,

Om ≥ 0, m = 1, . . . , M.

These are just naive models used for introductory purposes. In practice, we should (at
the very least) account for limitations on overtime work, as well as fixed charges associated
with purchasing activities.

1.2 COMPUTATIONAL SUPPLEMENT: HOW TO SOLVE THE OPTIMAL MIX

PROBLEM

In this section we show how different software tools can be used to solve the optimal mix
problem of Section 1.1.2.

A first alternative is using MATLAB (see Section B.5 in the Appendix):

>> m = [45, 60];

>> reqs = [15 10; 15 35; 15 5; 25 15];

>> res = 2400*ones(4,1);

>> d = [100, 50];

>> x = linprog(-m, reqs, res, [], [], zeros(2, 1), d)

Optimization terminated.

x =

73.8462

36.9231

Unfortunately, with MATLAB we cannot solve integer programming problems. To this
aim, we may use AMPL (see Appendix C). We need a model file and a data file, whose
content is illustrated in Fig. 1.1. Using the CPLEX solver with AMPL, we find

ampl: model ProdMix.mod;

ampl: data ProdMix.dat;

ampl: solve;

CPLEX 11.1.0: optimal integer solution; objective 5505

2 MIP simplex iterations

0 branch-and-bound nodes

1 Gomory cut

ampl: display x;

x [*] :=

1 73

2 37

;

If we omit the integer keyword in the definition of decision variable x, we obtain the
same solution as MATLAB.

4 QUANTITATIVE METHODS: SHOULD WE BOTHER?

ProdMix.mod

param NumItems > 0;

param NumResources > 0;

param ProfitContribution{1..NumItems};

param MaxDemand{1..NumItems};

param ResReqs{1..NumItems, 1..NumResources};

param ResAvail{1..NumResources};

var x{i in 1..NumItems} >= 0, <= MaxDemand[i], integer;

maximize profit:

sum {i in 1..NumItems} ProfitContribution[i] * x[i];

subject to Capacity {j in 1..NumResources}:

sum {i in 1..NumItems} ResReqs[i,j] * x[i] <= ResAvail[j];

param NumItems := 2;

param NumResources := 4;

param: ProfitContribution MaxDemand :=

1 45 100

2 60 50;

param ResAvail := default 2400;

param ResReqs:

1 2 3 4 :=

1 15 15 15 25

2 10 35 5 15;

Fig. 1.1 AMPL model (ProdMix.mod) and data (ProdMix.dat) files for product mix optimization.

Another widespread tool that can be used to solve (small) LP and MILP models is
Microsoft Excel, which is equipped by a Solver directly interfaced with the spreadsheet.2

This is a double-edged sword, since it means that the model must be expressed in a two-
dimensional array of cells, where data, constraints, and the objective function must be linked
one to another by formulas.

The product mix problem can be represented as in the ProdMix.xls workbook, as shown
in Fig. 1.2. The cell Profit contain the profit contribution and the cells Required are used
to calculate the resource requirements as a function of the amounts produced, which are the
contents of the cells Make. It is important to name ranges of cells to include them in the
model in a readable way.

The model is described by opening the Solver window and specifying decision variables,
constraints, and the objective cell as illustrated in Fig. fig:ProdMixExcel2. As you see,
reference is made to named cell ranges; the cells containing <= in the worksheet have no
meaning, actually, and are only included to clarify the model structure.

2You should make sure that the Solver was included in your Excel installation; sometimes, it is not included
to save space on disk.

COMPUTATIONAL SUPPLEMENT: HOW TO SOLVE THE OPTIMAL MIX PROBLEM 5

Fig. 1.2 The ProdMix.xls workbook to solve the optimal product mix problem.

As one can imagine, describing and maintaining a large-scale model in this form may
quickly turn into nightmare (not taking into account the fact that state-of-the-art solvers
are needed to solve large problem instances). Nevertheless, Excel can be used to solve small
scale models and is in fact the tool of choice of many Management Science books. We should
mention, however, that the true power of Excel is its integration with VBA (Visual Basic
for Application), a powerful programming language that can be used to develop remarkable
applications. A clever strategy is to use Excel as a familiar and user-friendly interface, and
VBA to build a link with state-of-the-art software libraries.

6 QUANTITATIVE METHODS: SHOULD WE BOTHER?

Fig. 1.3 Caption for ProdMixExcel2

2
Calculus

2.1 SOLUTIONS

Problem 2.1 A first requirement for function f(x) is that the argument of the square
root is positive:

1 − x2 ≥ 0 ⇒ −1 ≤ x ≤ 1

Then, the denominator of the ratio cannot be zero:
√

1 − x2 6= 1 ⇒ x 6= 0

Then, the domain of f is [−1, 0)∪ (0, 1].
The square root in function g(x) is not an issue, as x2 + 1 6= 0. We also observe that the

denominator is never zero, since
√

x2 + 1 = x ⇒ x2 + 1 = x2 ⇒ 1 = 0

which is false. Then, the domain of g is the whole real line.

Problem 2.2 The first line is easy to find using the form y = mx + q

y = −3x + 10

For the second one, we use the form y − y0 = m(x − x0)

y − 4 = 5(x + 2) ⇒ y = 5x + 14

For the third line, we observe that its slope is

m =
3 − (−5)

1 − 3
= −4

Then we have
y − 3 = −4(x − 1) ⇒ y = −4x + 7

7

8 CALCULUS

Alternatively, we might also consider its parametric form
{

y = λya + (1 − λ)yb = 3λ − 5(1 − λ)
x = λxa + (1 − λ)xb = λ + 3(1 − λ)

and eliminate λ between the two equations. This approach is less handy, but it stresses
the idea of a line as the set of affine combinations of two vectors. An affine combination of
vectors is a linear combination whose weights add up to one (see Chapter 3).

Problem 2.3

f ′1(x) =
3 · (x2 + 1) − 3x · 2x

(x2 + 1)2
=

3(3x2 + 1)
(x2 + 1)2

f ′2(x) = (3x2 − 2x + 5)ex3−x2+5x−3

f ′3(x) =
1

2
√

exp
(

x+2
x−1

) · exp
(

x + 2
x − 1

)
· −3
(x − 1)2

Problem 2.4 Let us start with f(x) = x3 − x. We observe the following:

• Limits:
lim

x→−∞
f(x) = −∞, lim

x→+∞
f(x) = +∞

• Roots: we have f(x) = 0 for

x(x2 − 1) = 0 ⇒ x = 0, x = ±1

• The first order derivative f ′(x) = 3x2 − 1 is zero for x = ±1/
√

3 ≈ ±0.5774, positive
for x < −1/

√
3 and x > 1/

√
3, negative otherwise. Hence, the function is increasing

(from −∞) for x < −1/
√

3, decreasing for −1/
√

3 < x < 1/
√

3, and then it increases
to +∞.

• The second order derivative f ′′(x) = 6x is negative for negative x and positive for
positive x; hence, the function is concave for x < 0 (with a maximum at x = −1/

√
3)

and convex for x > 0 (with a minimum at x = 1/
√

3).

For function g(x) = x3 + x the analysis is similar, but now the first-order derivative
f ′(x) = 3x2 + 1 is always positive and the function has a unique root at x = 0 (and neither
minima nor maxima).

See the plots in Fig. 2.1.

Problem 2.5

1. For function f1(x), we observe that the function is continuous at x = 0, as

f1(0−) = 0 = 0 = f1(0+)

but not differentiable, as
f ′1(0−) = −1 6= 0 = f ′1(0+)

2. For function f1(x), we observe that the function is not continuous at x = 0, as

f2(0−) = 1 6= 0 = f2(0+)

SOLUTIONS 9

−2 −1 0 1 2
−6

−4

−2

0

2

4

6

f(x)
−2 −1 0 1 2

−10

−8

−6

−4

−2

0

2

4

6

8

10

g(x)

Fig. 2.1 Plots of functions in Problem 2.4.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

f1(x)
−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

f2(x)
−1 0 1 2

−1

−0.5

0

0.5

1

1.5

2

f3(x)

Fig. 2.2 Plots of functions in Problem 2.5.

Then, the function cannot be differentiable.

3. For function f3(x), we observe that the function is continuous at x = 1, as

f3(1−) = 1 = 1 = f3(1+)

but not differentiable, as
f ′3(1−) = 3 6= 1 = f ′3(1+)

See the plots in Fig. 2.2.

Problem 2.6 Consider function

f(x) = exp
(
−

1
1 + x2

)

and find linear (first-order) and quadratic (second-order) approximations around points
x0 = 0 and x0 = 10. Check the quality of approximations around these points.

10 CALCULUS

−10 −5 0 5 10

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2.3 Plot of function in Problem 2.6.

We have
f(0) = 0.367879441171442, f(10) = 0.990147863338053

The function is plotted in Fig. 2.3.
Let us find and evaluate the first-order derivative

f ′(x) = exp
(
− 1

1 + x2

)
2x

(1 + x2)2
,

f ′(0) = 0, f ′(10) = 0.001941276077518

Then the second-order derivative

f ′′(x) = exp
(
− 1

1 + x2

)[
2x

(1 + x2)2

]2
+ exp

(
− 1

1 + x2

)
2 · (1 + x2)2 − 2x · 2(1 + x2) · 2x

(1 + x2)4

= exp
(
− 1

1 + x2

)[
4x2

(1 + x2)4
+

2 − 6x2

(1 + x2)3

]

= exp
(
− 1

1 + x2

)
2 − 6x4

(1 + x2)4

f ′′(0) = 0.735758882342885, f ′′(10) = −5.708885506270199 · 10−4

The Taylor expansions pn,x0(x), where n is the order and x0 is where the approximation is
built, are:

p1,0(x) = 0.367879441171442

p2,0(x) = 0.367879441171442+
1
2
· 0.735758882342885 · x2

p1,10(x) = 0.990147863338053+ 0.001941276077518 · (x − 10)
p2,10(x) = 0.990147863338053+ 0.001941276077518 · (x − 10)

− 1
2
· 0.0005708885506270199 · (x − 10)2

The four approximations are plotted in Figs. 2.4(a), (b), (c) and (d), respectively, where
the function plot is the dashed line.

SOLUTIONS 11

−2 −1 0 1 2

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)
−2 −1 0 1 2
0

0.5

1

1.5

2

(b)

8 9 10 11 12
0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

(c)
8 9 10 11 12

0.984

0.986

0.988

0.99

0.992

0.994

0.996

(d)

Fig. 2.4 Plot of approximations of Problem 2.6.

Problem 2.7 Let us express the bond price in terms of the continuous-time yield yc:

P (yc) =
T−1∑

t=1

Ce−yct + (C + F)e−ycT

and take its first-order derivative

P ′(yc) = −
T−1∑

t=1

Cte−yct − (C + F)Te−ycT = −
T∑

t=1

tdt

where dt is the discounted cash flow at time t, i.e., dt = Ce−yct for t = 1, . . . , T − 1
and dT = (C + F)e−ycT . We see that this expression, unlike the case with discrete-time
compounding, does not contain any extra-term involving yield. Hence, we may write

P ′(yc) =
dP

dyc
= −

T∑

t=1

tdt ·

T∑

t=1

dt

T∑

t=1

dt

= −D · P

12 CALCULUS

−1.5 −1 −0.5 0 0.5 1 1.5
0

5

10

15

20

25

30

f1(x)
0 5 10 15 20

−8

−6

−4

−2

0

2

4

f2(x)
−1.5 −1 −0.5 0 0.5 1 1.5
−4

−3

−2

−1

0

1

2

3

4

f3(x)

Fig. 2.5 Plots of functions in Problem 2.8.

where

D ≡

T∑

t=1

tdt

T∑

t=1

dt

is duration. Then, we may express relative price variations for small changes in yield as

∆P

P
= −D · ∆yc

where we use duration, rather than modified duration.

Problem 2.8 For function f1 we have

f ′1(x) = 2xex2+1, f ′′1 (x) = 2ex2+1 + 4x2ex2+1 = 2ex2+1(1 + x2) > 0

Then, the function is convex on the real line.
For function f2, with domain x > −1, we have

f ′2(x) =
1

x + 1
, f ′′2 (x) =

−1
(x + 1)2

> 0

Then, the function is concave on its domain.
For function f3 we have

f ′3(x) = 3x2 − 2x, f ′′3 (x) = 6x− 2

Since the second order derivative changes its sign at x = 1/3, the function neither convex
nor concave.

See Fig. 2.5.

SOLUTIONS 13

21 SS ∩
21 SS ∪

Fig. 2.6 Intersection and union of two convex sets.

Problem 2.9 We must prove that if xa,xb ∈ S1∩S2, then xλ = λxa +(1−λ)xb ∈ S1∩S2,
for any λ ∈ [0, 1].

Now consider two elements xa,xb ∈ S1 ∩ S2. Since S1 and S2 are both convex, we know
that, for any λ ∈ [0, 1],

λxa + (1 − λ)xb ∈ S1

λxa + (1 − λ)xb ∈ S2

But this shows xλ ∈ S1 ∩ S2.
This property is visualized in Fig. 2.6; note that the union of convex sets need not be

convex.

Problem 2.10 From Section 2.12 we know that the present value V0, at time t = 0, of a
stream of constant cash flows Ct = C, t = 1, . . . , T , is

V0 =
C

r

[
1 − 1

(1 + r)T

]

To get the future value VT , at time t = T , we just multiply by a factor (1+r)T , which yields

VT =
C

r

[
(1 + r)T − 1

]

Problem 2.11 You work for Ts = 40 years saving S per year; then you live Tc = 20 years,
consuming C = 20000 per year. The cumulated wealth when you retire is

S

r

[
(1 + r)Ts − 1

]

and the present value of the consumption stream is

C

r

[
1 − 1

(1 + r)Tc

]

Equating these two expressions we find

S =
C

[
1 − 1

(1 + r)Tc

]

(1 + r)Ts − 1
=

20000×
[
1 − 1

1.0520

]

(1.05)40 − 1
= 2063.28

If Tc = 10, S is reduced to 1278.44

14 CALCULUS

t

I

Q

Q -d()/p p

d

Q d/ Q p/

Fig. 2.7 Inventory with finite rate of replenishment.

Problem 2.12 The finite replenishment rate p is the number of items delivered per unit of
time. When the inventory level reaches zero, it does not immediately increase by Q units but
increases progressively at rate p− d, as shown in Fig. 2.7; this rate is the difference between
the rates of item inflow and outflow. It takes Q/p time units to complete the production lot
Q; hence, when the lot is completed, the inventory level has reached a level

(p − d) Q/p

which is the height of the triangle corresponding to one cycle. Then, inventory decreases
between (p − d) Q/p and 0 at rate d. With respect to the EOQ model, there is a difference
in the average inventory level, which is now

(p − d)Q
2p

Then, the total cost function is
Ad

Q
+ h · (p − d)Q

2p

and using the same drill as the EOQ case (set first-order derivative to 0) we find

Q∗ =

√
2Ad

h
· p

p − d

It is interesting to note that when p → +∞ we get back to the EOQ formula.

3
Linear Algebra

3.1 SOLUTIONS

Problem 3.1 Gaussian elimination works as follows:


1 2 −1 3
1 0 4 9
0 2 1 0


 E2←E2−E1=⇒




1 2 −1 3
0 −2 5 12
0 2 1 0


 E3←E3+E2=⇒




1 2 −1 3
0 −2 5 12
0 0 6 12




Using backsubstitution:

6x3 = 12 → x3 = 2

− 2x2 + 5x3 = 12 → x2 =
12 − 5x3

−2
= −1

x1 + 2x2 − x3 = 3 → x1 = 3 − 2x2 + x3 = 1

To apply Cramer’s rule we compute the determinant of the matrix

∆ =

∣∣∣∣∣∣

1 2 −1
1 0 4
0 2 1

∣∣∣∣∣∣
= 1 ×

∣∣∣∣
0 4
2 1

∣∣∣∣ − 2 ×
∣∣∣∣

1 0
4 1

∣∣∣∣− 1 ×
∣∣∣∣

1 0
0 2

∣∣∣∣

= 1× (−8) − 2 × 1 − 2 × 2 = −12

By a similar token

∆1 =

∣∣∣∣∣∣

−3 2 −1
9 0 4
0 2 1

∣∣∣∣∣∣
= −12

∆2 =

∣∣∣∣∣∣

1 −3 −1
1 9 4
0 0 1

∣∣∣∣∣∣
= 12

∆3 =

∣∣∣∣∣∣

1 2 −3
1 0 9
0 2 0

∣∣∣∣∣∣
= −24

15

16 LINEAR ALGEBRA

By the way, it is sometimes convenient to develop the determinant not using the first row,
but any row or column with few nonzero entries; for instance

∆2 = 1 ×
∣∣∣∣

1 −3
1 9

∣∣∣∣

∆3 = −2 ×
∣∣∣∣

1 −3
1 9

∣∣∣∣

Then, we find

x1 =
∆1

∆
= 1, x2 =

∆2

∆
= −1, x3 =

∆3

∆
= 2

Problem 3.2 Let us consider polynomials of degree up to n

a0 + a1x + a2x
2 + · · ·+ anxn

Such a polynomial may be expressed as a vector a ∈ Rn+1

a =




a0

a1

a2

...
an




where we associate each monomial xk, k = 0, 1, 2, . . ., n with a unit vector:

e0 =




1
0
0
...
0




, e1 =




0
1
0
...
0




, e2 =




0
0
1
...
0




, . . .en =




0
0
0
...
1




We know that
(xk)′ = kxk−1

Therefore, the mapping from a monomial to its derivative may be represented as follows

ek =




0
0
0
...
0
1
0
...
0
0
0




⇒ e′k =




0
0
0
...
k
0
0
...
0
0
0




SOLUTIONS 17

If we align such vectors, we obtain the following matrix

D =




0 1 0 0 · · · 0 0
0 0 2 0 · · · 0 0
0 0 0 3 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · n − 1 0
0 0 0 0 · · · 0 n
0 0 0 0 · · · 0 0




For instance, consider the polynomial

p(x) = 3 + 5x + 2x2 − x3 + 2x4 ⇒ p′(x) = 5 + 4x− 3x2 + 8x3

The mapping is 


0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4
0 0 0 0 0







3
5
2

−1
2




=




5
4

−3
8
0




We may also observe that the matrix is not invertible, which makes sense, since two
polynomials that differ only in the constant term have the same derivative.

Problem 3.3 Prove that the representation of a vector using a basis is unique.
Let us assume that, contrary to the statement, we have two representations of the same

vector using the same basis (which is a set of linearly independent vectors:

v = α1e1 + α2e2 + · · ·+ αnen

v = β1e1 + β2e2 + · · ·+ βnen

Taking the difference, we have

0 = (α1 − β1)e1 + (α2 − β2)e2 + · · ·+ (αn − βn)en

However, since the vectors ek, k = 1, . . . , n, are a basis, there is no way to find a linear
combination of them yielding the null vector, unless all of the coefficients in the linear
combination are all zero, which implies

αk = βk, k = 1, . . . , n

Problem 3.4 Let B = AD, where B ∈ Rm,n and we denote its generic element bij,
i = 1, . . . , m, j = 1, . . . , n. To obtain bij, we multiply elements of row i of A by elements of
column j of D:

bij =
n∑

k=1

aikdkj

We may think of this element as the inner product between the row vector aT
i and the

column vector dj. However, we have dkj = 0 for j 6= k, so

bij = aikdkk

18 LINEAR ALGEBRA

i.e., element k of row i of matrix A is multiplied by the corresponding element dkk on the
diagonal of D:

AD =
[

1 3 5
2 6 4

]


2 0 0
0 −3 0
0 0 7


 =

[
2 −9 35
4 −18 28

]

Problem 3.5 Multiplying the matrices, we find:

AX =




1 0 2
0 1 1
2 0 2






6 5 7
2 2 4
3 3 6


 =




12 11 19
5 5 10

18 16 26




BX =




1 3 0
0 4 −1
2 3 0






6 5 7
2 2 4
3 3 6


 =




12 11 19
5 5 10

18 16 26




This implies that, unlike with the scalar case, we cannot simplify an equation AX = BX
to A = B. If matrix X is invertible, then we may postmultiply by its inverse X−1 and
simplify. But in the example X is singular; to see this, observe that its second and third
row are linearly dependent, as they are obtained multiplying the vector [1, 1, 2] by 2 and 3,
respectively.

Problem 3.6 Given the matrix H = I − 2hhT , we may check orthogonality directly:

HTH = (I − 2hhT)(I − 2hhT)

= I− 2hhT − 2hhT + 4h(hTh)hT

= I− 4hhT + 4hhT

= I

where we exploit the symmetry of H and the condition hTh = 1.
This transformation is actually a reflection of a generic vector with respect to a hyperplane

passing through the origin and characterized by an orthogonal vector h. To see this, consider
the application of H to vector v:

Hv = Iv − 2hhTv = v − 2αh

where α = hTv is the length of the projection of v on the unit vector h. To illustrate in the
plane, consider v = [3, 1]T and h = [1, 0]T :

Hv =
[

3
1

]
− 2 ×

[
1
0

](
[1 0]

[
3
1

])
=
[

3
1

]
− 2 × 3 ×

[
1
0

] [
−3
1

]

The resulting vector is indeed the reflection of v with respect to the horizontal axis, which
is a line going through the origin and orthogonal to vector h.

This implies that H is a rotation matrix, and we know that rotation matrices are orthog-
onal.

Problem 3.7 To prove these results, it is convenient to regard a matrix Jn whose elements
are all 1 as the product

1n1T
n

SOLUTIONS 19

where 1n = [1, 1, 1, . . ., 1]T ∈ Rn is a column vector of ones. Then

xT C = xT

(
In − 1

n
1n1T

n

)

= xT In − 1
n
xT 1n1T

n

= xT −

(
1
n

n∑

k=1

xk

)
1T

n

= [x1, x2, x3, . . . , xn]T − [x, x, x, . . . , x]T

= [x1 − x, x2 − x, x3 − x, . . . , xn − x]T

where we exploit the fact

xT1n =
n∑

k=1

xk = nx

As to the second statement, we recall that

n∑

k=1

(xk − x̄)2 =
n∑

k=1

x2
k − nx̄2

Moreover

xTCx = xT

(
In − 1

n
1n1T

n

)
x

= xT x− 1
n

(xT1n)(1T
nx)

=
n∑

k=1

x2
k − 1

n

(
n∑

k=1

xk

)(
n∑

k=1

xk

)

=
n∑

k=1

x2
k − nx̄2

Problem 3.8 The determinant of a diagonal matrix D may be developed by rows; since
only one element in the first row is nonzero, we have

det(D) =

∣∣∣∣∣∣∣∣∣∣∣

d1

d2 0
d3

. . .
dn

∣∣∣∣∣∣∣∣∣∣∣

= d1 ·

∣∣∣∣∣∣∣∣∣

d2 0
d3

. . .
dn

∣∣∣∣∣∣∣∣∣

Repeating the scheme recursively, we have

det(D) =
n∏

j=1

dj

20 LINEAR ALGEBRA

The reasoning is the same for a lower triangular matrix, whereas for an upper triangular
triangular it is convenient to start from the last row:

det(U) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

u11 u12 u13 · · · u1,n−1 u1n

u22 u23 · · · u2,n−1 u2n

u33 · · · u3,n−1 u3n

. . .
...

...
un−1,n−1 un−1,n

unn

∣∣∣∣∣∣∣∣∣∣∣∣∣

= unn·

∣∣∣∣∣∣∣∣∣∣∣

u11 u12 u13 · · · u1,n−1

u22 u23 · · · u2n−1

u33 · · · u3,n−1

. . .
...

un−1,n−1

∣∣∣∣∣∣∣∣∣∣∣

Going on recursively, we find

det(U) =
n∏

j=1

ujj

Problem 3.9 Of course we may apply the standard approach based on minors, but some-
times shortcuts are possible. For instance, the case of a diagonal matrix is easy:

A−1
1 =




1
6 0 0
0 1

2 0
0 0 −1

5




To deal with the second case, observe that, if denote the generic element of A−1
2 by bij, we

must have A2A−1
2 = I, i.e.,




0 0 5
0 2 0
3 0 0






b11 b12 b13

b21 b22 b23

b31 b32 b33


 =




5b31 5b32 5b33

2b21 2b22 2b23

3b11 3b12 3b13


 =




1 0 0
0 1 0
0 0 1




If we equate element by element, we find

5b31 = 1, 2b22 = 1, 3b13 = 1

whereas all the remaining elements of the inverse are zero. Hence

A−1
2 =




0 0 1
3

0 1
2 0

1
5 0 0




With respect to the diagonal case, we have a permutation of elements.
For the last case, let us apply the standard procedure. The first step is easy:

det(A3) = 2

Then we must find the adjoint matrix Ã of A3. Since its element ãij is the cofactor Cji, we
may transpose the matrix and find a sequence of 2 × 2 determinants:

B = AT
3 =




1 0 1
1 1 0
0 1 1




Now, to find ã11 we just eliminate the first row and the first column of B, obtaining a 2× 2
determinant:

ã11 = (−1)1+1

∣∣∣∣
1 0
1 1

∣∣∣∣ = 1

SOLUTIONS 21

By a similar token:

ã12 = (−1)1+2

∣∣∣∣
1 0
0 1

∣∣∣∣ = −1

Here we cross the first row and the second column, and change the sign to the resulting
determinant. In the second row of Ã there is a different pattern, as the first element has a
change in sign, and so on. This yields

Ã =




1 −1 1
1 1 −1

−1 1 1




and

A−1
3 =

1
2
Ã =




0.5 −0.5 0.5
0.5 0.5 −0.5

−0.5 0.5 0.5




Problem 3.10 Let us interpret Ax as a linear combination of columns Aj of A with
weights xj:

Ax =




...
...

...
A1 A2 · · · An

...
...

...







x1

x2

...
xn


 = x1A1 + x2A2 + · · ·+ xnAn

If this linear combination yields the null vector 0, but x 6= 0, then the columns of A are not
linearly independent; hence, the matrix is singular.

We say that x is in the null space of A; note that this implies that any vector λx, for any
real number λ is in this null space, too. Now consider a vector z such that Az = b, and
imagine that you wish to invert the mapping. It is easy to see that this is impossible, since

A(z + λx) = b

as well, for any λ. The mapping cannot be inverted, matrix A cannot be inverted, and it is
singular.

Problem 3.11 We should find a vector x 6= 0 such that

(hhT − hThI)x = h(hTx) − (hTh)x = 0

(see Problem 3.10). Note that the terms between parentheses in the above expression are
actually scalars. We have

hTx =
n∑

i=1

hixi, h(hTx) =




h1 (
∑n

i=1 hixi)
h2 (
∑n

i=1 hixi)
...

hn (
∑n

i=1 hixi)




hTh =
n∑

i=1

h2
i , (hTh)x =




x1

(∑n
i=1 h2

i

)

x2

(∑n
i=1 h2

i

)
...

xn

(∑n
i=1 h2

i

)




22 LINEAR ALGEBRA

Therefore, we have a system of linear equations with the following form:

hj

(
n∑

i=1

hixi

)
− xj

(
n∑

i=1

h2
i

)
, j = 1, . . . , n

Looking at this expression, we see that the non-zero vector

xj =
hj∑n

i=1 h2
i

, j = 1, . . . , n

is in fact a solution of the system. Hence, the matrix is singular.

Problem 3.12 Consider two nonnull orthogonal vectors x and y. If they are linearly
dependent, then we may write x = αy, for some real number α 6= 0. Then, orthogonality
implies

xTy = αyTy = α ‖y‖2= 0

But, given the properties of vector norms, this is possible only if y = 0, which contradicts
the hypotheses. Since we have a contradiction, we conclude that x and y are linearly
independent.

Problem 3.13 Show that if λ is an eigenvalue of A, then 1/(1 + λ) is an eigenvalue of
(I + A)−1.

We may prove the result in two steps:

1. If λ is an eigenvalue of A, then 1 + λ is an eigenvalue of I + A.

2. If λ is an eigenvalue of A, then 1/λ is an eigenvalue of A−1 (assuming that A is
invertible, which implies that there is no eigenvalue λ = 0).

If λ is an eigenvalue of A, it is a solution of the characteristic equation for matrix A

det(A− λI) = 0

Now consider the characteristic equation for matrix I + A

det(A + I− µI) = 0

Say that µ solves the equation, which we may rewrite as follows

det(A + (1 − µ)I) = 0

which implies that 1 − µ = λ is an eigenvalue of A or, in other words, that µ = 1 + λ is an
eigenvalue of I + A.

By a similar token, let us consider the characteristic equation for A−1:

det(A−1 − µI) = 0

We know that det(AB) = det(A) det(B), for square matrices A and B. Then, let us multiply
the last equation by det(A)/µ:

1
µ

det(A) det(A−1 − µI) = det
(

1
µ
AA−1 −

µ

µ
AI
)

= det
(

1
µ
I− A

)
= 0

We see that λ = 1/µ is an eigenvalue of A, which also implies that µ = 1/λ is an eigenvalue
of A−1.

Putting the two results together, we find that 1/(1 + λ) is an eigenvalue of (I + A)−1.

SOLUTIONS 23

Problem 3.14 In the book1 we show that a symmetric matrix A can be factored as

A = PΛPT

where P is an orthogonal matrix (PT = P−1) whose columns are normalized eigenvectors
and Λ is a diagonal matrix consisting of (real) eigenvalues. It is also easy to see that

A−1 = PΛ−1PT

To see this, recall that of B and B are square and invertible, (BC)−1 = C−1B−1, which
implies

A−1 = (PΛPT)−1 = (PT)−1Λ−1P−1 = A−1 = PΛ−1PT

Then we have

A + A−1 = A = PΛPT + PΛ−1PT = P(Λ + Λ−1)PT

from which we see that the eigenvalues of A + A−1 are given by λ + 1/λ, where λ is an
eigenvalue of A. Now take the minimum of this expression

minλ +
1
λ

⇒ 1 − 1
λ2

= 0 ⇒ λ∗ = 1 ⇒ λ∗ +
1
λ∗

= 2

where we use the assumption that λ > 0.
For the general case, we take

AU = UΛ

where the columns of U are eigenvectors. If this matrix is invertible, we have

A = UΛU−1

and we may repeat the argument. However, we must assume that the matrix U−1 is in
fact invertible, which amounts to saying that A is diagonable. Furthermore, in general,
eigenvalues might be complex, which introduces further complication outside the scope of
the book.

Problem 3.15 Prove that, for a symmetric matrix A, we have

n∑

i=1

n∑

j=1

a2
ij =

n∑

k=1

λ2
k

where λk, k = 1, . . . , n, are the eigenvalues of A.
This may a rather challenging problem, which is considerably simplified if we use a rather

concept, the trace of a square matrix. The trace of the matrix is just the sum of the elements
on its diagonal:

tr(A) =
n∑

k=1

akk

Two important properties of the trace are:

1Problems 3.14 and 3.15 are taken from the book by Searle, see end of chapter references.

24 LINEAR ALGEBRA

1. The trace is equal to the sum of the eigenvalues:

tr(A) =
n∑

k=1

λk

2. If we have symmetric matrices B and C

tr(BC) =
n∑

i=1

n∑

j=1

bijcij

i.e., the trace of BC is the sum of the elementwise product of B and C.

Since we have AT = A

tr(AT A) = tr(A2) =
n∑

i=1

n∑

j=1

aijaij =
n∑

i=1

n∑

j=1

a2
ij (3.1)

Furthermore, the eigenvalues of A2 are the squared eigenvalues of A. Indeed, if ui is an
eigenvector corresponding to eigenvalue λi of A, we have

A2ui = A(Aui) = λiAui = λ2
i ui

But the trace of A2 is the sum of its eigenvalues

tr(A2) =
n∑

i=1

λ2
i (3.2)

Putting Eqs. (3.1) and (3.2) together we obtain the result.

4
Descriptive Statistics: On the Way to

Elementary Probability

4.1 SOLUTIONS

Problem 4.1 You are carrying out a research about how many pizzas are consumed by
teenagers, in the age range from 13 to 17. A sample of 20 boys/girls in that age range is
taken, and the number of pizzas eaten per month is given in the following table:

If we work on the raw data

4 12 7 11 9 7 8 13 16 11
4 7 5 7 11 7 7 41 9 14

we obtain the mean as follows:

X =
4 + 12 + 7 + · · ·+ 14

20
= 10.5

We may also sort data

4 4 5 7 7 7 7 7 7 8
9 9 11 11 11 12 13 14 16 41

and find frequencies

Xi 4 5 7 8 9 11 12 13 14 16 41
fi 2 1 6 1 2 3 1 1 1 1 1

and compute

X =
2 × 4 + 1 × 5 + 6 × 7 + · · ·+ 1 × 16 + 1 × 41

20
= 10.5

Sorting data is useful to immediately spot the median:

m =
8 + 9

2
= 8.5

If we get rid of the largest observation (41), we obtain

X = 8.8947, m = 8

25

26 DESCRIPTIVE STATISTICS: ON THE WAY TO ELEMENTARY PROBABILITY

As we see, the median is less sensitive to outliers.
To find standard deviation:

20∑

i=1

X2
i = 42 + 122 + · · ·+ 142 = 3386

X
2

= 110.25

S2 =
1
19

(3386 − 20 × 110.25) = 62.1579

S =
√

62.1579 = 7.8840

Problem 4.2 The following table shows a set of observed values and their frequencies:

Value 1 2 3 4 5 6 7 8
Frequency 5 4 7 10 13 8 3 1

• Compute mean, variance, and standard deviation.

• Find the cumulated relative frequencies.

We have
8∑

k=1

fk = 5 + 4 + · · ·+ 3 + 1 = 51

observations; the relative frequencies pi are

0.0980, 0.0784, 0.1373, 0.1961, 0.2549, 0.1569, 0.0588, 0.0196

from which we immediately find the cumulative relative frequencies Pk =
∑k

j=1 pj

0.0980, 0.1765, 0.3137, 0.5098, 0.7647, 0.9216, 0.9804, 1.0000

To find mean, variance, and standard deviation:

X =
8∑

k=1

pkXk = 0.0980× 1 + 0.0784× 2 + · · ·+ 0.0196× 8 = 4.2353

S2 =
1
50

(
8∑

k=1

fkX2
k − 51X

2

)
=

1
50
(
5 × 1 + 4 × 22 + · · ·+ 1 × 82 − 51 × 4.23532

)
= 3.0635

S =
√

3.0635 = 1.7503

Problem 4.3 First we find frequencies, relative frequencies, and cumulative frequencies:

Xk fk pk Pk

2 3 0.1875 0.1875
3 2 0.125 0.3125
4 5 0.3125 0.625
5 2 0.125 0.75
6 3 0.1875 0.9375
8 1 0.0625 1

SOLUTIONS 27

The mean is
X = 3 × 2 + 2 × 3 + 5 × 4 + · · ·+ 1 × 8 = 4.25

The largest frequency, 5, is associated to the value 4, which is the mode.
To compute median and quartiles, it may be convenient to just sort the data:

Xk 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
fk 2 2 2 3 3 4 4 4 4 4 5 5 6 6 6 8

The median (which is also the second quartile) is the average of data in positions 8 and 9
(i.e., 4). The first quartile is the average of data in positions 4 and 5 (i.e., 3). The third
quartile is the average of data in positions 12 and 13 (i.e., 5.5).

Problem 4.4 Let us sort the observations

13.60, 14.30, 15.00, 15.20, 15.60, 16.10, 19.20, 20.10, 21.00, 21.10, 21.30, 22.20

The descriptive statistics are

X = 17.89, S = 3.19, m =
16.10 + 19.20

2
= 17.65

The mean and the median are not too different, so data are not much skewed.
We have X(8) = 20.1, i.e., that person is in position 8 out of 12. The percentile rank can

be calculated as
b + e

n
=

7 + 1
12

= 67%

where b is the number of observations “before” in the rank and e is the number of “equal”
observations. We may find a different value if we take another definition

b

b + a
=

7
7 + 4

= 63.63%

where a is the number of observations “after” in the rank.
The quartiles are

Q1 =
15.00 + 15.10

2
= 15.05, Q2 ≡ m = 17.65, Q3 =

21.00 + 21.50
2

= 21.05

To check the definition of the first quartile Q1, we observe that

1. There are at least 25×12
100

= 3 observations less than or equal to Q1 = 15.05 (i.e, 13.60
, 14.30, 15.00)

2. There are at least (100−25)×12
100

= 9 observations larger than or equal to Q1 = 15.05
(i.e, 15.20 , 15.60 , 16.10 , 19.20 , 20.10 , 21.00, 21.10 , 21.30, 22.20)

We observe that the above statements apply to both X(3) = 15.00 and X(4) = 15.20, and
we take their average.

If we use linear interpolations, the order statistic X(i) is associated with the percentile

100 × (i − 0.5)
12

, i = 1, . . . , 12

For instance, the percentile corresponding to X(1) = 13.60 is

100× 0.5
12

= 4.1667

28 DESCRIPTIVE STATISTICS: ON THE WAY TO ELEMENTARY PROBABILITY

By the same token, the next percentiles are

X(2) → 12.5000
X(3) → 20.8333
X(4) → 29.1667
X(5) → 37.5000
X(6) → 45.8333
X(7) → 54.1667
X(8) → 62.5000
X(9) → 70.8333

X(10) → 79.1667
X(11) → 87.5000
X(12) → 95.8333

To find the 90% percentile, we must interpolate between X(11) = 21.30 and X(12) = 22.20
as follows:

21.30 +
90.0000− 87.500
95.8333− 87.5000

× (22.20− 21.30) = 21.57

Problem 4.5 The first answer is obtained by taking the ratio between how many female
professors who had a hangover twice or more and the total number of female professors:

36
66 + 25 + 36

= 28.35%

The second answer is obtained by taking the ratio between the number of male professors
who had a hangover once or less and the total number of professors (male or female) who
had a hangover once or less:

61 + 23
61 + 23 + 66 + 25

= 48%

In Chapter 5, where we introduce the language of probability theory, we learn how to express
these questions in terms of conditional probabilities.

1. The first answer can also be written as

P {(≥ 2) |F} =
P {(≥ 2) ∩ F}

P(F)

where (≥ 2) is the event “the professor had twice or more hangovers” and F is the
event “the professor is female.” Since

P {(≥ 2) ∩ F} =
36
251

, P(F) =
66 + 25 + 36

251
where 251 is the total number of professors, we obtain the above result.

2. By the same token, the second answer can also be written as

P {M | (≤ 1)} =
P {M ∩ (≤ 1)}

P(M)

where (≤ 1) = (= 0) ∪ (= 1) is the event “the professor had one or less hangover,”
which is the union of the event “the professor had no hangover” and “the professor
had one hangover.”

5
Probability Theories

5.1 SOLUTIONS

Problem 5.1 Consider two events E and G, such that E ⊆ G. Then prove that P(E) ≤
P(G).

We may express G as the union of E and the part of G that does not intersect with E:

G = E ∪ (G\E)

Then, of course the two components are disjoint:

E ∩ (G\E) = ∅

and we may apply additive probability

P(G) = P(E) + P(G\E) ≥ P(E)

since P(G\E) ≥ 0.

Problem 5.2 From Bayes’ theorem we have

P(A |E) =
P(E |A)P(A)

P(E)
, P(B |E) =

P(E |B)P(B)
P(E)

Taking ratios
P(A |E)
P(B |E)

=
P(E |A)P(A)

P(E)
· P(E)
P(E |B)P(B)

=
P(E |A)
P(E |B)

under the assumption that P(A) = P(B).
This is an inversion formula in the following sense:

• The ratio P(E|A)P(A)
P(E)

gives the relative likelihood of A and B given the occurrence of
E.

• If we invert conditioning, we consider the probability of E given A or B, which is what
we need when we may observe A or B, but not E.

• The formula states that when P(A) = P(B) the second ratio is equal to the first one.

29

30 PROBABILITY THEORIES

Problem 5.3 In this case, it is necessary to lay down all of the events and the pieces of
information we have. We know that:

1. the event chooseA occurred, i.e., the participant selected box A

2. the event opC occurred, i.e., the presenter opened box C

3. the event notC occurred, the prize is not in box C (otherwise, the game would have
stopped immediately, and the participant could not switch from box A to box B)

Hence, we need the conditional probability P(A |chooseA∩opC∩notC). Using the definition
of conditional probability:

P(A |chooseA ∩ opC ∩ notC) =
P(A ∩ chooseA ∩ opC ∩ notC)

P(opC ∩ chooseA ∩ notC)

However, the event opC∩ chooseA is independent on the other events, as neither the partic-
ipant nor the presenter has any clue, and so their behavior is not influenced by knowledge
of the box containing the prize:

P(A ∩ chooseA ∩ opC ∩ notC) = P(chooseA ∩ opC) · P(A ∩ notC)
P(opC ∩ chooseA ∩ notC) = P(chooseA ∩ opC) · P(notC)

Therefore

P(A |chooseA ∩ opC ∩ notC) =
P(A ∩ notC)

P(notC)
=

P(A)
P(notC)

=
1/3
2/3

=
1
2

where we use the fact A ⊆ notC. Hence, the participant has no incentive to switch, as he
cannot squeeze any useful information out of the presenter’s behavior.

5.2 ADDITIONAL PROBLEMS

Problem 5.4 Each of two cabinets identical in appearance has two drawers. Cabinet A
contains a silver coin in each drawer; cabinet B contains a silver coin in one of its drawers
and a gold coin in the other. A cabinet is randomly selected, one of its drawers is opened,
and a silver coin is found. What is the probability that there is a silver coin in the other
drawer?

Problem 5.5 Disgustorama is a brand new food company producing cakes. Cakes may
suffer from two defects: incomplete leavening (which affects rising) and/or excessive baking.
The two defects are the result of two operations carried out at different stages, so they can
be considered independent. Quality is checked only before packaging. We know that the
first defect (bad leavening) occurs with probability 7% and the second one with probability
3%. Find:

• The probability that a cake is both dead flat and burned

• The probability that a cake is defective (i.e., it has at least one defect)

• The probability that a cake is burned, if we know that it is defective

SOLUTIONS OF ADDITIONAL PROBLEMS 31

5.3 SOLUTIONS OF ADDITIONAL PROBLEMS

Problem 5.4 One possible approach is based on Bayes’ theorem. Let A be the event “we
have picked cabinet A”; B is the event “we have picked cabinet B”. Since we select the
cabinet purely at random, a priori P(A) = P(B) = 0.5.

Now we have some additional information, and we should revise our belief by finding
the conditional probabilities P(A |S1) and P(B |S1), where S1 is the event “the first coin is
silver”.

Bayes’ theorem yields:

P(A |S1) =
P(S1 |A)P(A)

P(S1)
=

P(S |A)P(A)
P(S1 |A)P(A) + P(S1 |B)P(B)

=
1 × 0.5

1 × 0.5 + 0.5× 0.5
=

2
3

By the way, it may be useful to observe that P(S1) = 0.75, which may sense, as there are 3
silver coins and 1 gold coin. Then

P(B |S1) = 1 − P(A |S1) = 1
3 .

Now we may calculate

P(S2 |S1) = P(S2 |A) · P(A |S1) + P(S2 |B) · P(B |S1) = 1 × 2
3 + 0 × 1

3 = 2
3

The above solution is unnecessarily contrived, but it is a good illustration of a general
framework based on the revision of unconditional probabilities. In our case, we know that
the second coin is silver only if we picked cabinet A, so

P(S2 |S1) = P(A |S1) = 2
3

A quite straightforward solution is found by applying the definition of conditional prob-
ability:

P(S2 |S1) =
P(S2 ∩ S1)

P(S1)
=

P(A)
P(S1)

=
0.5
0.75

=
2
3

This is a smarter solution, even though it works only in this peculiar case and misses the
more general style of reasoning.

Problem 5.5 Let A1 be the event “incomplete leavening” and let Let A2 be the event
“excessive baking”:

P(A1) = 0.07, P(A2) = 0.03

By assumption, these events are independent.

1. We want P(A1 ∩ A2). Because of independence,

P(A1 ∩ A2) = P(A1) ·P(A2) = 0.07× 0.03 = 0.0021

2. We want P(A1 ∪ A2). Note that the two events are not disjoint (if they were, they
could not be independent!). Hence

P(A1 ∪ A2) = P(A1) + P(A2) − P(A1 ∩ A2) = 0.07 + 0.03− 0.0021 = 0.0979

3. We apply Bayes’ theorem to find the conditional probability

P(A2 |A1 ∪ A2) =
P(A1 ∪ A2 |A2) · P(A2)

P(A1 ∪ A2)
=

P(A2)
P(A1 ∪A2)

=
0.03

0.0979
= 0.3064

32 PROBABILITY THEORIES

After all, this solution is rather intuitive if we interpret probabilities as relative fre-
quencies; however, we prefer to use a more general and sound reasoning. Also note
that, in this case, we do not apply the usual theorem of total probability to find the
denominator of the ratio, as A1 and S2 are not independent.

6
Discrete Random Variables

6.1 SOLUTIONS

Problem 6.1 Clearly, variance is minimized when p = 0 or p = 1, i.e., when there is no
variability at all. In Chapter 6, we show that when x1 = 1 and x2 = 0, i.e., when we deal
with a standard Bernoulli variable, its variance is maximized for p = 0.5. Here we wonder
whether this applies to general values x1 and x2 as well.

One possible approach is to repeat the drill, write variance explicitely, and maximize it
with respect to p:

E[X] = px1 + (1 − p)x2 = p(x1 − x2) + x2

E2[X] = p2(x1 − x2)2 + 2p(x1 − x2)x2 + x2
2

E[X2] = px2
1 + (1 − p)x2

2 = p(x2
1 − x2

2) + x2
2

Var(X) = p(x2
1 − x2

2) + x2
2 − p2(x1 − x2)2 − 2p(x1 − x2)x2 − x2

2 ≡ σ2(p)

Applying the first-order condition

dσ2(p)
dp

= x2
1 − x2

2 − 2p(x1 − x2)2 − 2(x1 − x2)x2 = 0

we find

p =
x2

1 − x2
2 − 2x1x2 + 2x2

2

2p(x1 − x2)2
=

(x1 − x2)2

2p(x1 − x2)2
= 0.5

which is the same result as the standard Bernoulli variable. This is not surprising after all
and can be obtained by a more straightforward approach. Let us consider random variable

Y =
X − x2

x1 − x2

We see that when X = x1, Y = 1, and when X = x2, Y = 0. Hence, Y is the standard
Bernoulli variable, whose variance is maximized for p = 0.5. But by recalling the properties
of variance we see that

Var(Y) =
Var(X)

(x1 − x2)2

33

34 DISCRETE RANDOM VARIABLES

Since the two variances differ by a positive constant, they are both maximized for the same
value of p.

Problem 6.2 A much easier and insightful proof will be given in Chapter 8, based on
conditioning, but if we observe the expected value of the geometric random variable

E[X] =
∞∑

i=1

i(1 − p)i−1p = pS1

we see that the sum

S1 ≡
∞∑

i=1

i(1 − p)i−1

looks like the derivative of a geometric series. More precisely, if we let

S(p) ≡
∞∑

i=0

(1 − p)i =
1

1 − (1 − p)
=

1
p

term-by-term differentiation yields

S′(p) = −
∞∑

i=0

i(1 − p)i−1 = −
∞∑

i=1

i(1 − p)i−1 = −S1

Then

S1 = − d

dp

(
1
p

)
=

1
p2

and
E[X] = p

1
p2

=
1
p

Problem 6.3 The binomial expansion formula is

(a + b)n =
n∑

k=0

(
n

n − k

)
an−kbk

and we want to prove that
n∑

k=1

pk = 1

where

pk ≡ P(X = k) =
(

n

k

)
pk(1 − p)n−k

Now it is easy to see that
(

n

k

)
=

n!
(n − k)!k!

=
n!

(n − k)![n− (n − k)]!
=
(

n

n − k

)

Hence
n∑

k=1

pk =
n∑

k=0

(
n

n − k

)
pk(1 − p)n−k = (1 − p + p)n = 1

SOLUTIONS 35

Problem 6.4 Measuring profit in $ millions, if the probability of success is p, expected
profit is

p × 16 − (1 − p) × 5 = p × 21 − 5

If we launch the product immediately, then p = 0.65 and expected profit is $8.65 million. If
we delay, expected profit is, taking the additional cost and the time discount into account

−1 +
p × 21 − 5

1.03

We are indifferent between the two options if

−1 +
p × 21 − 5

1.03
= 8.65 ⇒ p =

(1 + 8.65)× 1.03 + 5
21

= 0.7114

Then, the minimal improvement in success probability is

∆ = 0.7114− 0.65 ≈ 6.14%

Problem 6.5 If we assume that the persons we test are independent (i.e., we do not
consider groups of heavy drinkers...), we are dealing with a binomial random variable with
parameters p = 0.4 and n = 25:

P(X ≥ 4) = 1 − P(X ≤ 3)
= 1 − [P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)]

P(X = 0) = 0.625 = 2.8430 · 10−6

P(X = 1) =
(

25
1

)
0.41 × 0.624 = 25 × 0.41 × 0.624 = 4.7384 · 10−5

P(X = 2) =
(

25
2

)
0.42 × 0.623 =

25 × 24
2

× 0.42 × 0.623 = 3.7907 · 10−4

P(X = 3) =
(

25
3

)
0.43 × 0.622 =

25 × 24 × 23
2 × 3

× 0.43 × 0.622 = 0.001937

which yields
P(X ≥ 4) = 0.99763

Problem 6.6 Assuming that batteries in a package are independent (which is in fact a
debatable assumption), we are dealing with a binomial random variable with parameters
p = 0.02 and n = 8. The probability that a package is returned is

Pbad = 1 − P(X = 0) − P(X = 1) = 1 − 0.988 − 8 × 0.02× 0.087 = 0.010337

If the consumer buys three packages, the number of returned packages is binomial with
parameters p = Pbad and n = 3:

P(Y = 1) = 3 × Pbad × (1 − Pbad)2 = 0.030379

7
Continuous Random Variables

7.1 SOLUTIONS

Problem 7.1 We want to find P(X > 200), where X ∼ N (250, 402). Using standardiza-
tion:

P(X > 200) = P
(

X − 250
40

>
200 − 250

40

)

= P (Z > −1.25)

where Z is standard normal. Depending on the tool you have at hand, there are different
ways of evaluating P (Z > −1.25):

• If you have software for evaluating the CDF Φ(z) = P(Z ≤ z)

P (Z > −1.25) = 1 − Φ(−1.25) = 1 − 0.1056 = 0.8944

• If you have statistical tables, you will typically find Φ(z) only for nonnegative values of
z; in such a case, take advantage of the symmetry of the PDF of the standard normal:

P (Z > −1.25) = P (Z ≥ 1.25) = Φ(1.25) = 0.8944

Whatever you do, check the sensibility of your result! Since 200 is smaller than the expected
value 250, we must find a probability that is larger than 0.5.

Problem 7.2 Using standardization again:

P(230 ≤ X ≤ 260) = P
(

230− 250
20

≤ X − 250
20

≤ 260 − 250
20

)

= P (−1 ≤ Z ≤ 0.5)
= Φ(0.5) − Φ(−1)
= 0.6915− 0.1587 = 0.5328

The considerations we stated for problem 1.1 apply here as well.

37

38 CONTINUOUS RANDOM VARIABLES

Problem 7.3 We should set the reorder point R for an item, whose demand during lead
time is uncertain. We have a very rough model of uncertainty – the lead time demand is
uniformly distributed between 5000 and 20000 pieces. Set the reorder point in such a way
that the service level is 95%.

In this case, we must find a quantile from the uniform distribution on [5000, 20000]. Such
a quantile can be easily obtained by finding a value “covering” 95% of the interval:

R = 5000 + (20000− 5000) × 0.95 = 19250

Problem 7.4 You are working in your office, and you would like to take a very short
nap, say, 10 minutes. However, every now and then, your colleagues come to your office
to ask you for some information; the interarrival time of your colleagues is exponentially
distributed with expected value 15 minutes. What is the probability that you will not be
caught asleep and reported to you boss?

The time until the next visit by a colleague is an exponentially distributed random variable
X with rate λ = 1/15. The required probability is

P(X ≤ 10)

that may be obtained by recalling the CDF of the exponential distribution, FX(x) = 1−e−λx.
In our case

P(X ≤ 10) = 1 − e−
10
15 = 0.4866

As an equivalent approach, we may integrate the PDF fX (x) = λe−λx:

P(X ≤ 10) =
∫ 10

0

1
15e−

x
15 dx = −e−

x
15

∣∣∣
10

0
= −e−

10
15 − (−e−

0
15) = 0.4866

Problem 7.5 We know that virtually all of the realizations of a normal variable are in
the interval (µ − 3σ, µ + 3σ). Since we are representing demand (which is supposed to be
positive, unless you are very bad with marketing), we should make sure that the probability
of a negative demand is a negligible modeling error.

In our case, 12000 − 3 × 7000 = −9000; hence, there is a nonnegligible probability of
negative demand, according to the normal model. Indeed:

P(D ≤ 0) = P
(

Z ≤ 0 − 12000
7000

)
= Φ(−1.7143) = 4.32%

Therefore, the model does not look quite reasonable. Please note that it is quite plausible
that demand has expected value 12000 and standard deviation 7000; we are just observing
that it cannot be normally distributed; for instance, it could well be skewed to the right.

Problem 7.6 Let X be a normal random variable with expected value µ = 6 and standard
deviation σ = 1. Consider random variable W = 3X2. Find the expected value E[W] and
the probability P(W > 120).

We recall that Var(X) = E[X2] − E2[X]. Then

E[W] = E[3X2] = 3(Var(X) + E2[X]) = 3 × (12 + 62) = 111

The probability is a little trickier because of a potential trap: It is tempting to write

P(W > 120) = P(3X2 > 120) = P(X >
√

40)

SOLUTIONS 39

where we take the square root of both sides of inequality. but this is not quite correct, as
we are not considering the possibility of large negative values of X. Indeed,

√
X2 =|X |.

Hence
P(W > 120) = P(X >

√
40) + P(X < −

√
40).

Using the familiar drill:

P(X >
√

40) = 1 − Φ
(

6.3246− 6
1

)
= 0.3728

P(X < −
√

40) = Φ
(
−6.3246− 6

1

)
= Φ(−12.3246) ≈ 0

Hence, P(W > 120) = 37.28%. In this lucky case, the above error would be inconsequential.

Problem 7.7 Let us denote the inventory level after replenishment by I, and the demand
of customer i by Di. We know that I ∼ N (400, 402), E[Di] = 3, and Var(Di) = 0.32. The
total demand, if we receive N customer orders, is

D =
N∑

i=1

Di

If we assume that customer demands are independent, and N is large enough, the central
limit theorem states that

D ∼ N (3N, 0.32N)

The probability of a stockout is given by

P (D > I)

and we should find N such that

P

(
N∑

i=1

Di > I

)
> 0.1

or, equivalently
P (YN ≤ 0) < 0.9

where YN =
∑N

i=1 Di − I.
We know that YN is normal, and we need its parameters:

µN = 3N − 400

σN =
√

0.32N + 402

To find N , which is integer, let us allow for real values and find n such that

P (Yn ≤ 0) = 0.9

which means that the 90% quantile of Yn should be 0. Since z0.9 = 1.2816, we must solve
the equation:

(3n − 400) + 1.2816
√

0.32n + 402 = 0

which is equivalent to
8.8522n2 − 2400n + 157372.20 = 0

whose solutions are
n1 = 116.19, n2 = 150.49

Hence, taking the smaller root and rounding it up, we find N = 117.

40 CONTINUOUS RANDOM VARIABLES

Problem 7.8 We know that a chi-square variable with n degrees of freedom is the sum of
n independent standard normals squared:

X =
n∑

i=1

Z2
i

Then

E[X] =
n∑

i=1

E[Z2
i] = nE[Z2] = n(Var(Z) + E2[Z]) = n,

since the expected value of the standard normal Z is 0 and its variance is 1.

Problem 7.9 This is a little variation on the classical newsvendor’s problem. Usually,
we are given the economics (profit margin m and cost of unsold items cu), from which we
obtain the optimal service level β, and then the order quantity Q. Here we go the other way
around:

Q = µ + zβσ ⇒ zβ =
Q − µ

σ
=

15000− 10000
2500

= 2

From the CDF of the standard normal we find

β = Φ(2) = 0.9772 =
m

m + c

In our case m = 14 − 10 = 4 and cu = 10 − b, where b is the buyback price. Hence

4
4 + (10− b)

= 0.9772 ⇒ b = 14 − 4
0.9772

= 9.9069

We see that the manufacturer should bear the whole risk, which is not surprising since she
requires a very high service level (97.72%).

Problem 7.10

• If the probability that the competitor enters the market is assumed to be 50%, how
many items should you order to maximize expected profit? (Let us assume that selling
prices are the same in both scenarios.)

• What if this probability is 20%? Does purchased quantity increase or decrease?

The service level must be

β =
m

m + cu
=

16 − 10
(16 − 10) + (10 − 7)

=
2
3

The only difficulty in this problem is figuring out the PDF of the demand, which is given in
Fig. 7.1.

Roughly speaking, we have two scenarios:

1. If the competition is strong, the PDF is the uniform distribution on the left

2. If the competition is weak, the PDF is the uniform distribution on the right

Since the probability of strong competition is 50%, the two areas are the same, which implies
that the value of the density is 1/2000. Note that the two pieces do not overlap, which makes

SOLUTIONS 41

100 1100 1200 2200

1/2000

x

f xX)(

Fig. 7.1 PDF of demand in Problem 7.10.

the reasoning easy. Since β > 0.5, we must take a quantile in the second range, between
1200 and 2200: the area within the second rectangle must be

2
3 − 0.5 = 1

6

and we must be careful, as the area in this second rectangle is only 0.5 (the PDF is 1/2000
and not 1/1000):

Q = 1200 + 1
6 × (2200− 1200)× 1

0.5 ≈ 1533

In the second case, the reasoning is quite similar, but now the rectangle on the left has
“weight” 0.2, rather than 0.8:

Q = 1200 + (2
3
− 0.2)× (2200− 1200)× 1

0.8
≈ 1783

A couple of observations are in order:

1. A common mistake is finding the optimal order quantities in the two scenarios and
then taking their average. This is conceptually wrong, as it amounts to

• finding the optimal solution assuming that we know what the competition is going
to do

• taking the average of the two optimal solutions for the two alternative scenarios

This is not correct, as we have to make a decision before we discover what competitors
choose.

2. We have found the PDF of the demand a bit informally, which worked well as the two
intervals are disjoint. A sounder reasoning is based on finding the CDF first, by ap-
plying the total probability theorem and conditioning with respect to the competition
level (strong or weak):

FX (x) ≡ P(D ≤ x) = 0.5× P(D ≤ x | strong) + 0.5× P(D ≤ x |weak)

But

P(D ≤ x | strong) =





0 x < 100
x−100
1000 0 ≤ x ≤ 1100

1 x > 1100

P(D ≤ x |weak) =





0 x < 1200
x−1200

1000 1200 ≤ x ≤ 2200
1 x > 2200

Adding everything up, we obtain the CDF in Fig. 7.2. Taking its derivative, we find
the PDF above.

42 CONTINUOUS RANDOM VARIABLES

100 1100 1200 2200

1

0.5

x

F x
X

)(

Fig. 7.2 CDF of demand in Problem 7.10.

Problem 7.11 Let us write the CDF FX(x):

FX(x) ≡ P(X ≤ x)
= P(max{U1, U2, . . . , Un} ≤ x)
= P(U1 ≤ x, U2 ≤ x, . . . , Un ≤ x)
= P(U1 ≤ x) · P(U2 ≤ x) · · ·P(Un ≤ x)

where we take advantage of independency among the random variables Ui, i = 1, . . . , n. We
also know that all of them are uniform on the unit interval, and P(U ≤ x) = x, for x ∈ [0, 1].

Therefore

FX(x) = [P(U ≤ x)]n = xn

Observation: As you see, the statement of the problem is not quite correct, as FX (x) =
xn for x ∈ [0, 1], whereas FX(x) = 1 for x > 1 and FX(x) = 0 for x < 0.

8
Dependence, Correlation, and Conditional

Expectation

8.1 SOLUTIONS

Problem 8.1 To solve the problem we need to characterize the aggregate demand we see
at the central warehouse:

DC = D1 + D2

where D1 and D2 are not independent, since they are affected by a common risk factor X.
Rather than computing their covariance, since we have independent factors X, ε1, and ε2,
it is much easier to rewrite aggregate demand as

DC = (100 + 120)X + ε1 + ε2

This demand is normal, with expected value

µC = 220µX + µ1 + µ2 = 220 × 28 + 200 + 300 = 6660

and standard deviation

σC =
√

2202σ2
X + σ2

1 + σ2
2 =

√
2202 × 16 + 100 + 150 = 880.14

The inventory level should be chosen as

Q = µC + z0.95σC = 6660 + 1.6449× 880.14 ≈ 8108

If the two specific factors are positively correlated, standard deviation is larger:

σC =
√

2202σ2
X + σ2

1 + σ2
2 + 2ρ1,2σ1σ2

This implies a larger stocking level, needed to hedge against some more uncertainty; however,
with these numbers, the effect would be negligible, as the most variability comes from the
common factor X.

43

44 DEPENDENCE, CORRELATION, AND CONDITIONAL EXPECTATION

Problem 8.2 We just need to find the distribution of the demand DC for component C,
which depends on demands D1 and D2 for end items P1 and P2, respectively:

DC = 2D1 + 3D2

Since D1 and D2 are normal, so is DC , and its expected value and standard deviation are:

µC = E[DC] = 2E[D1] + 3E[D2] = 2 × 1000 + 3 × 700 = 4100

σC =
√

Var(DC) =
√

4Var(D1) + 9Var(D2)

=
√

4 × 2502 + 9 × 1802 = 735.9348

The inventory level is the 92% quantile of this distribution:

Q = µC + z0.92σC = 4100 + 1.4051× 735.9348 = 5134.04

Problem 8.3 Let RIFM and RPM be the rates of return from the two stocks, over one day.
Loss is

L = −(10000 × RIFM + 20000× RPM)

where the sign is inconsequential as we assume that expected return over one day is 0% and
the normal distribution is symmetric. We need the standard deviation of the distribution of
loss:

σL =
√

(10000σIFM)2 + (20000σPM)2 + 2ρ × 10000σIFM × 20000σPM

=
√

(10000× 0.02)2 + (20000× 0.04)2 + 2 × 0.68× 10000× 0.02× 20000× 0.04
= 947.42

Since z0.95 = 1.6449:
VaR0.95 = 1.6449× 947.42 = $1558.36

A little discussion. Note that for each individual position we have:

VaR0.95,IFM = 1.6449× 10000× 0.02 = $328.97
VaR0.95,PM = 1.6449× 20000× 0.04 = $1315.88

We see that

VaR0.95,IFM + VaR0.95,PM = 328.97 + 1315.88 = 1644.85 > 1558.36

The sum of the two individual risks does exceed the joint risk, but not by much, since there
is a fairly strong positive correlation. In real life, correlations do change dramatically when
markets crash, going either to +1 or to -1. So, the power of diversification must not be
overstated when managing tail risk, not to mention the fact that normal distribution do not
feature the negative skewness and excess kurtosis that we observe in actual data.

Problem 8.4 Note: There is an error in the statement of the problem, as the two
variables X and Y must be identically distributed but not necessarily independent.

One way of proving the claim is by taking advantage of the distributive property of
covariance:

Cov(X − Y, X + Y) = Cov(X, X + Y) − Cov(Y, X + Y)
= Cov(X, X) + Cov(X, Y) − Cov(Y, X) − Cov(Y, Y)
= Var(X) − Var(Y) = 0

SOLUTIONS 45

since the two variances are the same.
Alternatively, we may rewrite covariance as follows:

Cov(X − Y, X + Y) = E[(X − Y)(X + Y)] − E[X − Y]E[X + Y]

= E[X2 − Y 2] − E[X − Y]E[X + Y].

But, since X and Y are identically distributed,

E[X2 − Y 2] = 0, E[X − Y] = 0,

and the claim follows.

9
Inferential Statistics

9.1 SOLUTIONS

Problem 9.1 Finding the confidence interval is easy. We first find the sample statistics

X =
1
18

18∑

i=1

Xi = 133.2222,

S =

√√√√ 1
17

(
18∑

i=1

X2
i − 18X

2

)
= 10.2128.

Then, given the relevant quantile t1−α/2,N−1 = t0.975,17 = 2.1098, we find

X ± t1−α/2,N−1
S√
N

= (128.1435, 138.3009) .

These calculations are easy to carry out in R:

> X = c(130,122,119,142,136,127,120,152,141,132,127,118,150,141,133,137,129,142)

> Xbar = mean(X); Xbar

[1] 133.2222

> S = sd(X); S

[1] 10.21277

> t = qt(0.975,17); t

[1] 2.109816

> Xbar-t*S/sqrt(18)

[1] 128.1435

> Xbar+t*S/sqrt(18)

[1] 138.3009

A much better approach is to use the following function:

> t.test(X)$conf.int

47

48 INFERENTIAL STATISTICS

[1] 128.1435 138.3009

attr(,"conf.level")

[1] 0.95

This can also be carried out in MATLAB:

>> X=[130,122,119,142,136,127,120,152,141,132,127,118,150,141,133,137,129,142];

>> [Xbar,~,CI]=normfit(X)

Xbar =

133.2222

CI =

128.1435

138.3009

It is interesting to note that the MATLAB function makes pretty explicit a hidden as-
sumption: This way of calculating confidence intervals is correct for a normal sample. For
other distributions, it is at best a good approximation, at least for a large sample size.

The second part of the problem requires a bit more thought, as it refers to a single
realization of the random variable X ∼ N(µ, σ2). We want to find

P {X > 130} = P
{

X − µ

σ
>

130 − µ

σ

}
1− P

{
Z ≤ 130− µ

σ

}
= 1 − Φ

(
130 − µ

σ

)
,

where Z ∼ N(0, 1) is standard normal and Φ is its CDF. One possibility is to plug the sample
statistics above:

P {X > 130} = 1 − Φ
(

130− 133.2222
10.21277

)
= 1 − 0.3762 = 0.6238.

The calculation is straightforward in R:

> 1-pnorm(130,mean(X),sd(X))

[1] 0.6238125

Note, however, that we are plugging our estimates of µ and σ as if they were exact.
However, the sample statistics are realizations of random variables; hence, strictly speaking,
the above calculation is only an approximation (see Section 10.4 for a full illustration in the
case of linear regression models used for forecasting). However, we use it for the sake of
simplicity in order to illustrate the difference between a purely data-driven analysis and the
fitting of a theoretical uncertainty model. Indeed, one could argue that the above probability
can be estimated by just counting the number of observations that are larger than 130. There
are ten such cases (not counting the first observation), therefore we could use the estimate:

10
18

= 0.5556.

If we interpret “larger” in the non-strict sense and include the first observation, we find

11
18

= 0.6111,

which is much closer to the result obtained by fitting a normal distribution. Clearly, with
a small sample the discrete nature of data may have an impact, whereas P{X > 130} =
P{X >= 130} in the continuous case. Arguably, with a larger dataset, we would get a more

SOLUTIONS 49

satisfactory result, without relying on any distributional assumption (who said that IQs are
normally distributed?).

However, what is the probability of observing an IQ larger than 152? Using the data, the
answer is zero, since there is no larger observation than 152. However, using a theoretical
distribution with an infinite support, like the normal, we may, in some sense, “append a
tail” to the dataset. In our case, the probability is not quite negligible:

> 1-pnorm(max(X),mean(X),sd(X))

[1] 0.03298284

This kind of reasoning is essential when we deal with risk management, where we are
concerned with extreme events.

Problem 9.2 The confidence interval is

X ± t1−α/2,N−1
S√
N

= 13.38± 2.093024× 4.58√
20

= (11.23649, 15.52351) .

The quantile is found in R by using the command

> qt(0.975,19)

[1] 2.093024

whereas in MATLAB we may use

>> tinv(0.975,19)

ans =

2.0930

This is the same function name as in Excel, but if you are using Excel you need to use
the total probability of the two tails: TINV(0.05,19).

If we increase the sample size to N ′ = 50, both X and S will change, since we use a
different sample. If we assume that S does not change significantly, we may say that the
new half-length of the confidence interval is about

2.093024× 4.58√
50

.

This means that the half-length is shrunk by a factor
√

50
20

= 1.581139.

If we double the sample size, all other things being equal, we shrink the interval by a factor√
2. If we aim at gaining one decimal digit of precision, which is obtained by shrinking

the interval by a factor 10, we must multiply the sample size by 100. This explains why
sampling methods, such as Monte Carlo methods, may be rather expensive (e.g., in terms
of computational effort).

Problem 9.3 The confidence interval is

128.37± 2.235124× 37.3√
50

= (116.5797, 140.1603),

where we use the quantile t0.985,49 = 2.235124. By the way, note that the corresponding
standard normal quantile is z0.985 = 2.17009; this shows that the usual rule of thumb, stating

50 INFERENTIAL STATISTICS

that when we have more than 30 degrees of freedom, we can use the standard normal
quantiles is just an approximation, possibly justified in the past, given the limitations of
statistical tables.

The confidence interval length is

2t0.985,49
S√
N

= 23.58063.

If we assume that the sample standard deviation S will not change too much when additional
observations are collected, in order to reduce the confidence interval by 50% we should find
N ′ such that

t0.985,N ′−1
S√
N ′

=
23.58063

2 × 2
= 5.895157.

Solving for N ′ is complicated by the fact N ′ also defines the t quantile. If we use the
standard normal quantile z0.985 = 2.17009, we get rid of this dependence on N ′ and find

N ′ =
(

2.17009× 37.3
5.895157

)2

= 188.5309,

i.e., we need about 134 more observations. If we use the quantile t0.985,49 = 2.235124, we
stay on the safe side and find

N ′ =
(

2.235124× 37.3
5.895157

)2

= 200.

This result is obvious: If we keep all other factors unchanged, halving the confidence intervals
requires

√
N ′ = 2

√
N , which implies N ′ = 4N .

The formula

N =
(

z1−α/2S

H

)2

where H is the half-lenght of the confidence interval is useful when we want to prescribe a
maximum error β. More precisely, we might require that

|X − µ |< β,

with probability 1−α. This can be translated into the requirement H =|X−µ |. Clearly, we
need a pilot sample in order to figure out S. Typically, a large sample is required, warranting
the use of z quantiles. Then, we may check N and see if we can afford that sample size; if
not, we must settle for a less precise estimate.

Problem 9.4 The estimator is in fact unbiased:

E
[
X̃
]

= E
[

1
N

(
1
2
X1 +

3
2
X2 +

1
2
X3 +

3
2
X4 + · · ·+ 1

2
XN−1 +

3
2
XN

)]

=
1
N

N/2∑

k=1

E
[
1
2
Xk +

3
2
Xk+1

]

=
1
N

(
1
2

+
3
2

)N/2∑

k=1

E [X]

=
1
N

· 2 · N

2
· E [X] = µ,

SOLUTIONS 51

where we have used the fact that the sample consists of an even number of i.i.d. observations.
By the same token, we find

Var
(
X̃
)

=
1

N2

N/2∑

k=1

Var
(

1
2
Xk +

3
2
Xk+1

)

=
1

N2
·
(

1
4

+
9
4

)
· N

2
· σ2 = 1.25σ2.

This variance is larger than the variance σ2/N of the usual sample mean. Hence this is an
unbiased estimator, but not ane efficient one (see Definition 9.16).

Problem 9.5 The key issue in this kind of problems is to get the null hypothesis right.
A fairly common source of mistakes is to identify the null hypothesis with what we wish to
prove. Per se, this is not a mistake. In nonparametric tests of normality, we have to take
as the null hypothesis that the distribution is normal; otherwise, we have no idea of how to
choose a test statistic and study its distribution to come up with a rejection region.

In this case, it is tempting to choose H0 : µ ≥ 1250. However, this makes no sense, since
the rejection region would be the left tail, where the test statistic

T =
X − 1250
S/

√
N

is very negative. In other words, we are lead to “accept” the hypothesis of an improvement
even when the performance in the sample is worse than the old average. The point is that
we can really only reject the null hypothesis (note that this is an intrinsic limitation of this
simple testing framework). Thus, we should test the null hypothesis H0 : µ ≤ 1250, i.e., the
hypothesis that nothing interesting is happening, against the alternative H0 : µ ≤ 1250.

Having said this, this problem is actually solved in the text (see Example 9.14) and was
included in the problem list by mistake! See Problem 9.6 for another example.

Problem 9.6 We should test the null hypothesis that no improvement occurred

H0 : µ ≥ 29

agains the alternative
Ha : µ < 29.

Thus, we may say that there is strong evidence of an improvement if the test statistic

T =
X − µ0

S/
√

N
=

26.9− 29
8/

√
20

= −1.173936

is sufficiently negative, in such a way that the apparent improvement cannot be attributed to
a lucky random sample. If we choose α = 0.05, the relevant quantile for this one-tailed test,
with rejection region on the left tail, is t0.05,19 = −1.729133. Unfortunately, the standardized
test statistic is not negative enough to support the hypothesis of an improvement, as we fail
to reject the null hypothesis.

To put it another way, a t distributed random variable T19 with 19 degrees of freedom
has a probability

P{T19 ≤ −1.173936} = 0.1274632

of being less than or equal to the observed test statistic T . This is the p-value, and it is too
large to safely reject the null hypothesis.

52 INFERENTIAL STATISTICS

Problem 9.7 The two samples are independent and large enough to warrant application
of the approach described in Example 9.16. The relevant statistics are

X1 − X2 = 8.2− 9.4 = −1.2, SX1−X2
=

√
2.12

46
+

2.92

54
= 0.5016077.

The test statistic for the null hypothesis H0 : µ1 − µ2 = 0 is

Z =
−1.2

0.5016077
= −2.392308.

We may compute the p-value

2P{Z ≥|−2.392308 |} = 0.0167428,

which is indeed fairly small (we reject the null hypothesis for any significance level larger
than 2%) and justifies rejection of the null hypothesis. There seems to be a statistically
significant difference between the two machines.

Problem 9.8 Here the two samples are related, and we should use a paired t-test. We
take the difference between performance at the beginning and after 3 hours, which yields
the sample

11, 11,−3, 25,−1, 30, 32, 36, 12, 29.

Note that positive values of these differences suggest a deterioration of performance (the
larger, the index, the better). The sample mean and sample standard deviations of these
differences are are

D = 18.2000, SD = 14.0222.

We test the null hypothesis H0 : µD ≤ 0 against the alternative Ha : µD > 0 (i.e., there is a
significant effect of weariness). The test statistic is

T =
18.2

14.0222/
√

10
= 4.1045.

With α = 0.05, we compare T against t0.95,9 = 1.833113 and reject the null hypothesis. We
may also compute the p-value

P{T9 ≥ 4.1045} = 0.001329383,

which is small enough to rekect the null hypothesis and conclude that the effect of weariness
is statistically significant.

We may carry out the test quite conveniently in R:

> X1 = c(68, 64, 69, 88, 72, 80, 85, 116, 77, 78)
> X2 = c(57, 53, 72, 63, 73, 50, 53, 80, 65, 49)
> help(t.test)
starting httpd help server ... done
> t.test(X1,X2,paired=TRUE,alternative="greater")

Paired t-test

data: X1 and X2
t = 4.1045, df = 9, p-value = 0.001329

SOLUTIONS 53

alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
10.07159 Inf

sample estimates:
mean of the differences

18.2

Problem 9.9 We have to apply formula (9.20) in the text, which requires the following
quantitities:

S =

√√√√ 1
10

(
10∑

k=1

X2
i − 10X

2

)
= 10.6192, χ2

0.025,9 = 2.7004, χ2
0.975,9 = 19.0228.

The confidence interval for variance is
(

(n − 1)S2

χ2
0.975,9

,
(n − 1)S2

χ2
0.025,9

)
= (7.3042, 19.0228).

Taking square roots, we find the interval for standard deviation

(53.3518, 375.8342).

We may carry out the calculations in MATLAB, for instance:

>> X=[103.23; 111.00; 86.45; 105.17; 101.91;
92.15; 97.40; 102.06; 121.47; 116.62];
>> S=std(X)
S =

10.6192
>> chi2=chi2inv(0.025,9)
chi2 =

2.7004
>> chi1=chi2inv(0.975,9)
chi1 =

19.0228
>> sqrt(9*S^2/chi1)
ans =

7.3042
>> sqrt(9*S^2/chi2)
ans =

19.3864

A more direct way relies on normfit, which yields a point estimator and a confidence
interval for both expected value and standard deviation, assuming a normal sample:

>> [mu,sig,cm,cs]=normfit(X’)
mu =

103.7460
sig =

10.6192
cm =

54 INFERENTIAL STATISTICS

96.1495
111.3425

cs =
7.3042

19.3864
>>

Problem 9.10 The point estimator of the parameter p of the corresponding Bernoulli
distribution is

p̂ =
63

1000
= 0.063,

and an approximate confidence interval is (using the normal quantile z0.995 = 2.5758)
(

p̂ ± z1−α/2

√
p̂(1 − p̂)

n

)
=

(
0.063± 2.5758

√
0.063× (1 − 0.063)

1000

)
= (0.0432, 0.0828) .

As stated in the text (Section 9.4.3), this is just an approximation, in that we are ap-
proximating a binomial distribution by a normal one.

A more sophisticated approach is actually taken in R, where a confidence interval for p
is given by the function prop.test:

> prop.test(63,1000,conf.level=0.99)

1-sample proportions test with continuity correction

data: 63 out of 1000, null probability 0.5
X-squared = 762.129, df = 1, p-value < 2.2e-16
alternative hypothesis: true p is not equal to 0.5
99 percent confidence interval:
0.04552120 0.08638302

sample estimates:
p

0.063

Problem 9.11 Let us recall the definitions first:

X i· ≡
1
n

n∑

j=1

Xij, i = 1, 2, . . ., m,

X ·· ≡
1

nm

m∑

i=1

n∑

j=1

Xij ,

SSb ≡ n

m∑

i=1

(
X i· − X ··

)2
,

SSw ≡
m∑

i=1

n∑

j=1

(
Xij − X i·

)2
,

where Xij is observation j, j = 1, . . . , n, of group i, i = 1, . . . , m.
A typical trick of the trade when dealing with this kind of proofs is to add and subtract the

same quantity in order to come up with different sums of squares (and possibly completing

SOLUTIONS 55

the squares if necessary). Let us rewrite SSw as follows and develop the squares:

SSw =
m∑

i=1

n∑

j=1

[
(Xij − X ··) − (Xi· − X ··)

]2

=
m∑

i=1

n∑

j=1

(Xij − X ··)2 +
m∑

i=1

n∑

j=1

(X i· − X ··)2 − 2
m∑

i=1

n∑

j=1

(Xij − X ··)(X i· − X ··)

The three terms of the sum can be rewritten as follows:
m∑

i=1

n∑

j=1

(Xij − X ··)2 =
m∑

i=1

n∑

j=1

X2
ij +

m∑

i=1

n∑

j=1

X
2
·· − 2

m∑

i=1

n∑

j=1

XijX ··

=
m∑

i=1

n∑

j=1

X2
ij + nmX

2
·· − 2X ·· · nmX ··

=
m∑

i=1

n∑

j=1

X2
ij − nmX

2
··

m∑

i=1

n∑

j=1

(X i· − X ··)2 = n

m∑

i=1

(Xi· − X ··)2

= SSb

m∑

i=1

n∑

j=1

(Xij − X ··)(X i· − X ··) =
m∑

i=1

(X i· − X ··)




n∑

j=1

(Xij − X ··)




=
m∑

i=1

(X i· − X ··)(nX i· − nX ··)

= n

m∑

i=1

(Xi· − X ··)2 = SSb.

By putting everything together, we prove the result:

SSw =
m∑

i=1

n∑

j=1

X2
ij − nmX

2
·· − SSb.

Problem 9.12 We apply one-way ANOVA, as in example 9.24.
The three sample means for the three groups are

X1· =
1445.44

5
= 289.09

X2· =
1198.12

5
= 239.62

X3· =
1358.81

5
= 271.76,

and the overall sample mean is
X ·· = 266.82.

Given the variability in the data, we may guess that the difference in the sample means is
not enough to reject the null hypothesis H0 : µ1 = µ2 = µ3, but a proper check is in order.

56 INFERENTIAL STATISTICS

We calculate the sums of squares

SSb = 5 ×
[
(289.09− 266.82)2 + (239.62− 266.82)2 + (271.76− 266.82)2

]
= 6299.55

SSw =
5∑

i=1

3∑

j=1

X2
ij − 5 × 3 × 266.822 − 6299.55 = 175226.23.

The two estimates of variance are then, accounting for the degrees of freedom,

SSb/2 = 3149.77, SSw/(15 − 3) = 14602.19,

and the test statistic is

TS =
3149.77
14602.19

= 0.2157.

The relevant quantile of the F distribution, if we assume a 5% significance level, is

F0.95,2,12 = 3.8853,

so that the test statistic is not in the rejection region. We cannot say that there is any
statistically significant difference in the three groups. We may also find the p-value

P{F2,12 ≥ 0.2157} = 1 − P{F2,12 ≤ 0.2157} = 1 − 0.1910 = 0.8090,

which is way too large to reject H0.
All of this is conveniently carried out in MATLAB as follows:

X = [82.31, 240.80, 181.55
160.98, 228.27, 188.83
230.84, 278.73, 334.07
522.06, 278.16, 326.81
449.25, 172.16, 327.55];

>> [p,tab]=anova1(X)

p =
0.8090

tab =
’Source’ ’SS’ ’df’ ’MS’ ’F’ ’Prob>F’
’Columns’ [6.2995e+03] [2] [3.1498e+03] [0.2157] [0.8090]
’Error’ [1.7523e+05] [12] [1.4602e+04] [] []
’Total’ [1.8153e+05] [14] [] [] []

In Excel, we may just place data in a worksheet and apply one-way ANOVA in the Data
Analysis tool, as shown in the figures below:

SOLUTIONS 57

Using R is a bit more cumbersome, as we must set up a dataframe and fit a model
explaning output as a function of input factors:

> v1=c(82.31, 160.98, 230.84, 522.06, 449.25)
> v2=c(240.80, 228.27, 278.73, 278.16, 172.16)
> v3=c(181.55, 188.83, 334.07, 326.81, 327.55)
> output=c(v1,v2,v3)
> group=c(rep("g1",5),rep("g2",5),rep("g3",5))
> data=data.frame(output,group)
> summary(aov(output~group,data=data))

Df Sum Sq Mean Sq F value Pr(>F)
group 2 6300 3150 0.216 0.809
Residuals 12 175226 14602

On the other hand, R offers sophisticated tools for ANOVA.

Problem 9.13 Using the inverse transform method (see page 451), we generate an expo-
nential random variable with rate λ as X = −(ln U)/λ. Since an m-Erlang variable Y with

58 INFERENTIAL STATISTICS

rate λ is the sum of m independent exponentials, we can generate it as follows:

Y = − 1
λ

m∑

k=1

ln Uk = − 1
λ

ln

(
m∏

k=1

Uk

)
.

By taking the product of the uniforms, we have to compute one logarithm.

Problem 9.14 The problem requires finding a way to simulate from a triangular distri-
bution. Hence, we may find the CDF first and then invert it, using the inverse transform
approach for random variate generation (see p. 451). The PDF if piecewise linear, and
integrating it on the first subinterval [1, 2] yields

F (x) =
∫ x

1

(t − 1)dt =
(t − 1)2

2

∣∣∣∣
x

1

=
(x − 1)2

2
.

We also observe that the PDF is symmetric; hence the mode should Inversion of this function
for U ≤ 0.5 yields

(X − 1)2

2
= U ⇒ X = 1 +

√
2U. (9.1)

Note that we choose the positive root in order to generate X in the correct interval. On the
second interval [2, 3] we find

F (x) =
1
2

+
∫ x

2

(3 − t)dt =
1
2
− (3 − t)2

2

∣∣∣∣
x

2

= 1 +
(3 − x)2

2
.

Note that we must account for the cumulated probability of the first interval (1
2). The

inverse transform yields

1 +
(3 − x)2

2
= U ⇒ X = 3−

√
2(1− U).

Again, we choose the appropriate root. As a quick check, also note that for U = 0, 0.5, 1 (re-
spectively) we obtain X = 1, 2, 3. We urge the reader to draw the CDF, which is continuous,
nondecreasing, and consists of portions of two parabolas.

The algorithm requires generating U ∼ U(0, 1) and returning

X =

{
1 +

√
2U, if U ≤ 0.5,

3 −
√

2(1 − U), if U > 0.5.

We may use R to check the algorithm. The script

set.seed(55555)

howmany = 1000000

U = runif(howmany)

iBelow = (U <= 0.5)

iAbove = (U > 0.5)

X = numeric(howmany)

X[iBelow] = 1+sqrt(2*U[iBelow])

X[iAbove] = 3-sqrt(2*(1-U[iAbove]))

hist(X,nclass=100)

produces the following histogram:

SOLUTIONS 59

Histogram of X

X

F
re

qu
en

cy

1.0 1.5 2.0 2.5 3.0

0
50

00
10

00
0

15
00

0
20

00
0

Here is the same idea in MATLAB:

howmany = 1000000;

U = rand(howmany,1);

iBelow = find(U <= 0.5);

iAbove = find(U > 0.5);

X = zeros(howmany,1);

X(iBelow) = 1+sqrt(2*U(iBelow));

X(iAbove) = 3-sqrt(2*(1-U(iAbove)));

hist(X,100)

In general, to sample from a triangular distribution, it is better to think of standardazing
a triangle with support (a, b) and mode c ∈ (a, b), finding a triangle with support (0, 1) and
mode c′ ∈ (0, 1). Then, we apply the inverse transform method there and we destandardize.

Problem 9.15 According to this policy (see Section 2.1 and page 445), whenever the
inventory position falls below the reorder level R, a fixed quantity Q is ordered, which will
be received after the lead time LT , which is fixed under the problem assumptions. Note
that, in principle, we might have more than one order outstanding in the pipeline.

The inventory position is Ip = H +O, where H is the inventory on hand (i.e., the physical
inventory available), and O is the amount on order (i.e., the total amount ordered but not
received yet). We are assuming impatient customers, i.e., demand that cannot be satisfied
from stock immediately is lost. When backordering is allowed, the backlog would be another
relevant variable.

Both H and O define the state of the system, which also includes the ordered list of events
that will occur in the future.

These events are:

• Customer arrivals

• Supply order arrivals

When initializing the system, we should draw an exponential random variable with rate
λ defining the time at which the first customer will arrive. We also have to initialize the

60 INFERENTIAL STATISTICS

other state variable, and statistical counters should be managed in order to collect the
relevant performance measures (inventory holding cost, ordering cost, fraction of demand
lost, number of stockouts, etc.).

The procedures for avent management can be outlined as follows:
Customer arrival at simulated time t.

• Draw an exponential random variable ta and schedule the next arrival at time t + ta.

• Draw the random demand X according to the selected distribution.

• If H ≥ X, update on-hand inventory H = H − X and inventory position Ip =
Ip − X; otherwise record an unsatisfied demand. (We do not allow for partial order
satisfaction.)

• If Ip < R, schedule the next supply order arrival at time t + LT .

Supply order arrival.

• Update on-hand inventory H = H + Q and inventory position Ip = Ip + Q.

If we allow for backlog B, inventory position is defined as Ip = H +O−B. When demand
cannot be satisfied, update B and Ip accordingly. When a supply order is received, use it
to serve backlogged customers. Note that if we do not allow for partial order satisfaction,
we must also manage the queue of waiting customers with their demand, as the aggregate
backlog B does not tell the whole story.

Problem 9.16 This random variable, for large n, takes the “small” value 0 with high
probability and the “large” value n with a vanishing probability. We may guess that the
variable converges to zero, but this must be carefully checked.

Convergence in probability to a value c requires (see Definition 9.7):

lim
n→+∞

P {|Xn − c |> ε} = 0.

If we choose c = 0, we see that

P {Xn > 0 > ε} =
1
n2

indeed goes to zero. Hence, we have convergence in probability.
Convergence in quadratic mean to a number c, also said mean square convergence, requires

(see Definition 9.10)
lim

n→+∞
E
[
(Xn − c)2

]
= 0.

Here we find

E
[
(Xn − c)2

]
= (0 − c)2

(
1 − 1

n2

)
+ (n − c)2

1
n2

= c2 − c2

n2
+ 1 − 2c

n2
+

c2

n2

= 1 + c2 − 2c

n
.

The last term goes to zero for increasing n, but 1 + c2 is never zero, even if we plug the
reasonable limit c = 0. Hence, we do not have convergence in quadratic mean. This also
shows that this convergence is not implied by convergence in probability.

SOLUTIONS 61

Problem 9.17 For such an exponential distribution, we know (see Section 7.6.3) that

E[X] =
1
λ

⇒ λ =
1

E[X]
.

The estimator of the first moment is

M1 = X =
1
N

N∑

k=1

Xk,

hence
λ̂ =

1
1
N

∑N
k=1 Xk

.

Thus, we find the same estimator as in Example 9.37, where we apply maximum likelihood.

Problem 9.18 The likelihood function for a sample of size n is

fn(x | a, b) =





1
(b − a)n

, if a ≤ x ≤ b,

0, otherwise.

Clearly, since we want to maximize the likelihood, we must have

a ≤ xk, b ≥ xk, k = 1, . . . , n,

which implies
a ≤ min

k=1,...,n
xk, b ≥ max

k=1,...,n
xk.

This just states that the bounds a and b must be compatible with the observations. The
likelihood function, when those bounds hold, is increasing in b and decreasing in a:

∂fn

∂b
=

1
(b − a)n+1

,
∂fn

∂a
=

−1
(b − a)n+1

.

Hence, we take the largest value of b and the smallest value of a compatible with the bounds:

â ≤ min
k=1,...,n

xk, b̂ ≥ max
k=1,...,n

xk.

Note that we find a maximum if the interval on which the uniform distribution is defined,
i.e., its support, is the closed interval [a, b]. With an open interval, we are in trouble.

Problem 9.19 We want to prove that

E
[
X(n)

]
= E

[
max

k=1,...,n
Xk

]
=

n

n + 1
θ,

when Xk ∼ U[0, θ] and the observations are mutually independent. By the way, this is
obvious for n = 1.

Let us define Y = maxk=1,...,n Xk. In problem 7.11 we show that, when θ = 1,

FY (y) = [P(X ≤ x)]n = xn.

62 INFERENTIAL STATISTICS

It is easy to generalize the result to an arbitrary θ,

FY (y) = [P(X ≤ x)]n =
xn

θn
,

and then find the density of Y :

fY (y) =
FY (y)

dy
= n

yn−1

θn
.

Now let us compute the expected value of Y :

E[Y] =
∫ θ

0

fY (y) dy =
∫ θ

0

y · nyn−1

θn
dy =

n

θn

∫ θ

0

yn dy =
n

θn

θn+1

n + 1
=

n

n + 1
θ.

10
Simple Linear Regression

10.1 SOLUTIONS

Problem 10.1 Let us carry out the calculations in detail:

10∑

i=1

xi = 55,

10∑

i=1

Yi = 420,

10∑

i=1

xiYi = 2590,

10∑

i=1

x2
i = 385.

Using Eq. (10.3) we find

b =
n
∑n

i=1 xiYi −
∑n

i=1 xi

∑n
i=1 Yi

n
∑n

i=1 x2
i − (

∑n
i=1 xi)

2
=

10 × 2590 − 44 × 420
10× 385− 552

= 3.393939.

Then
a = Y − bx =

420 − 3.393939× 55
10

= 23.33333.

To find R2, we need the vector of forecasted values Ŷi = a + bxi:
[
26.72727, 30.12121, 33.51515, 36.90909, 40.30303,

43.69697, 47.09091, 50.48485, 53.87879, 57.27273
]T

.

Therefore

R2 =

∑n
i=1

(
Ŷi − Y

)2

∑n
i=1

(
Yi − Y

)2 =
950.303
1760

= 0.5399.

All of the above is easily carried out in R:

> X=1:10
> Y=c(30, 20, 45, 35, 30, 60, 40, 50, 45, 65)
> mod=lm(Y~X)

63

64 SIMPLE LINEAR REGRESSION

> summary(mod)
Call:
lm(formula = Y ~ X)
Residuals:

Min 1Q Median 3Q Max
-10.303 -8.432 -1.197 6.614 16.303

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 23.333 6.873 3.395 0.00943 **
X 3.394 1.108 3.064 0.01548 *

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 10.06 on 8 degrees of freedom
Multiple R-squared: 0.5399, Adjusted R-squared: 0.4824
F-statistic: 9.389 on 1 and 8 DF, p-value: 0.01548

It is also easy to plot the data points and the regression line:

> plot(X,Y)
> abline(mod)

2 4 6 8 10

20
30

40
50

60

X

Y

MATLAB is a bit less convenient, because:

1. We have to form a matrix of regressors, including a leading column of ones.

2. We must care about column vs. row vectors, as in MATLAB vectors are just matrices,
whereas they are different data structures in R.

3. We have to collect output statistics in a variable (say, stats), whose first element is
R2.

>> X=(1:10)’;
>> Y=[30, 20, 45, 35, 30, 60, 40, 50, 45, 65]’;
>> [b,~,~,~,stats]=regress(Y,[ones(10,1),X])
b =

23.3333

SOLUTIONS 65

3.3939

stats =
0.5399 9.3892 0.0155 101.2121

Using Excel requires the installation of the Data analysis add-in, which includes a regres-
sion function. Then:

1. We place input data in cells.

2. We open the tool and select the input ranges (and output options).

3. We obtain the result in a new worksheet.

This is illustrated in the following screenshots.

66 SIMPLE LINEAR REGRESSION

Problem 10.2 The task is easily accomplished in R:

> X=c(45, 50, 55, 60, 65, 70, 75)
> Y=c(24.2, 25.0, 23.3, 22.0, 21.5, 20.6, 19.8)
> mod=lm(Y~X)
> summary(mod)
Call:
lm(formula = Y ~ X)
Residuals:

1 2 3 4 5 6 7
-0.692857 0.957143 0.107143 -0.342857 0.007143 -0.042857 0.007143

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 32.54286 1.27059 25.612 1.69e-06 ***
X -0.17000 0.02089 -8.138 0.000455 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.5527 on 5 degrees of freedom
Multiple R-squared: 0.9298, Adjusted R-squared: 0.9158
F-statistic: 66.23 on 1 and 5 DF, p-value: 0.0004548

> confint(mod)
2.5 % 97.5 %

(Intercept) 29.2766922 35.8090220
X -0.2236954 -0.1163046

In MATLAB, we have to collect the relevant output from regr:

>> X=[45 50 55 60 65 70 75]’;
>> Y=[24.2 25.0 23.3 22.0 21.5 20.6 19.8]’;
>> [b,bint]=regress(Y,[ones(7,1),X])
b =

32.5429
-0.1700

bint =
29.2767 35.8090

SOLUTIONS 67

-0.2237 -0.1163

Nevertheless, let us dig into the detail by applying Eq. (10.16), using R for convenience:
We need the residual standard deviation of the residuals:

> sig=sqrt(sum((Y-mod$fitted)^2)/5)
> sig
[1] 0.5526559

Equation (10.16) yields the standard error on the slope:

> sigb=sig/sqrt(sum((X-mean(X))^2))
> sigb
[1] 0.02088843

To find the confidence interval, we also need the quantile t1−α/2,n−2:

> t=qt(0.975,5)
> t
[1] 2.570582
> -0.17-t*sigb
[1] -0.2236954
> -0.17+t*sigb
[1] -0.1163046

Problem 10.3 To solve the problem, we apply the concepts of Section 7.4.4. We first find
the critical ratio involving the profit margin (m = 14− 10 = 4) and the cost of unsold items
(cu = 10 − 2 = 8). The optimal service level (probability of not stocking out) is

m

m + cu
=

4
4 + 8

= 0.3333.

Thus, we need the quantile at level 33.33% of the sales distribution.
To find the distribution, we carry out a linear regression:

> X=1:4
> Y=c(102, 109, 123, 135)
> mod=lm(Y~X)
> summary(mod)

Call:
lm(formula = Y ~ X)

Residuals:
1 2 3 4

1.7 -2.6 0.1 0.8

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 89.000 2.779 32.02 0.000974 ***
X 11.300 1.015 11.13 0.007970 **

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

68 SIMPLE LINEAR REGRESSION

Residual standard error: 2.269 on 2 degrees of freedom
Multiple R-squared: 0.9841, Adjusted R-squared: 0.9762
F-statistic: 124 on 1 and 2 DF, p-value: 0.00797

Thus, the point forecast for sales in May is

Ŷ0 = a + bx0 = 89 + 11.3× 5 = 145.5

We also need the residual standard error, which is σ̂ε = 2.269. We can also find it directly:

> (sig=sqrt(sum((Y-mod$fitted)^2)/2))
[1] 2.269361

If we assume normal errors, the distribution of Y0 is normal and characterized by expected
value and standard deviation. To find the standard deviation of Y0, also accounting for
estimation uncertainty, we may apply Eq. (10.23):

> SigY0 = sig*sqrt(1 + 1/4 + (5-mean(X))^2/(sum((X-mean(X))^2)))
> SigY0
[1] 3.588175

Then, we find the quantity that should be ordered:

Ŷ0 + z0.3333σY 0.

Using R:

> 145.5 + qnorm(1/3)*SigY0
[1] 143.9545

We ordered just a bit less than the expected sales, since uncertainty seems low (the R2

of the regression model is 98.41%).

11
Time Series Models

11.1 SOLUTIONS

Problem 11.1 The first step is finding the initial basis (level) B̂0 and trend T̂0. Using R,
or any other tool, we find:

> X=1:3
> Y=c(35,50,60)
> mod=lm(Y~X); mod$coeff
(Intercept) X

23.33333 12.50000

Now we proceed with the parameter update process, starting from the first time bucket.
Choosing α = 0.1 and β = 0.2, we find

B̂1 = 0.1× 35 + 0.9× (23.33333 + 12.5) = 35.75

T̂1 = 0.2× (35.75− 23.33333) + 0.2× 12.5 = 12.48333

B̂2 = 0.1× 50 + 0.9× (35.75 + 12.48333) = 48.41

T̂2 = 0.2× (48.41− 35.75) + 0.8× 12.48333 = 12.51867

B̂3 = . . .

All of the relevant results are reported in the following table:

69

70 TIME SERIES MODELS

t Yt B̂t T̂t F ′t et |et | /Yt e2
t

0 – 23.33333 12.5 – – – –
1 35 35.75 12.48333 35.83333 – – –
2 50 48.41 12.51867 48.23333 – – –
3 60 60.8358 12.50009 60.92867 – – –
4 72 73.2023 12.47338 73.33589 -1.33589 0.018554 1.784611
5 83 85.40811 12.41986 85.67568 -2.67568 0.032237 7.159261
6 90 97.04518 12.2633 97.82797 -7.82797 0.086977 61.27717

Note that we do not compute forecasts and errors within the fit sample. The first forecast
is calculated at the end of the fit sample, for time bucket 4:

F3,1 = F ′4 = B̂3 + T̂3 = 60.8358 + 12.50009 = 73.33589,

with forecast error
e4 = Y4 − F ′4 = 72 − 73.33589 = −1.33589.

Then we find the performance measures:

MAPE =
1
3
×
(
|e4 |
Y4

+
|e5 |
Y5

+
|e6 |
Y6

)
=

0.018554 + 0.032237 + 0.086977
3

≈ 4.59%

RMSE =

√
e2
4 + e2

5 + e2
6

3
=

√
1.784611 + 7.159261 + 61.27717

3
= 4.8381.

The required forecasts are

F6,2 = B̂6 + 2T̂6 = 97.04518 + 2 × 12.2633 = 121.5718

F6,3 = B̂6 + 3T̂6 = 97.04518 + 3 × 12.2633 = 133.8351.

Problem 11.2 The fit sample consists of demand in time buckets t = 1, 2, , . . . , 8. The
average demand over the fit sample yields:

B̂0 =
1
8

8∑

j=1

Yj =
21 + 27 + 41 + 13 + 19 + 32 + 42 + 12

8
= 25.875

Then we estimate the seasonal factors (note they add up to 4):

Ŝ−3 =
Y1 + Y5

2B̂0

= 0.77295

Ŝ−2 =
Y2 + Y6

2B̂0

= 1.14010

Ŝ−1 =
Y3 + Y7

2B̂0

= 1.60386

Ŝ0 =
Y4 + Y8

2B̂0

= 0.48309.

Let us choose α = 0.1 and γ = 0.2 and update parameters as follows:

SOLUTIONS 71

B̂1 = 0.1×
21

0.77295
+ 0.9× 25.875 = 26.004375

Ŝ1 = 0.2× 21
26.004375

+ 0.8 × 0.77295 = 0.77987

B̂2 = 0.1× 27
1.14010

+ 0.9× 26.004375 = 25.772158

Ŝ2 = 0.2× 27
25.772158

+ 0.8 × 1.14010 = 1.121606

B̂3 =

All of the relevant results are reported in the following table:

t Yt B̂t Ŝt F ′t et |et | et

Yt

-3 – – 0.772947 – – – –
-2 – – 1.140097 – – – –
-1 – – 1.603865 – – – –
0 – 25.875 0.483092 – – – –
1 21 26.00438 0.779869 – – – –
2 27 25.77216 1.121606 – – – –
3 41 25.75127 1.601523 – – – –
4 13 25.86714 0.486987 – – – –
5 19 25.71673 0.771659 – – – –
6 32 25.99811 1.143456 – – – –
7 42 26.02081 1.604037 – – – –
8 12 25.88286 0.482315 – – – –
9 22 26.14557 0.785616 19.97273 2.027268 2.027268 0.092149

10 33 26.417 1.164604 29.89632 3.103681 3.103681 0.094051
11 38 26.14432 1.573923 42.37384 -4.37384 4.373842 -0.1151
12 10 25.60323 0.463967 12.6098 -2.6098 2.609803 -0.26098

The first forecast and error calculation is carried out after observing Y8 for time bucket
9, the first one in the test sample:

F8,1 = F ′9 = B̂8S5 = 25.8829× 0.77166 = 19.9727
e9 = 22 − 19.9727 = 2.0273.

The performance measures are:

MAD =
|e9 | + |e10 | + |e11 | + |e12 |

4
=

2.0273 + 3.10368 + 4.373842 + 2.6098
4

= 3.02865

MPE =
1
4

(
e9

Y9
+

e10

Y10
+

e11

Y11
+

e12

Y12

)
=

0.09215 + 0.094051− 0.115101− 0.26098
4

= −4.747%.

The required forecast is

F5,3 = B̂5Ŝ4 = 25.7167× 0.486987 = 12.5237.

72 TIME SERIES MODELS

Problem 11.3 The main issue is that we cannot initialize B0 with the average of the forst
7 time buckets. We must adjust for the fact that we use two observations for three seasons
(quarters) within the seasonal cycle, and only one for the last one:

B0 =
1
4

(
40 + 46

2
+

28 + 30
2

+
21 + 29

2
+ 37

)
= 33.5,

S−3 =
40 + 46

2B0
= 1.284,

S−2 =
28 + 30

2B0
= 0.866,

S−1 =
21 + 29

2B0
= 0.746,

S0 =
37
B0

= 1.104.

Check that the four seasonal factors add up to 4.

Problem 11.4 We want to apply the Holt–Winter method, assuming a cycle of one year
and a quarterly time bucket, corresponding to ordinary seasons. We are at the beginning of
summer and the current parameter estimates are

• Level 80

• Trend 10

• Seasonality factors: winter 0.8, spring 0.9, summer 1.1, autumn 1.2

On the basis of these estimates, what is your forecast for next summer? If the demand
scenario (summer 88, autumn 121, winter 110) is realized, what are MAD and MAD%?

We recall from Section 11.5.5 the form of the forecast:

Ft+h = (B̂t + hT̂t) · Ŝt+h−s.

Hence, the forecast made at the end of spring (beginning of summer) for the incoming
summer is:

F0,1 = F ′summer = (80 + 10)× 1.1 = 99.

To calculate the required error measures, we first compute

esummer = 88 − 99 = −11,

and then we go on updating level and trend estimates, using α = 0.1 and β = 0.2 (we do
not update the seasonal factors because we won’t need them in this specific problem, since

SOLUTIONS 73

the horizon we analyze is less than one whole cycle):

B̂1 = 0.1× 88
1.1

+ 0.9 × (80 + 10) = 89

T̂1 = 0.2× (89 − 80) + 0.8 × 10 = 9.8
F1,1 = F ′autumn = (89 + 9.8) × 1.2 = 118.56

eautumn = 121− 118.56 = 2.44

B̂2 = 0.1× 121
1.2

+ 0.9× (89 + 9.8) = 99.00333

T̂2 = 0.2× (99.00333− 89) + 0.8× 9.8 = 9.84067
F2,1 = F ′winter = (99.00333 + 9.84067)× 0.8 = 87.0752

ewinter = 110− 87.0752 = 22.9248.

Therefore:

MAD =
11 + 2.44 + 22.9248

3
= 12.1216,

MAD% =
MAD

Y
=

12.1216
(88 + 121 + 110)/3

= 11.40%.

Problem 11.5 We know that, if |β |< 1,

+∞∑

k=0

βk =
1

1 − β
.

Let us summ the weights in Eq. (11.18), where (1 − α) plays the role of β:

+∞∑

k=0

α(1 − α)k = α · 1
1 − (1 − α)

= 1.

Problem 11.6 The application of Eq. (11.30) is immediate, but let us prove the two
results in a direct way:

Cov(Yt, Yt+1) = Cov(µ + εt − θ1εt−1, µ + εt+1 − θ1εt) = −θ1σ
2
ε ,

since the constant µ plays no role and the sequence {εt} consist of i.i.d. variables with
variance σ2. By the very same token

Cov(Yt, Yt+2) = 0

and the same applies to larger lags. Then

ρY (1) =
Cov(Yt, Yt+1)

Var(Yt)
=

−θ1σ
2
ε

σ2
ε + θ2

1σ
2
ε

=
−θ1

1 + θ2
1

.

Problem 11.7 The easy way to solve the problem is to take advantage of Eq. (11.30),
which gives the autocorrelation function of the moving average process

Yt = µ + εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q.

74 TIME SERIES MODELS

as

ρY (k) =
γY (k)
γY (0)

=





−θk + θ1θk+1 + · · ·+ θq−kθq

1 + θ2
1 + · · ·+ θ2

q

, k = 1, 2, . . . , q

0, k > q.

A moving average forecast is

Ft,h =
1
n

t∑

τ=t−n+1

Xτ ,

and in order to cast in the above framework we should set q = n − 1 and

θj = −1, j = 1, . . . , n− 1.

Therefore, for forecasts that are no more than k time buckets apart, we have

−θk + θ1θk+1 + · · ·+ θn−1−kθn−1

1 + θ2
1 + · · ·+ θ2

n−1

=
1 + (n − 1 − k)

1 + (n − 1)
= 1 − k

n
.

To better get the intuition, consider the following representation of a moving average M1

starting at t = 1 and a moving average Mk+1 starting at t = k + 1:

X1 X2 · · · Xk Xk+1 . . . Xn−1 Xn

Xk+1 . . . Xn−1 Xn . . .Xn+k+1

Clearly, only n − k observations overlap. Therefore, taking into account of the variance σ2

of each term and the division by n, we have

Cov (M1, Mk+1) =
1
n2

n∑

τ=k+1

Cov (Xτ , Xτ) =
n − k

n2
σ2,

Var (M1) = Var (Mk+1) =
1
n

σ2,

ρ (M1, Mk+1) =
σ2(n − k)/n2

σ2/n
=

n − k

n
= 1 − k

n
.

12
Deterministic Decision Models

12.1 SOLUTIONS

Problem 12.1 We want to prove that, for λ ∈ [0, 1] and any x1,x2,

g(λx1 + (1 − λ)x2) ≤ λg(x1) + (1 − λ)g(x2).

Since each fi(x) is convex, we have

g(λx1 + (1 − λ)x2) =
m∑

i=1

αifi(λx1 + (1 − λ)x2)

≤
m∑

i=1

αi [λfi(x1) + (1 − λ)fi(x2)]

= λ

m∑

i=1

αifi(x1) + (1 − λ)
m∑

i=1

αifi(x2)

= λg(x1) + (1 − λ)g(x2).

Also note that the above proof relies on non-negativity of each αi as well.

Problem 12.2 Let us find the derivatives of f :

f ′(x) = (1 + 2x)e2x

f ′′(x) = 4(1 + x)e2x.

We observe that

• The first-order derivative is negative for x < 0.5 and positive for x > 0.5; x = 0.5 is a
stationary point.

• The second-order derivative is negative for x < 1 and positive for x > 1.

75

76 DETERMINISTIC DECISION MODELS

Thus, the function is not convex, as the second-order derivative is not always non-negative.
However, x = 0.5 is globally optimal, as the function is decreasing to its left and increasing
to its right (and locally convex around x = 0.5).

We may plot the function to get a clearer picture.

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5

0.
0

0.
5

1.
0

x

f(
x)

The plot may be obtained by the following R commands

> f <- function (x) x*exp(2*x)
> x <- seq(from=-3,to=0.5,by=0.01)
> plot(x,f(x),type="l")

Alternatively, you may use MATLAB:

>> f = @(x) x .* exp(2*x);
>> x = -3:0.01:0.5;
>> plot(x,f(x))

We observe that convexity is a sufficient condition to rule out issues with local optimality,
but it is not necessary. Furthermore, the function f shares an important property with
convex functions: The level sets, i.e., sets of the form

Sα =
{
x | f(x) ≤ α

}
,

are convex. In convex analysis, which is beyond the scope of the book, a function like f is
called pseudoconvex.

Problem 12.3 The problem requires the minimization of the (convex) quadratic function

f(x, y, z) = x2 + y2 + z2,

subject to two linear constraints. We associate Lagrange multipliers λ1 and λ2 with the two
equality constraints. The Lagrangian function is

L(x, y, z, λ1, λ2) = x2 + y2 + z2 + λ1(3x + y + z − 5) + λ2(x + y + z − 1),

SOLUTIONS 77

and the optimality conditions are a set of linear equations:

∂L
∂x

= 2x + 3λ1 + λ2 = 0

∂L
∂y

= 2y + λ1 + λ2 = 0

∂L
∂z

= 2z + λ1 + λ2 = 0

∂L
∂λ1

= 3x + y + z − 5 = 0

∂L
∂λ2

= x + y + z − 1 = 0.

Eliminating y + z between the fourth and fifth equation we find x = 2. Eliminating
λ1 + λ2 between the second and third equation we find y = z, which, plugged into the fifth
equation yields immediately x = y = −1

2 . This is enough to spot the optimal solution. If we
also want to find the multipliers, subtracting the second equation from the first one yields

λ1 = y − x = −2.5,

and then from the second equation we find

λ2 = −λ1 − 2 = 3.5.

The system of linear equations can be solved in MATLAB as follows:

>> A= [2 0 0 3 1; 0 2 0 1 1; 0 0 2 1 1;
3 1 1 0 0; 1 1 1 0 0];
>> b = [0;0;0;5;1];
>> A\b
ans =

2.0000
-0.5000
-0.5000
-2.5000
3.5000

If you have the Optimization Toolbox, you may tackle the quadratic problem using
quadprog:

>> H = 2*eye(3);
>> Aeq = [3 1 1; 1 1 1];
>> beq = [5;1];
>> [x,~,~,~,lambda] = quadprog(H,[],[],[],Aeq,beq);
>> x
x =

2.0000
-0.5000
-0.5000

>> lambda.eqlin
ans =

78 DETERMINISTIC DECISION MODELS

-2.5000
3.5000

In R, these two tasks are carried out as follows:

> A <- rbind(c(2,0,0,3,1), c(0,2,0,1,1), c(0,0,2,1,1),
+ c(3,1,1,0,0), c(1,1,1,0,0))
> b <- c(0,0,0,5,1)
> solve(A,b)
[1] 2.0 -0.5 -0.5 -2.5 3.5
> library(quadprog)
> Qmat <- diag(c(2,2,2))
> bvet <- c(5,1)
> Amat <- cbind(c(3,1,1),c(1,1,1))
> result <- solve.QP(Qmat, c(0,0,0),Amat,bvet,meq=2)
> result
$solution
[1] 2.0 -0.5 -0.5
$Lagrangian
[1] 2.5 3.5

Note that, when dealing with equality constraints, there may be some ambiguity with the
sign of multipliers.

Problem 12.4 Solve the optimization problem

max xyz

s.t. x + y + z ≤ 1
x, y, z ≥ 0

How can you justify intuitively the solution you find?
There is a clear symmetry in the problem, suggesting that there is an optimal solution

such that
x∗ = y∗ = z∗.

On the domain R3
+ the objective function is increasing in all decision variables, suggesting

that the inequality constraint is active in the optimal solution, implying

x∗ = y∗ = z∗ =
1
3
.

This may be checked by the following MATLAB script

f = @(X) -X(1).*X(2).*X(3);
A = ones(1,3);
b = 1;
lb = zeros(3,1);
X0 = zeros(3,1);
out = fmincon(f,X0,A,b,[],[],lb)

which yields

out =

SOLUTIONS 79

0.3333
0.3333
0.3333

However, we need more careful analysis to be sure that this is the actual global optimum,
and not a local one.

We have four inequality constraints, and we should introduce four non-negative Lagrange
multipliers. To streamline the task, a common strategy is to assume an interior solution,
i.e., a solution in which all variables are strictly positive. This assumption may be checked
a posteriori. Then, the Lagrangian function is

L(x, y, z, µ) = −xyz + µ(x + y + z − 1),

and the stationarity conditions are

∂L
∂x

= −yz + µ = 0

∂L
∂y

= −xz + µ = 0

∂L
∂z

= −xy + µ = 0,

which in fact confirms that at the optimum the decision variables should take the same value.
Note that we change the sign of the objective function to cast the maximization problem
in minimization form and apply the familiar conditions. Then we consider complementary
slackness:

µ(x + y + z − 1) = 0.

If we assume that the constraint is active, we in fact find the above solution,

x∗ = y∗ = z∗ =
1
3
,

and
µ∗ =

1
9

> 0.

If we assume that the constraint is not active, this implies µ = 0, but this in turn implies

x∗ = y∗ = z∗ = 0,

which is an alternative candidate solution, which is not interior. Then, we should consider a
more complicated condition, but it is easy to see that solution is in fact feasible, but inferior
to the alternative one.

Problem 12.5 Consider the constrained problem:

min x3 − 3xy

s.t. 2x − y = −5
5x + 2y ≥ 37
x, y ≥ 0

• Is the objective function convex?

80 DETERMINISTIC DECISION MODELS

• Apply the KKT conditions; do we find the true minimizer?

It is easy to see that the objective function is not convex on R2. If we fix y = 0, i.e., if
we imagine taking a section of the surface described by the objective function f(x, y), we
obtain the cubic function

f(x, 0) = x3,

which is not convex. However, this does not necessarily imply that the function is not convex
over the feasible set. For instance, the cubic function is convex for x ≥ 0.

We may use MATLAB to plot the function as follows:

f1 = @(x,y) x.^3 - 3*x.*y;
x = -20:1:20;
[X,Y] = meshgrid(x,x);
Z = f1(X,Y);
surf(X,Y,Z);
contour(X,Y,Z);

producing the following surface plot

−20
−10

0
10

20

−20

−10

0

10

20
−1

−0.5

0

0.5

1

x 10
4

We see that in fact the function is not convex, but it looks like it could be on a restricted
domain. A formal check can be carried out by analyzing the Hessian matrix, which requires
the calculation of the partial derivatives

∂f

∂x
= 3x2 − 3y,

∂2f

∂x2
= 6x,

∂2f

∂y ∂x
= 0

∂f

∂y
= −3x,

∂2f

∂y2
= 0.

The Hessian matrix is [
6x −3
−3 0

]
,

and we should wonder if it is positive definite or at least semidefinite on R2
+. An easy way

for doing so is to observe that the trace of the matrix is 6x ≥ 0 and its determinant is 9 > 0.
Since the trace is the sum of the eigenvalues and the determinant is the product, we see

SOLUTIONS 81

that eigenvalues are non-negative. This shows that the matrix is positive semidefinite, and
the function is convex.

By the way, this is the same analysis that one carries out on the leading minors.
To find the optimal solution, let us introduce multipliers λ and µ ≥ 0 associated with the

equality and inequality constraints and form the Lagrangian

L(x, y, λ, µ) = x3 − 3xy + λ(2x − y + 5) + µ(37− 5x − 2y).

As in Problem 12.4 we streamline the Lagrangian by assuming an interior solution x∗, y∗ > 0.
The stationarity conditions are

∂L
∂x

= 3x2 − 3y + 2λ − 5µ = 0

∂L
∂y

= −3x − λ − 2µ = 0.

We should also take into account the conditions

2x − y = −5,

µ(37 − 5x− 2y) = 0,

µ ≥ 0.

If we assume that the inequality constraint is active, we solve a system of two linear
equations corresponding to the constraints and find

x = 3, y = 11.

If we plug this solution into the stationarity conditions, we find

2λ − 5µ = −3x2 + 3y = −27 + 33 = 6
− λ − 2µ = 3x = 9,

which yields

λ = −11
3

, µ = −8
3

< 0,

which is not acceptable. If we assume µ = 0 and 5x + 2y > 37, we have to solve the system

3x2 − 3y + 2λ = 0
− 3x − λ = 0
2x− y = −5.

From the second and third equation we find

λ = −3x, y = 2x + 5,

which, plugged into the first equation, yields

3x2 − 3(2x + 5) − 6x = 3(x2 − 4x − 5) = 0 ⇒ x1 = 5, x2 = −1.

The negative root must be discarded, and the positive one gives

y = 15, λ = −15.

82 DETERMINISTIC DECISION MODELS

The solution does satisfy the inequality constraint, as

5 × 5 + 2 × 15 => 37.

This may also be checked by the MATLAB script

f = @(X) X(1).^3 - 3*X(1).*X(2);
Aeq = [2, -1];
beq = -5;
A = [-5, -2];
b = -37;
lb = [0;0];
X0 = [Aeq;A]\[beq;b];
[X,~,~,~,lambda] = fmincon(f,X0,A,b,Aeq,beq,lb);

which yields

X =
5.0000

15.0000
lambda =

eqlin: -15.0000
eqnonlin: [0x1 double]
ineqlin: 1.1112e-07
lower: [2x1 double]
upper: [2x1 double]

ineqnonlin: [0x1 double]

Problem 12.6 Let us recall the single-period model, where we denote the amount of end
product j sold by yj , and the amount of raw material i used for j by xij, which is defined
only for i ∈ Rj:

max
∑

j∈J
pjyj −

∑

j∈J

∑

i∈Rj

cixij

s.t. yj =
∑

i∈Rj

xij, ∀j ∈ J ,

Ljyj ≤
∑

i∈Rj

qixij ≤ Ujyj , ∀j ∈ J ,

∑

j:i∈Rj

xij ≤ Ii, ∀i ∈ I,

0 ≤ yj ≤ dj ∀j,∈ J ,

xij ≥ 0, ∀j ∈ J , i ∈ Rj .

The first extension requires redefining variables in order to account for time. We use
t = 0, 1, 2, . . ., T to refer to time bucket t and let:

• yjt be the amount of end item j blended and sold during time bucket t = 1, . . . , T

• xijt be the amount of raw material i used to blend end item j during time bucket
t = 1, . . . , T

SOLUTIONS 83

• Ijt be the on-hand inventory of raw material i at the end of time bucket t = 1, . . . , T
and Ij0 the given initial inventory (i.e., this is actually a parameter, not a decision
variable)

• zjt be the amount of raw material i purchased at the beginning of time bucket t =
1, . . . , T

We also need introducing a few more parameters:

• djt the demand of end product i at time bucket t

• cjt the unit cost of raw material j at time bucket t

• hi the holding cost for raw material j

Then, the model reads as follows:

max
T∑

t=1

∑

j∈J

pjyjt −
T∑

t=1

∑

j∈J

∑

i∈Rj

citxijt

s.t. yjt =
∑

i∈Rj

xijt, ∀j ∈ J , t = 1, . . . , T,

Ljyjt ≤
∑

i∈Rj

qixijt ≤ Ujyjt, ∀j ∈ J , t = 1, . . . , T,

Iit = Ii,t−1 −
∑

j:i∈Rj

xijt + zjt, ∀i ∈ I, t = 1, . . . , T,

0 ≤ yjt ≤ djt ∀j,∈ J , t = 1, . . . , T,

xijt ≥ 0, ∀j ∈ J , i ∈ Rj, t = 1, . . . , T,

zit, Iit ≥ 0, ∀i ∈ I, t = 1, . . . , T.

For the second part of the problem, let us assume that we have M tanks of capacity H.
We also assume that the raw materials are measured by the same measurement unit and
that we want to use one tank for each type of raw material. Then, we introduce binary
variables

δit =

{
1, if we store raw material i at the end of time bucket t,
0, otherwise.

Then, we add an upper bound on the inventory holding,

Iit ≤ Hδit, ∀i ∈ I, t = 1, . . . , T,

and the constraint ∑

i∈I

δit ≤ M, t = 1, . . . , T.

If we relax the above assumptions, we may introduce an integer variable

γit ∈ {0, 1, 2, 3, . . .M},

describing the number of tanks associated with raw material i at time bucket t and write

viIit ≤ Hγit, ∀i ∈ I, t = 1, . . . , T,

84 DETERMINISTIC DECISION MODELS

where vi is the unit volume of raw material i (if different measurement units are relevant),
and ∑

i∈I
γit ≤ M, t = 1, . . . , T.

Here we are not considering the need for cleaning a tank if we change the material stored;
if necessary, we should introduce variables specifying which tank is used for which raw
material, and accounting for a cleaning cost if this allocation is changed.

Problem 12.7 The model includes capacity constraints

N∑

i=1

rimxit ≤ Rmt, m = 1, . . . , M, t = 1, . . . , T,

where capacity may change over time according to a prescribed plan. In the problem we
want to take this plan under control. Thus, Rm is given, but we introduce binary decision
variables

δmt =

{
1, if center m is closed for maintenance during time bucket t,
0, otherwise.

The capacity constraint is now

N∑

i=1

rimxit ≤ Rmδmt, m = 1, . . . , M, t = 1, . . . , T.

Maintenance of each center is enforced by requiring

T∑

t=1

δmt = 1, m = 1, . . . , M,

and the limit on maintenance personnel is enforced by

M∑

m=1

δmt ≤ 2, t = 1, . . . , T.

If each center consists of multiple machines, it may be preferable not to shut down the
whole center, but only a selected number of machines. If so, the above variable could be
integer and represent the number of machines of center m subject to maintenance during
time bucket t. If the time bucket is larger than the maintenance time, we may represent the
loss of capacity in terms of actual availability reduction.

Problem 12.8 Let δi ∈ {0, 1} be a decision variable stating if activity δi, i = 1, 2, 3, 4, is
started. The variable δ1 can be activated only if all of the predecessor variables δ2, δ3, and
δ4 are started. This can be expressed in two ways:

3δ1 ≤ δ2 + δ3 + δ4,

or
δ1 ≤ δi, i = 2, 3, 4.

SOLUTIONS 85

They are both correct ways to represent the requirement, but it is easy to see that the first
approach uses a single constraint that is just the sum of the three disaggregated constraints.
In general, an aggregate constraint is a relaxation of the individual one. For instance,
solutions satisfying both

g1(x) ≤ 0 and g2(x) ≤ 0

also satisfy the aggregate constraint

g1(x) + g2(x) ≤ 0,

but the converse is not true. When variables are restricted to binary values, as in the
knapsack problem, the two feasible sets are the same, but when we run a commercial branch
and bound algorithm based on LP relaxation, this is not true when variables δ∈{0, 1} are
relaxed to δ∈[0, 1]. This results in weaker lower bounds that are less effective in pruning
the search tree. Therefore, the disaggregated form, even if it requires more constraints, is
usually preferred.

Problem 12.9 We are looking for a way to model a logical AND of activities, rather than
their exclusive or inclusive OR. In order to linearize the constraint xi = xjxk, on the one
hand xi can be set to 1 only if xj and xk are:

xi ≤ xj, xi ≤ xk.

However, we must also force xi to 1 only if xj and xk are set to 1:

xi ≥ xj + xk − 1.

This constraint is not relevant if xjxk = 0, but if xjxk = 1 it reads xi ≥ 1, forcing activity
i to be started.

If we consider the AND of n variables,

y =
n∏

i=1

xi

we may generalize the above idea as follows:

y ≤ xi, i = 1, . . . , n,

y ≥
n∑

i

xi − n + 1.

Problem 12.10

• In the classical lot-sizing model, we implicitly assume that each customer order may
be satisfied by items that were produced in different batches. In some cases, this is
not acceptable; one possible reason is due to lot tracing; another possible reason is
that there are little differences among batches (e.g., in color), that customers are not
willing to accept. Then, we should explicitly account for individual order sizes and
due dates. Build a model to maximize profit.

• As a final generalization, assume that customers are impatient and that they order
different items together (each order consists of several lines, specifying item type and

86 DETERMINISTIC DECISION MODELS

quantity). If you cannot satisfy the whole order immediately, it is lost. Build a model
to maximize profit.

The first model requires the introduction of a “negative” inventory, typically called back-
log, which is penalized more heavily than positive inventory holding. In other words, we
associate a piecewise linear cost to inventory, which may be linearized by splitting Iit in two
non-negative components:

Iit = I+
it − I−it , I+

it , I
−
it ≥ 0.

The inventory balance constraint is

I+
it − I−it = I+

i,t−1 − I−i,t−1 + xit − dit,

where xit is the amount of item i produced during the time bucket t and dit is demand. The
inventory cost component of the cost function is

T∑

t=1

n∑

i=1

(
hiI

+
it + biI

−
it

)
,

to which fixed charges related to setups should be added. The unit backlog cost bi > hi

limits the use of backlog.

If customers are willing to wait for at most two time buckets, we may apply the disag-
gregated formulation of page 683, where yitp is the amount of item i produced during time
bucket t to satisfy demand during time bucket p ≥ t. We have just to define this variable
only for p ∈ {t, t + 1, t + 2}. You may visualize the idea on the basis of Fig. 12.23: Rather
than having all arcs outflowing from a node and moving toward South–East, we have at
most three of them.

In the third model we need to introduce decision variables related to customer orders.
Say that for each item i we have a collection of Oi orders indexed by j. Each order (i, j) is
associated with a due date Lij , which is the latest time at which we may produce items to
satisfy that order. Then, we introduce a binary variable

δijt =

{
1, if order j, j = 1, . . . ,Oi, of item i is satisfied by production in t ≤ Lij ,
0, otherwise.

The variable is not defined for time buckets after the order due date. Satisfaction of demand
is enforced by requiring

Lij∑

t=1

δijt = 1, ∀i, ∀j ∈ Oi.

We also link these binary variables to the lot sizes

xit =
∑

j∈Oi :t≤Lij

qijδijt, ∀t,

where qij is the order quantity and the sum is restricted to orders with a due date not earlier
than t.

In the last case we must associate a binary variable to an order j ∈ O which is not
associated with a single product. Rather, each order j has a due date Lj, a profit contribution

SOLUTIONS 87

pj, and order lines qij specifying the ordered amount for each end item (some of these
quantities are zero). If we do not assume demand satisfaction, we have to rewrite the
problem in maximization form, where we subtract inventory holding and setup costs from
the total profit contribution ∑

j∈O

pjδj ,

where δj is 1 if the corresponding order is satisfied, 0 otherwise. We may also introduce
decision variables zit representing the amount of item i sold during time bucket t. These
variables are related to the binaries as follows:

zit =
∑

j∈O
qijδj .

The inventory balance constraint is

Iit = Ii,t−1 + xit − zit, ∀i, ∀t.

Problem 12.11 The essential decision variables in this model are not really changed and
are the portfolio weights,

wi ≥ 0, i = 1, . . . , n,

where non-negativity reflects the fact that sort-selling is forbidden. What is changed is
that the approach is data-driven and we only rely on the time series rit, t = 1, . . . , T . The
expected return of asset i is estimated by the sample mean

µ̂i =
1
T

T∑

t=1

, i = 1, . . . , n.

By the same token, the value of the objective function,

E

{∣∣∣∣∣
n∑

i=1

Riwi − E

[
n∑

k=1

Rkwk

]∣∣∣∣∣

}
= E

{∣∣∣∣∣
n∑

i=1

(Ri − µi)wi

∣∣∣∣∣

}
,

is estimated as
1
T

T∑

t=1

∣∣∣∣∣
n∑

i=1

(rit − µ̂i)wi

∣∣∣∣∣ .

This is a piecewise linear function that can be linearized by a common trick, based on non-
negative deviation variables yt and zt related to surplus and shortfall with respect to the
mean. By introducing the constraint

n∑

i=1

(rit − µ̂i)wi = yt − zt, t = 1, . . . , T,

we may write the objective function as

1
T

T∑

t=1

(yt + zt).

Clearly, the leading 1/T can be disregarded when optimizing the portfolio.

88 DETERMINISTIC DECISION MODELS

The (conditional) lower bounds on asset holding and the cardinality constraint require
the introduction of binary variables

δi =

{
1, if asset i is included in the portfolio,
0, otherwise.

Let qi be the lower bound on the weight of asset i Let us also introduce a collection of asset
subsets Sj , j = 1, . . . , m, associated with lower and upper bounds Lj and Uj on holding.
Then the model reads as follows:

min
T∑

t=1

(yt + zt)

st

n∑

i=1

(rit − µ̂i)wi = yt − zt, t = 1, . . . , T,

n∑

i=1

µ̂iwi ≥ Rmin

n∑

i=1

wi = 1

Lj ≤
∑

i∈Sj

wi ≤ Uj , j = 1, . . . , m,

n∑

i=1

δk ≤ K,

δiqi ≤ wi ≤ δi, i = 1, . . . , n,

wi, yt, zt ≥ 0, δi ∈ {0, 1},

where Rmin is the minimum target on expected return and K is the maximum cardinality.
The danger of this modeling framework lies in the overfitting possibility with respect to

available data.

Problem 12.12 The starting point is the network flow model of Section 12.2.4. Here we
have to define a set of commodities defined by the source-destination pair (s, d). Let:

• k = 1, . . . , M be the index of commodities

• sk and dk the source and the destination node of commodity k, respectively

• Fk the required flow (packets from sk to dk)

The flow variables should be redefined as xk
ij, the amount of flow of commodity k on arc

(i, j) ∈ A. The equilibrium constraints are
∑

(i,j)∈A

xk
ij =

∑

(j,i)∈A

xk
ij, k = 1, . . . , M ; ∀i ∈ A; i /∈ {sk, dk},

∑

(i,j)∈A

xk
ij = Fk, k = 1, . . . , M ; i = sk,

∑

(i,j)∈A

xk
ij = −Fk, k = 1, . . . , M ; i = dk.

SOLUTIONS 89

The capacity constraint for each node i ∈ N is

M∑

k=1

∑

(i,j)∈A

xk
ij ≤ (0.9 + 0.1δi)Ci, ∀i ∈ N ,

where Ci is the capacity of the node and δi is a binary variable set to 1 if we use more than
90% of the node capacity. By a similar token we define a binary variable γij for arcs and
write the capacity constraint

M∑

k=1

xk
ij ≤ (0.9 + 0.1γij)Bij , ∀(i, j) ∈ A,

where Bij is the arc capacity. The objective function is

min
∑

i∈N

δi +
∑

(i,j)∈A

γij .

The capacity expansion problem, per se, is not difficult to deal with, as we could introduce
binary variables, e.g., zi,25 and zi,70, representing the expansion of nodes, as well as yij,25

and yij,70 for arcs. These variables are mutually exclusive,

zi,25 + zi,70 ≤ 1, ∀i ∈ N , yij,25 + yij,70 ≤ 1, ∀(i, j) ∈ A.

The tradeoff may be explored by setting a budget for the overall expansion cost,
∑

i∈N

(Qi,25zi,25 + Qi,70zi,70) +
∑

(i,j)∈A

(Pij,25yij,25 + Pij,70yij,70) ≤ B(i, j) ∈ A,

where Q and P are the node and arc expansion costs, respectively, for the two expansion
levels, and B is the budget. By perturbing the budget and minimizing congestion we may
explore their tradeoffs.

The tricky part is the interaction with congestion. For instance, the capacity constraint
becomes nonlinear:

M∑

k=1

∑

(i,j)∈A

xk
ij ≤ (0.9 + 0.1δi)(1 + 0.25zi,25 + 0.70zi,70)Ci, ∀i ∈ N .

A similar issue arises for arc capacities. However, we may linearize the constraint as we have
shown in Problem 12.9.

13
Decision Making Under Risk

13.1 SOLUTIONS

Problem 13.1

nomv
0

nomv
0

nomv
0

nomv
0

nomv
0

mktA
-2500

mktA
-2500

mktA
-2500

mktA
-2500

mktA
-2500

P(1): hitH

4400

P(2| 1): hit, 6600H H

P(2| 1): hit, 4400H F

P(2| 1): hit, 6600H F

P(2| 1): hit, 6600H H

P(2| 1): hit, 4400H F

P(2| 1): hit, 4400H H

P(2| 1): hit, 6600H F

P(2| 1): hit, 4400H H

P(2| 1): flop, 0F H

P(2| 1): flop, 0F H

P(2| 1): flop, 0F F

P(2| 1): flop, 0F F

P(2| 1): flop, 0F H

P(2| 1): flop, 0F H

P(2| 1): flop, 0F F

P(2| 1): flop, 0F F

P(1) hitH :

6600

P(1) flopF :

0

P(1) flopF :

0

mktB
-4000

mktB
-4000

mktB
-4000

mktB
-4000

mktB
-4000

The above tree can be used to formalize the problem. Note that we associate cash flows
and conditional probabilities to nodes as stated in the labels. A full-fledged software tool
would use a more precise formalism, as it is also necessary to discount cash flows.

91

92 DECISION MAKING UNDER RISK

Problem 13.2 If we do not wait to improve the product, the expected profit is

π̄nowait = 0.6 × 10 + 0.4 × (−2) = e5.2 million.

If we improve the product, there are alternative scenarios, depending on product success
and competitor’s entrance:

• No competitor entrance. In this case, the undiscounted expected profit is

0.9× 10 + 0.1× (−2) = e8.8 million.

We must discount it and subtract the additional cost:

π̄noentry = −0.5 +
8.8
1.05

= e7.880952 million.

• Competitor entrance. In this case, the undiscounted expected profit is

0.9 × 5 + 0.1× (−4) = e4.1 million.

We must discount it and subtract the additional cost:

π̄entry = −0.5 +
4.1
1.05

= e3.404762 million.

The expected value of profit if we wait, and the entrance probability p is 50%, is

π̄wait = (1−p)×7.880952+p×3.404762 = 0.5×7.880952+0.5×3.404762 = e5.642857 million.

Since this is larger than e5.2 million, if we assume risk neutrality we should wait.
We are indifferent between waiting or not when π̄wait = π̄nowait, i.e., when

(1 − p) × 7.880952 + p × 3.404762 = 5.2.

Solving for the entrance probability p, we find

p = 0.5989362.

Thus, for p > 59.9%, it would be better not to wait (again, assuming risk neutrality).

Problem 13.3 If you play it safe, you earn $100,000 for sure. Let X be the random fee if
you choose the risky portfolio, with random return R. Then

E[X] =0 × P{R < 0}+ 50,000× P{0 ≤ R < 0.03}+ 100,000× P{0.03 ≤ R < 0.09}
+ 200,000× P{0.09 ≤ R}.

The probabilities can be calculated by standardization and use of statistical tables. Let
us take a quicker route using R:

> p1=pnorm(0,mean=0.08,sd=0.1);p1
[1] 0.2118554
> p2=pnorm(0.03,mean=0.08,sd=0.1)-p1;p2
[1] 0.09668214
> p3=pnorm(0.09,mean=0.08,sd=0.1)-pnorm(0.03,mean=0.08,sd=0.1);p3
[1] 0.2312903

SOLUTIONS 93

> p4=1-pnorm(0.09,mean=0.08,sd=0.1);p4
[1] 0.4601722

Then, we compute the weighted sum giving the expected value of the fee:

> probs=c(p1,p2,p3,p4)
> fee=c(0,50,100,200)*1000
> m=sum(probs*fee);m
[1] 119997.6

Since this is larger than the sure fee above, a risk-neutral manager would choose the
active portfolio.

The standard deviation is
E[X2] − E2[X],

where

E[X2] =02 × P{R < 0} + 50,0002 × P{0 ≤ R < 0.03}+ 100,0002 × P{0.03 ≤ R < 0.09}
+ 200,0002 × P{0.09 ≤ R}.

Using R:

> stdev=sqrt(sum(probs*bonus^2)-m^2);stdev
[1] 81006.66

As we may notice, this is rather significant. Arguably, a fairly risk-averse manager would
not take any chances.

Problem 13.4 Let
u(x) = x − λ

2
x2.

Then

U (X) = 0.20× u(10000) + 0.50× u(50000) + 0.30× u(100000)
= 0.20× 9666.67 + 0.50× 41666.67 + 0.30× 66666.67 = 42766.67.

To find the certainty equivalent C, we solve the quadratic equation

u(C) = 42766.67,

i.e.,

−λ

2
x2 + x − 42766.67 = 0.

The two solutions are
c1 = 248336.16, c2 = 51663.84.

The first solution is associated with the decreasing part of the quadratic utility function.
Hence the certainty equivalent is given by the second root.

The expected value of the lottery is

E[X] = 0.20 × 10000 + 0.5050000+ 0.30× 100000 = 57000,

and the risk premium is
ρ = 57000− 51663.84 = 5336.16.

94 DECISION MAKING UNDER RISK

Problem 13.5 Let c be the insurance premium. If you buy insurance, your wealth is
surely

100,000− c.

We should compare the utility of this sure amount with the expected utility if you do not
buy insurance. The threshold premium is such that you are indifferent between the two
possibilities:

log(100,000− c) = 0.95× log 100,000 + 0.04× log 50,000 + 0.01× log 1 = 11.3701.

Now we solve for c and find

c = 100,000− e11.3701 ≈ 13,312.

Problem 13.6 The utility function is

u(x) = −e−λx.

Let Q be the amount of the initial wealth W0 that is allocated to the risky asset. The future
wealth W is given by

W = Q(1 + R) + (W0 − Q)(1 + rf) = Q(R − rf) + W0(1 + rf),

where rf is the risk-free rate of return and R is the random rate of return from the risky
asset. Given the assumed distribution, the expected utility is

E
[
u(W)

]
= −pu exp {−α [Q(Ru − rf) + W0(1 + rf)]} − pd exp {−α [Q(Rd − rf) + W0(1 + rf)]}
= − exp [−αW0(1 + rf)] · {pu exp [−αQ(Ru − rf)]pd exp [−αQ(Rd − rf)]} .

We should take the derivative with respect to Q and enforce the stationarity condition, but
we clearly see that W0 occurs only within the leading exponential, which does not depend
on the decision variable Q. Thus, whatever initial wealth W0 we are endowed with, the
optimal wealth allocated to the risky asset is the same, which is a rather weird conclusion.
This makes the exponential utility a rather questionable way of modeling preferences.

Problem 13.7 The loss on the portfolio (in thousands of dollars) is related to the two
rates of return by

Lp = −(150Rd + 200Rm).

Its standard deviation is

σp =
√

1502 × σ2
d + 2002 × σ2

m + 2 × ρ × 150× σd × 200 × σm

=
√

1502 × 0.022 + 2002 × 0.032 + 2 × 0.8× 150× 0.02× 200 × 0.03
= 8.590693.

Since z0.99 = 2.326348,

VaR0.99 = 2.326348× 8590.693 = $19984.94.

SOLUTIONS 95

Problem 13.8 Let Wp = W1 + W2 the portfolio wealth, which is the sum of the wealth
allocated to the two stock shares. The loss on the portfolio is just the sum of the loss on
the two positions, depending on the random rate of return:

Lp = −WpRp = −W1R1 − W2R2 = −L1 − L2.

On a short-term horizon, we have

E[L1] = E[L2] = 0.

Let
Var(Lp) = σ2

p, Var(L1) = σ2
1, Var(L2) = σ2

2, Cov(L1, L2) = ρσ1σ2.

The portfolio VaR at level 1 − α, under a normality assumption, is just the corresponding
quantile of loss,

VaRp,1−α = z1−ασp.

By the same token, on the two positions we have

VaR1,1−α = z1−ασ1, VaR2,1−α = z1−ασ2.

But we have

σp =
√

σ2
1 + 2ρσ1σ2 + σ2

2

≤
√

σ2
1 + 2σ1σ2 + σ2

2

=
√

(σ1 + σ2)
2

= σ1 + σ2,

where the inequality depends on ρ ≤ 1.
Thus we have

VaRp,1−α = z1−ασp.

By the same token, on the two positions we have

VaRp,1−α ≥ VaR1,1−α + VaR2,1−α,

with equality in the case of perfect positive correlation, so that VaR is subadditive in this
case.

Clearly, in the normal case VaR does not tell a different story than standard deviation.
The above reasoning also show that standard deviation is subadditive, but it does not
necessarily tell the whole story for a generic distribution.

Problem 13.9 We recall the deterministic model for covenience:

min
∑

i∈S

fiyi +
∑

i∈S

∑

j∈D

cijxij

s.t.
∑

i∈S
xij = dj, ∀j ∈ D

∑

j∈D

xij ≤ Riyi, ∀i ∈ S

xij ≥ 0, yi ∈ {0, 1}.

96 DECISION MAKING UNDER RISK

Let us introduce demand uncertainty, represented by a set of scenarios indexed by s,
characterized by probability πs and demand realization ds

j for each destination node j.
Then, we move the transportation decisions to the second decision stage and denote them
by xs

ij.
The minimization of the total plant cost plus the expected transportation cost is obtained

by solving the following model:

min
∑

i∈S
fiyi +

∑

s

πs


∑

i∈S

∑

j∈D
cijx

s
ij


 ,

s.t.
∑

i∈S

xs
ij = ds

j ∀s, ∀j ∈ D,

∑

j∈D

xs
ij ≤ Riyi ∀s, ∀i ∈ S,

xs
ij ≥ 0, yi ∈ {0, 1}.

here, capacity constraints link the first-stage variables yi with the second-stage variables xs
ij.

Unfortunately this naive extension is hardly satisfactory, since it reqires demand satis-
faction for every possible scenario. Thus, it may yield a very costly solution, if extreme but
unlikely high-demand scenarios are included.

We should consider a more “elastic” formulation allowing for the possibility of leaving
some demand unsatisfied (at least in some high-demand scenarios). Let zs

j ≥ 0 be the
amount of unmet demand at node j under scenario s; these decision variables are included
in the objective function multiplied by a penalty coefficient βj , yielding the elastic model
formulation:

min
∑

i∈S
fiyi +

∑

s

πs


∑

i∈S

∑

j∈D
cijx

s
ij


 +

∑

s

πs


∑

j∈D
βjz

s
j


 ,

s.t.
∑

i∈S

xs
ij + zs

j = ds
j ∀s, ∀j ∈ D,

∑

j∈D

xs
ij ≤ Riyi ∀s, ∀i ∈ S,

xs
ij, z

s
j ≥ 0, yi ∈ {0, 1}.

The penalty coefficient βj could be quantified by taking the relative importance of different
markets into account; alternatively, it could be related to the cost of meeting demand by
resorting to external suppliers.

Problem 13.10 In this model, decision variables at the first stage express how to position
containers on the network nodes. At the second stage, transportation demand is observed
and recourse actons are taken. It is fundamental to clarify data and decision variables.

Data:

• I0
i the number of available containers at node i before positioning (the initial inventory)

• ds
ij the transportation demand from node i to node j in scenario s

• πs the probability of scenario s

• V the container capacity in volume

SOLUTIONS 97

• cij the cost of moving a container from node i to node j

• K the fixed-charge to rent a container (we assume that it does not depend on node i
and path i → j)

Decision variables:

• Ii ≥ 0 the non-negative number of available containers at node i after first-stage
positioning

• Xij ∈ Z+ the non-negative integer number of containers moved from i to j at the first
stage to improve positioning

• Y s
ij ∈ Z+ the non-negative integer number of containers moved from i to j in scenario

s at the second stage to satify transportation demand

• Zs
ij ∈ Z+ the non-negative integer number of containers that are rented at second

stage, in scenario s, to satisfy demand from i to j

Now we write the model constraints:

• Flow balance of containers at each node i, at first stage:

Ii = I0
i +

∑

j 6=i

Xji −
∑

j 6=i

Xij , ∀i.

• Link between first- and second-stage decisions, i.e., we cannot use more containers
than available at each node, in each scenario:

∑

j 6=i

Y s
ij ≤ Ii, ∀i, ∀s.

• Satisfaction of demand, for each node pair and each scenario, using rented containers
at each node:

V
(
Y s

ij + Zs
ij

)
≥ ds

ij, ∀i, ∀j 6= i, ∀s.

Finally, we write the objective function to be minimized, i.e., sum of the first-stage cost
and expected second-stage cost:

min
∑

(i,j):i6=j

cijXij + K
∑

s

πs


 ∑

(i,j):i6=j

Zs
ij


 .

14
Advanced Regression Models

14.1 SOLUTIONS

Problem 16.1 We recall the formula for the covariance matrix of the estimators:

Cov(b) = σ2
(
XTX

)−1
.

For a simple regression model, the components of b are the intercept a and the slope b, and
the data matrix collects the n observations of x, as well as a leading column of ones:

X =




1 x1

1 x2

...
...

1 xn


 .

Therefore,

XTX =
[

1 1 · · · 1
x1 x2 · · · xn

]



1 x1

1 x2

...
...

1 xn


 =




n nx

nx

n∑

i=1

x2
i


 .

To invert this 2 × 2 matrix, we may use the following shortcut:

• Swap the two elements on the diagonal

• Change the sign of the two elements on the antidiagonal

• Divide by the determinant of the matrix

Hence,

(
XTX

)−1
=

1

n

n∑

i=1

x2
i − n2x2




n∑

i=1

x2
i −nx

−nx n


 .

99

100 ADVANCED REGRESSION MODELS

Therefore, by considering the element in position (2, 2), we find the formula of Eq. (10.16),

Var(b) =
σ2n

n

n∑

i=1

x2
i − n2x2

=
σ2

n∑

i=1

x2
i − nx2

=
σ2

n∑

i=1

(
x2

i − x
)2

.

To find the formula of Eq. (10.18), we just need a bit more of manipulation of the element
in position (1, 1):

Var(a) =

σ2
n∑

i=1

x2
i

n

n∑

i=1

x2
i − n2x2

=
σ2

n




n∑

i=1

x2
i

n∑

i=1

x2
i − nx2




=
σ2

n




n∑

i=1

x2
i − nx2 + nx2

n∑

i=1

x2
i − nx2




=
σ2

n



1 +

nx2

n∑

i=1

x2
i − nx2




= σ2




1
n

+
x2

n∑

i=1

(
x2

i − x
)2




.

Problem 16.2 The logistic function

f(z) =
exp(z)

1 + exp(z)

is clearly non-negative, since exp(z) > 0 for any z, and its domain is the entire real line.
The behavior for z → ±∞ depends on the behavior of its building block:

lim
z→−∞

exp(z) = 0 ⇒ lim
z→−∞

exp(z)
1 + exp(z)

= 0

lim
z→+∞

exp(z) = +∞ ⇒ lim
z→+∞

exp(z)
1 + exp(z)

= lim
z→+∞

exp(z)
exp(z)

= 1.

For z = 0, f(0) = 0.5, i.e., the function crosses the vertical axis of ordinates y at y = 1.
Let us find the first- and second-order derivatives. By using the formula for the derivative

of a ratio of functions, we find

f ′(z) =
exp(z)

(
1 + exp(z)

)
− exp(z) exp(z)

(
1 + exp(z)

)2 =
exp(z)

(
1 + exp(z)

)2 > 0.

Hence, the function is monotonically increasing. By a similar token,

f ′′(z) =
exp(z)

(
1 + exp(z)

)2 − exp(z) · 2
(
1 + exp(z)

)
exp(z)

(
1 + exp(z)

)4 =
exp(z)

(
1 − exp(z)

)
(
1 + exp(z)

)3 .

SOLUTIONS 101

For z < 0, exp(z) < 1, the second-order derivative is positive, and the function is convex.
For z > 0, exp(z) > 1, the second-order derivative is negative, and the function is concave.
There is an inflection point at z = 0.

All of this is consistent with the plot of Fig. 16.1.

Appendix A

R – A software tool for statistics

R is a statistical computing which can be downloaded for free.1 To install the software, you
just have to donwload the installer from the web site and follow the instructions.

There is a wide and growing set of libraries implementing an array of quite sophisticated
methods, but a minimal application is finding quantiles of normal distributions, which is
obtained by the function qnorm:

> qnorm(0.95)
[1] 1.644854
> qnorm(0.95,20,10)
[1] 36.44854

In this snapshot you see the R prompt (¿) which is displayed in the command window
when you start the software. The first command returns z0.95, i.e., the 95% quantile for
the standard normal distribution. In the second case, we provide additional parameters
corresponding to µ = 20 and σ = 10. If you need the CDF, use pnorm:

> pnorm(0)
[1] 0.5
> pnorm(3)
[1] 0.9986501
> pnorm(20,15,10)
[1] 0.6914625

1R DevelopmentCore Team (2010). R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org

103

104 R – A SOFTWARE TOOL FOR STATISTICS

Generally speaking, given a distribution name, such as norm, the prefix p selects the CDF,
and the prefix q selects the quantile function. The same applies to the t distribution, in
which case we need to specifies the degrees of freedom:

> qt(0.95,5)
[1] 2.015048
> qt(0.95,500)
[1] 1.647907

If needed, we may also generate random samples, with prefix r:

> rnorm(5,20,30)
[1] 26.67444 18.84493 -24.30770 26.03461 35.93114

Finally, to get quantiles from the chi-square distribution:

> qchisq(0.95,4)
[1] 9.487729

or the F distribution:

> qf(0.95,3,5)
[1] 5.409451

Appendix B

Introduction to MATLAB

MATLAB1 is a powerful environment for numerical computing, originally developed as an
outgrowth of a package for linear algebra. This explains why MATLAB was built around
vectors and matrices, even though now it has much more sophisticated data structures. For
the purposes of the book, a grasp of the basics is more than enough.

B.1 WORKING WITH VECTORS AND MATRICES IN THE MATLAB

ENVIRONMENT

• MATLAB is an interactive computing environment. You may enter expressions and
obtain an immediate evaluation:

>> rho = 1+sqrt(5)/2

rho =

2.1180

By entering a command like this, you also define a variable rho which is added to the
current environment and may be referred to in any other expression.

• There is a rich set of predefined functions. Try typing help elfun, help elmat, and
help ops to get information on elementary mathematical functions, matrix manip-
ulation, and operators, respectively. For each predefined function there is an online
help:

>> help sqrt

1See http://www.mathworks.com.

105

106 INTRODUCTION TO MATLAB

SQRT Square root.

SQRT(X) is the square root of the elements of X. Complex

results are produced if X is not positive.

See also sqrtm, realsqrt, hypot.

Reference page in Help browser

doc sqrt

The help command should be used when you know the name of the function you are
interested in, but you need additional information. Otherwise, lookfor may be tried:

>> lookfor sqrt

REALSQRT Real square root.

SQRT Square root.

SQRTM Matrix square root.

We see that lookfor searches for functions whose online help documentation includes
a given string. Recent MATLAB releases include an extensive online documentation
which can be accessed by the command doc.

• MATLAB is case sensitive (Pi and pi are different).

>> pi

ans =

3.1416

>> Pi

??? Undefined function or variable ’Pi’.

• MATLAB is a matrix-oriented environment and programming language. Vectors and
matrices are the basic data structures, and more complex ones have been introduced
in the more recent MATLAB versions. Functions and operators are available to deal
with vectors and matrices directly. You may enter row and column vectors as follows:

>> V1=[22, 5, 3]

V1 =

22 5 3

>> V2 = [33; 7; 1]

V2 =

33

7

1

We may note the difference between comma and semicolon; the latter is used to ter-
minate a row. In the example above, commas are optional, as we could enter the same
vector by typing V1=[22 5 3].

• The who and whos commands may be used to check the user defined variables in the
current environment, which can be cleared by the clear command.

>> who

WORKING WITH VECTORS AND MATRICES IN THE MATLAB ENVIRONMENT 107

Your variables are:

V1 V2

>> whos

Name Size Bytes Class

V1 1x3 24 double array

V2 3x1 24 double array

Grand total is 6 elements using 48 bytes

>> clear V1

>> whos

Name Size Bytes Class

V2 3x1 24 double array

Grand total is 3 elements using 24 bytes

>> clear

>> whos

>>

• You may also use the semicolon to suppress output from the evaluation of an expres-
sion:

>> V1=[22, 5, 3];

>> V2 = [33; 7; 1];

>>

Using semicolon to suppress output is important when we deal with large matrices
(and in MATLAB programming as well).

• You may also enter matrices (note again the difference between ‘;’ and ‘,’):

>> A=[1 2 3; 4 5 6]

A =

1 2 3

4 5 6

>> B=[V2 , V2]

B =

33 33

7 7

1 1

>> C=[V2 ; V2]

C =

33

7

1

33

7

1

Also note the effect of the following commands:

>> M1=zeros(2,2)

M1 =

0 0

0 0

>> M1=rho

108 INTRODUCTION TO MATLAB

M1 =

2.1180

>> M1=zeros(2,2);

>> M1(:,:)=rho

M1 =

2.1180 2.1180

2.1180 2.1180

• The colon (:) is used to spot subranges of an index in a matrix.

>> M1=zeros(2,3)

M1 =

0 0 0

0 0 0

>> M1(2,:)=4

M1 =

0 0 0

4 4 4

>> M1(1,2:3)=6

M1 =

0 6 6

4 4 4

• The dots (...) may be used to write multiline commands.

>> M=ones(2,

??? M=ones(2,

Missing variable or function.

>> M=ones(2,...

2)

M =

1 1

1 1

• The zeros and ones commands are useful to initialize and preallocate matrices. This
is recommended for efficiency. In fact, matrices are resized automatically by MATLAB
whenever you assign a value to an element beyond the current row or column range,
but this may be time consuming and should be avoided when possible.

>> M = [1 2; 3 4];

>> M(3,3) = 5

M =

1 2 0

3 4 0

0 0 5

It should be noted that this flexible management of memory is a double-edged sword:
It may increase flexibility, but it may make debugging difficult.

• [] is the empty vector. You may also use it to delete submatrices:

>> M1

WORKING WITH VECTORS AND MATRICES IN THE MATLAB ENVIRONMENT 109

M1 =

0 6 6

4 4 4

>> M1(:,2)=[]

M1 =

0 6

4 4

• Another use of the empty vector is to pass default values to MATLAB functions.
Unlike other programming languages, MATLAB is rather flexible in its processing
of input arguments to functions. Suppose we have a function f taking three input
parameters. The standard call would be something like f(x1, x2, x3). If we call the
function with one input arguments, f(x1), the missing ones are given default values.
Of course this does not happen automatically; the function must be programmed that
way, and the reader is urged to see how this is accomplished by opening predefined
MATLAB functions with the editor.

Now suppose that we want to pass only the first and the third argument. We obviously
cannot simply call the function like f(x1, x3), since x3 would be assigned to the
second input argument of the function. To obtain what we want, we should use the
empty vector: f(x1, [], x3).

• Matrices can be transposed and multiplied easily (if dimensions fit):

>> M1’

ans =

0 4

6 4

>> M2=rand(2,3)

M2 =

0.9501 0.6068 0.8913

0.2311 0.4860 0.7621

>> M1*M2

ans =

1.3868 2.9159 4.5726

4.7251 4.3713 6.6136

>> M1+1

ans =

1 7

5 5

The rand command yields a matrix with random entries, uniformly distributed in the
(0,1) interval.

• Note the use of the dot . to operate element by element on a matrix:

>> A=0.5*ones(2,2)

A =

0.5000 0.5000

0.5000 0.5000

>> M1

M1 =

110 INTRODUCTION TO MATLAB

0 6

4 4

>> M1*A

ans =

3 3

4 4

>> M1.*A

ans =

0 3

2 2

>> I=[1 2; 3 4]

I =

1 2

3 4

>> I^2

ans =

7 10

15 22

>> I.^2

ans =

1 4

9 16

• Subranges may be used to build vectors. For instance, to compute the factorial:

>> 1:10

ans =

1 2 3 4 5 6 7 8 9 10

>> prod(1:10)

ans =

3628800

>> sum(1:10)

ans =

55

You may also specify an optional increment step in these expressions:

>> 1:0.8:4

ans =

1.0000 1.8000 2.6000 3.4000

The step can be negative too:

>> 5:-1:0

ans =

5 4 3 2 1 0

• One more use of the colon operator is to make sure that a vector is a column vector:

>> V1 = 1:3

V1 =

1 2 3

WORKING WITH VECTORS AND MATRICES IN THE MATLAB ENVIRONMENT 111

>> V2 = (1:3)’

V2 =

1

2

3

>> V1(:)

ans =

1

2

3

>> V2(:)

ans =

1

2

3

The same effect cannot be obtained by transposition, unless one writes code using the
function size to check matrix dimensions:

>> [m,n] = size(V2)

m =

3

n =

1

• Note the use of the special quantities Inf (infinity) and NaN (not a number):

>> l=1/0

Warning: Divide by zero.

l =

Inf

>> l

l =

Inf

>> prod(1:200)

ans =

Inf

>> 1/0 - prod(1:200)

Warning: Divide by zero.

ans =

NaN

• Useful functions to operate on matrices are: eye, inv, eig, det, rank, and diag:

>> eye(3)

ans =

1 0 0

0 1 0

0 0 1

>> K=eye(3)*[1 2 3]’

K =

1

112 INTRODUCTION TO MATLAB

2

3

>> K=inv(K)

K =

1.0000 0 0

0 0.5000 0

0 0 0.3333

>> eig(K)

ans =

1.0000

0.5000

0.3333

>> rank(K)

ans =

3

>> det(K)

ans =

0.1667

>> K=diag([1 2 3])

K =

1 0 0

0 2 0

0 0 3

We should note a sort of dual nature in diag. If it receives a vector, it builds a matrix;
if it receives a matrix, it returns a vector:

>> A = [1:3 ; 4:6 ; 7:9];

>> diag(A)

ans =

1

5

9

• Some functions operate on matrices columnwise:

>> A = [1 3 5 ; 2 4 6];

>> sum(A)

ans =

3 7 11

>> mean(A)

ans =

1.5000 3.5000 5.5000

The last example may help to understand the rationale behind this choice. If the
matrix contains samples from multiple random variables, and we want to compute
the sample mean, we should arrange data in such a way that variables corresponds to
columns, and joint realizations corresponds to rows. However, it is possible to specify
the dimension along which these functions should work:

>> sum(A,2)

ans =

MATLAB GRAPHICS 113

9

12

>> mean(A,2)

ans =

3

4

Another useful function in this vein computes cumulative sums:

>> cumsum(1:5)

ans =

1 3 6 10 15

B.2 MATLAB GRAPHICS

Most plots in the book have been obtained using the following MATLAB commands.

• Plotting a function of a single variable is easy. Try the following commands:

>> x = 0:0.01:2*pi;

>> plot(x,sin(x))

>> axis([0 2*pi -1 1])

The axis command may be used to resize plot axes at will. There is also a rich set of
ways to annotate a plot.

• Different types of plots may be obtained by using optional parameters of the plot
command. Try with

>> plot(0:20, rand(1,21), ’o’)

>> plot(0:20, rand(1,21), ’o-’)

• To obtain a tridimensional surface, the surf command may be used.

>> f = @(x,y) exp(-3*(x.^2 + y.^2)).*(sin(5*pi*x)+ cos(10*pi*y));

>> [X Y] = meshgrid(-1:0.01:1 , -1:0.01:1);

>> surf(X,Y,f(X,Y))

Some explanation is in order here. The function surf must receive three matrices,
corresponding to the x and y coordinates in the plane, and to the function value (the
‘z’ coordinate). A first requirement is that the function we want to draw should be
encoded in such a way that it can receive matrix inputs; use of the dot operator is
essential: Without the dots ‘.’, input matrices would be multiplied row by column,
as in linear algebra, rather than element by element. To build the two matrices of
coordinates, meshgrid is used. To understand what this function accomplishes, let us
consider a small scale example:

>> [X,Y] = meshgrid(1:4,1:4)

X =

1 2 3 4

114 INTRODUCTION TO MATLAB

1 2 3 4

1 2 3 4

1 2 3 4

Y =

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

We see that, for each point in the plane, we obtain matrices containing each coordinate.

B.3 SOLVING EQUATIONS AND COMPUTING INTEGRALS

• Systems of linear equations are easily solved:

>> A = [3 5 -1; 9 2 4; 4 -2 -9];
>> b = (1:3)’;
>> X = A\b
X =

0.3119
-0.0249
-0.1892

>> A*X
ans =

1.0000
2.0000
3.0000

• To solve a nonlinear equation, we must write a piece of code evaluating the function.
This can be done by writing a full-fledged program in the MATLAB programming
language. However, when the function is a relatively simple expression it may be
preferable to define functions in a more direct way, based on the function handle
operator @:

>> f = @(x,y) exp(2*x).*sin(y)

f =

@(x,y) exp(2*x).*sin(y)

We see that the operator is used to “abstract” a function from an expression. The @
operator is also useful to define anonymous functions which may be passed to higher-
order functions, i.e., functions which receive functions as inputs (e.g., to compute
integrals or to solve non-linear equations).

We may also fix some input parameters to obtain function of the remaining arguments:

>> g = @(y) f(2,y)

g =

@(y) f(2,y)

>> g(3)

ans =

SOLVING EQUATIONS AND COMPUTING INTEGRALS 115

7.7049

• As an example, let us solve the equation

x3 − x = 0

To this aim, we may use the fzero function, which needs to input arguments: the
function f defining the equation f(x) = 0; a starting point x0. From the following
snapshot, we see that the function returns a zero close to the starting point:

>> f = @(x) x^3 - x

f =

@(x)x^3-x

>> fzero(f, 2)

ans =

1

>> fzero(f, -2)

ans =

-1

>> fzero(f, 0.4)

ans =

1.0646e-017

In general, finding all the roots of a nonlinear equation is a difficult problem. Polyno-
mial equations are an exception. In MATLAB, we may solve a polynomial equation
by representing a polynomial with a vector collecting its coefficients and passing it to
the function roots:

>> p = [1 0 -1 0]

p =

1 0 -1 0

>> roots(p)

ans =

0

-1

1

• The quad function can be used for numerical quadrature, i.e., the numerical approxi-
mation of integrals. Consider the integral

I =
∫ 2π

0

e−x sin(10x) dx

This integral can be calculated as follows

I = − 1
101

e−x [sin(10x) + 10 cos(10x)]
∣∣∣∣
2π

0

≈ 0.0988

but let us pretend we do not know it. To use quad, we have to define the function
using the anonymous handle trick:

>> f=@(x) exp(-x).*sin(10*x)

116 INTRODUCTION TO MATLAB

f =

@(x) exp(-x).*sin(10*x)

>> quad(f,0,2*pi)

ans =

0.0987

Precision may be improved by specifying a tolerance parameter:

>> quad(f,0,2*pi, 10e-6)

ans =

0.0987

>> quad(f,0,2*pi, 10e-8)

ans =

0.0988

B.4 STATISTICS IN MATLAB

MATLAB, like R, can be used to carry out common tasks in statistics, such as generating
pseudorandom variates, calculating descriptive statistics, and finding quantiles.

The following snapshot shows how to generate a column vector of 10 observations from
a normal distribution with expected value 10 and standard deviation 20; then, we compute
sample mean, sample variance, and sample deviation:2

>> X = normrnd(10,20,10,1)

X =

20.7533

46.6777

-35.1769

27.2435

16.3753

-16.1538

1.3282

16.8525

81.5679

65.3887

>> mean(X)

ans =

22.4856

>> var(X)

ans =

1.2530e+003

>> std(X)

ans =

35.3977

We may also estimate the covariance matrix for a joint distribution:

>> mu = [10, 20, -5]

mu =

2Given the nature of random number generators, you will find different results.

STATISTICS IN MATLAB 117

10 20 -5

>> rho = [1 0.9 -0.4

0.9 1 -0.2

-0.4 -0.2 1]

rho =

1.0000 0.9000 -0.4000

0.9000 1.0000 -0.2000

-0.4000 -0.2000 1.0000

>> sigma = [20 30 9]

sigma =

20 30 9

>> Sigma = corr2cov(sigma,rho)

Sigma =

400 540 -72

540 900 -54

-72 -54 81

>> X = mvnrnd(mu, Sigma, 1000);

>> mean(X)

ans =

9.2523 19.5316 -4.5473

>> cov(X)

ans =

389.4356 522.0261 -71.6224

522.0261 868.4043 -49.5950

-71.6224 -49.5950 84.0933

In this snapshot, we have given the correlation matrix rho and the vector of standard
deviations sigma, which have been transformed into the covariance matrix Sigma by the
function corr2cov; the function mvnrnd generates a sample from a multivariate normal.

If we need quantiles of the normal distribution, we use norminv:

>> norminv(0.95)

ans =

1.6449

>> norminv(0.95, 20, 10)

ans =

36.4485

Just like with R, by default we find quantiles of the standard normal distribution; pro-
viding MATLAB with additional parameters, we may specify expected value and standard
deviation. If we need the normal CDF, we use normcdf:

>> normcdf(0)

ans =

0.5000

>> normcdf(3)

ans =

0.9987

>> normcdf(20,15,10)

ans =

0.6915

Using inv, chi2inv, and finv we find quantiles of the t, chi-square, and F distribution:

>> tinv(0.95,5)

118 INTRODUCTION TO MATLAB

ans =

2.0150

>> chi2inv(0.95,4)

ans =

9.4877

>> finv(0.95,3,5)

ans =

5.4095

The first argument is always the probability level, and the remaining ones specify the
parameters of each distribution.

B.5 USING MATLAB TO SOLVE LINEAR AND QUADRATIC PROGRAMMING

PROBLEMS

The Optimization toolbox includes a function, linprog, which solves LP problems of the
form

min cT x
s.t. Ax ≤ b

Aeqx = beq

l ≤ x ≤ u

The call to the function is x = linprog(f,A,b,Aeq,beq,lb,ub). t As an example, let us
solve the problem

max x1 + x2

s.t. x1 + 3x2 ≤ 100
2x1 + x2 ≤ 80
x1 ≥ 0, 0 ≤ x2 ≤ 40

>> c = [-1, -1];

>> A = [1 3; 2 1];

>> b = [100; 80];

>> lb = zeros(2,1);

>> ub = [inf, 40];

>> x = linprog(c, A, b, [], [], lb, ub)

Optimization terminated.

x =

28.0000

24.0000

Note the use of “infinity” to specify the upper bound on x1 and the empty vector [] as
an empty placeholder for the arguments associated with equality constraints; since linprog
solves a minimization problem, we have to change the sign of the coefficients of the objective
function.

USING MATLAB TO SOLVE LINEAR AND QUADRATIC PROGRAMMING PROBLEMS 119

To solve quadratic programming problems, such as

min
1
2
xTHx + fTx

s.t. Ax ≤ b
Aeqx = beq

l ≤ x ≤ u

we may use x = quadrog(H,f,A,b,Aeq,beq,lb,ub).
As an example, let us find the minimum variance portfolio consisting of 3 assets with

expected return and covariance matrix given by3

µ =




0.15
0.20
0.08


 , Σ =




0.200 0.050 −0.010
0.050 0.300 0.015

−0.010 0.015 0.100




Let rT = 0.10 be the target return:

>> Sigma = [0.200 0.050 -0.010

0.050 0.300 0.015

-0.010 0.015 0.100]

Sigma =

0.2000 0.0500 -0.0100

0.0500 0.3000 0.0150

-0.0100 0.0150 0.1000

>> mu = [0.15; 0.20; 0.08];

>> rt = 0.10;

>> Aeq = [ones(1,3); mu’];

>> beq = [1; rt];

>> w = quadprog(Sigma, [], [], [], Aeq, beq, zeros(3,1))

Optimization terminated.

w =

0.2610

0.0144

0.7246

MATLAB cannot be used to solve mixed-integer programming problems; an excellent
solver for this purpose is CPLEX, which can be invoked from AMPL (see Appendix C).

3See Example 12.5 in the book; also see Section C.2 for a solution using AMPL.

Appendix C

Introduction to AMPL

In this brief appendix, we want to introduce the basic syntax of AMPL. Since its syntax is
almost self explanatory, we will just describe a few basic examples, so that the reader can
get a grasp of the basic language elements.1 AMPL is not a language to write procedures;
there is a part of the language which is aimed at writing scripts, which behave like any
program based on a sequence of control statements and instructions. But the core of AMPL
is a declarative syntax to describe a mathematical programming model and the data to
instantiate it. The optimization solver is separate: You can write a model in AMPL, and
solve it with different solvers, possibly implementing different algorithms. Actually, AMPL
interfaces have been built for many different solvers; in fact, AMPL is more of a language
standard which has been implemented and is sold by a variety of providers.

A demo version is currently available on the web site http://www.ampl.com. The reader
with no access to a commercial implementation can get the student demo and install it fol-
lowing the instructions. This student demo comes with two solvers: MINOS and CPLEX.
MINOS is a solver for linear and nonlinear programming models with continuous variables,
developed at Stanford University. CPLEX is a solver for linear and mixed-integer program-
ming models. Originally, CPLEX was am academic product, but it is now developed and
distributed by IBM. Recent CPLEX versions are able to cope with quadratic programming
models, both continuous and mixed-integer. All the examples in this book have been solved
using CPLEX.

1For more information, the reader is referred to the original reference for more information: R. Fourer, D.M.
Gay, B.W. Kernighan, AMPL: A Modeling Language for Mathematical Programming (2nd ed.), Duxbury
Press, 2002.

121

122 INTRODUCTION TO AMPL

C.1 RUNNING OPTIMIZATION MODELS IN AMPL

Typically, optimization models in AMPL are written using two separate files.

• A model file, with standard extension *.mod, contains the description of parameters
(data), decision variables, constraints, and the objective function.

• A separate data file, with standard extension *.dat, contains data values for a specific
model instance. These data must match the description provided in the model file.

Both files are normal ASCII files which can be created using any text editor, including
MATLAB editor (if you are using word processors, be sure you are creating plain text files,
with no hidden control characters for formatting). It is also possible to describe a model
in one file, but separating structure and data is a good practice, enabling to solve multiple
instances of the same model easily.

When you start AMPL, you get a DOS-like window2 with a prompt like:

ampl:

To load a model file, you must enter a command like:

ampl: model mymodel.mod;

where the semicolon must not be forgotten, as it marks the end of a command (otherwise
AMPL waits for more input by issuing a prompt like ampl?).3 To load a data file, the
command is

ampl: data mymodel.dat;

Then we may solve the model by issuing the command:

ampl: solve;

To change data without loading a new model, you should do something like:

ampl: reset data;

ampl: data mymodel.dat;

Using reset; unloads the model too, and it must be used if you want to load and solve a
different model. This is also important if you get error messages because of syntax errors in
the model description. If you just correct the model file and load the new version, you will
get a lot of error messages about duplicate definitions.

The solver can be select using the option command. For instance, you may choose

ampl: option solver minos;

or

ampl: option solver cplex;

Many more options are actually available, as well as ways to display the solution and to save
output to files. We will cover only the essential in the following. We should also mention
that the commercial AMPL versions include a powerful script language, which can be used
to write complex applications in which several optimization models are dealt with, whereby
one model provides input to another one.

2The exact look of the window and the way you start AMPL depend on the AMPL version you use.
3Here we are assuming that the model and data files are in the same directory as the AMPL executable,
which is not good practice. It is much better to place AMPL on the DOS path and to launch it from the
directory where the files are stored. See the manuals for details.

MEAN-VARIANCE EFFICIENT PORTFOLIOS IN AMPL 123

param NAssets > 0;

param ExpRet{1..NAssets};

param CovMat{1..NAssets, 1..NAssets};

param TargetRet;

var W{1..NAssets} >= 0;

minimize Risk:

sum {i in 1..NAssets, j in 1..NAssets} W[i]*CovMat[i,j]*W[j];

subject to SumToOne:

sum {i in 1..NAssets} W[i] = 1;

subject to MinReturn:

sum {i in 1..NAssets} ExpRet[i]*W[i] = TargetRet;

param NAssets := 3;

param ExpRet :=

1 0.15

2 0.2

3 0.08;

param CovMat:

1 2 3 :=

1 0.2000 0.0500 -0.0100

2 0.0500 0.3000 0.0150

3 -0.0100 0.0150 0.1000;

param TargetRet := 0.1;

Fig. C.1 AMPL model (MeanVar.mod) and data (MeanVar.dat) files for mean-variance efficient port-
folios.

C.2 MEAN-VARIANCE EFFICIENT PORTFOLIOS IN AMPL

To get acquainted with AMPL syntax, we represent the mean-variance portfolio optimization
problem (see Example 12.5 in the book):

min w′Σw
s.t. w′r̄ = r̄T

n∑

i=1

wi = 1

wi ≥ 0.

AMPL syntax for this model is given in figure C.1. First we define model parameters:
the number of assets NAssets, the vector of expected return (one per asset), the covariance
matrix, and the target return. Note that each declaration must be terminated by a semicolon,
as AMPL does not consider end of line characters. The restriction NAssets > 0 is not a
constraint of the model: It is an optional consistency check that is carried out when data

124 INTRODUCTION TO AMPL

are loaded, before issuing the solve command. Catching data inconsistencies as early as
possible may be very helpful. Also note that in AMPL it is typical (but not required) to
assign long names to parameters and variables, which are more meaningful than the terse
names we use in mathematical models.

Then the decision variable W is declared; this variable must be non-negative to prevent
short-selling, and this bound is associated to the variable, rather than being declared as a
constraint. Finally, the objective function and the two constraints are declared. In both
cases we use the sum operator, with a fairly natural syntax. We should note that braces
({}) are used when declaring vectors and matrices, whereas squares brackets ([]) are used
to access elements. Objectives and constraints are always given a name, so that later we can
access information such as the objective value and dual variables. Expressions for constraints
and objective can be entered freely. There is no natural order in the declarations: We may
interleave any type of model elements, provided what is used has already been declared.

In the second part of figure C.1 we show the data file. The syntax is fairly natural, but
you should notice its basic features:

• Blank and newline characters do not play any role: We must assign vector data by
giving both the index and the value; this may look a bit involved, but it allows quite
general indexing.

• Each declaration must be closed by a semicolon.

• To assign a matrix, a syntax has been devised that allows to write data as a table,
with rows and columns arranged in a visually clear way.

Now we are ready to load and solve the model, and to display the solution:

ampl: model MeanVar.mod;

ampl: data MeanVar.dat;

ampl: solve;

CPLEX 9.1.0: optimal solution; objective 0.06309598494

18 QP barrier iterations; no basis.

ampl: display W;

W [*] :=

1 0.260978

2 0.0144292

3 0.724592

;

We can also evaluate expressions based on the output from the optimization models, as well
as checking the shadow prices (Lagrange multipliers) associated with the constraints:

ampl: display Risk;

Risk = 0.063096

ampl: display sqrt(Risk);

sqrt(Risk) = 0.251189

ampl: display MinReturn.dual;

MinReturn.dual = -0.69699

ampl: display sum {k in 1..NAssets} W[k]*ExpRet[k];

sum{k in 1 .. NAssets} W[k]*ExpRet[k] = 0.1

THE KNAPSACK MODEL IN AMPL 125

param NItems > 0;

param Value{1..NItems} >= 0;

param Cost{1..NItems} >= 0;

param Budget >= 0;

var x{1..NItems} binary;

maximize TotalValue:

sum {i in 1..NItems} Value[i]*x[i];

subject to AvailableBudget:

sum {i in 1..NItems} Cost[i]*x[i] <= Budget;

param NItems = 4;

param: Value Cost :=

1 10 2

2 7 1

3 25 6

4 24 5;

param Budget := 7;

Fig. C.2 AMPL model (Knapsack.mod) and data (Knapsack.dat) files for the knapsack model.

C.3 THE KNAPSACK MODEL IN AMPL

As another example, we consider the knapsack problem (see Section 12.4.1):

max
n∑

i=1

Rixi

s.t.
N∑

i=1

Cixi ≤ W

xi ∈ {0, 1}.

The corresponding AMPL model is displayed in figure C.2. Again, the syntax is fairly
natural, and we should just note a couple of points:

• The decision variables are declared as binary.

• In the data file, the two vectors of parameters are assigned at the same time to save
on writing; you should compare carefully the syntax used here against the syntax used
to assign a matrix (see the covariance matrix in the previous example).

Now we may solve the model and check the solution (we must use reset to unload the
previous model):

ampl: reset;

126 INTRODUCTION TO AMPL

ampl: model Knapsack.mod;

ampl: data Knapsack.dat;

ampl: solve;

CPLEX 9.1.0: optimal integer solution; objective 34

3 MIP simplex iterations

0 branch-and-bound nodes

ampl: display x;

x [*] :=

1 1

2 0

3 0

4 1

;

In this case, branch and bound is invoked (see Chapter 12). In fact, if you are using the
student demo, you cannot solve this model with MINOS; CPLEX must be selected using

ampl: option solver cplex;

If you use MINOS, you will get the solution for the continuous relaxation of the model
above, i.e., a model in which the binary decision variables are relaxed: x ∈ [0, 1], instead
of x ∈ {0, 1}. The same can be achieved in ILOG AMPL/CPLEX by issuing appropriate
commands:

ampl: option cplex_options ’relax’;

ampl: solve;

CPLEX 9.1.0: relax

Ignoring integrality of 4 variables.

CPLEX 9.1.0: optimal solution; objective 36.2

1 dual simplex iterations (0 in phase I)

ampl: display x;

x [*] :=

1 1

2 1

3 0

4 0.8

;

Here we have used the relax option to solve the relaxed model. We may also use other
options to gain some insights on the solution process:

ampl: option cplex_options ’mipdisplay 2’;

ampl: solve;

CPLEX 9.1.0: mipdisplay 2

MIP start values provide initial solution with objective 34.0000.

Clique table members: 2

MIP emphasis: balance optimality and feasibility

Root relaxation solution time = 0.00 sec.

Nodes Cuts/

Node Left Objective IInf Best Integer Best Node ItCnt Gap

0 0 36.2000 1 34.0000 36.2000 1 6.47%

cutoff 34.0000 Cuts: 2 2 0.00%

THE KNAPSACK MODEL IN AMPL 127

Cover cuts applied: 1

CPLEX 9.1.0: optimal integer solution; objective 34

2 MIP simplex iterations

0 branch-and-bound nodes

To interpret this output, the reader should have a look at Section 12.6.2., where the branch
and bound method is explained.

