
Another counter-example to antithetic sampling

March 13, 2002

The antithetic sampling method (section 4.4.1, page 220) is arguably the easiest approach
to variance reduction. However, it is not guaranteed to work, unless a certain monotonicity

condition is met. Example 4.6 on page 223 shows that when the function we are integrating
is non-monotonic, an increase in variance may result. Section 7.2.2 aims at providing a more
practical example of how antithetic sampling may not work properly when the monotonicity
condition is not met.

X1 X2 X3

fT

ST

Figure 1: Payo® from a butter°y spread.

This supplement gives a more convincing counter-example based on a popular option trad-
ing strategy, the butter°y spread (see, e.g., [1, chapter 8]). The butter°y spread is a trading
strategy involving options on the same underlying asset, with the same maturity, but with
di®erent strike prices. The payo® from this combination is illustrated in ¯gure 1. It can be
obtained by buying one call option with strike price X1, one call option with strike price X3

(X1 < X3), and by selling two call options with a strike X2 halfway between the other two.
Since the butter°y spread is simply a combination of European calls, an option with that
payo® may be directly priced by using Black-Scholes formula.

Since the payo® is clearly non-monotonic, and we know the \correct" price, it is interesting
check whether antithetic sampling works in this case.1 A crude Monte Carlo approach leads to
the code in ¯gure 2. Note the use of vectors In1 and In2 to collect the indexes corresponding
to replications in which the terminal asset price falls in the increasing region of the payo®
(X1 < ST <X2) or in the decreasing region (X2 · ST < X3); outside those regions the payo®
is zero. The two vectors are used to avoid for loops. The function MCButterfly receives the
usual input arguments, plus the three strikes.

The function MCAVButterfly of ¯gure 3 is a modi¯cation based on antithetic sampling. The
vector Veps contains the samples from the standard normal distribution, which are changed

1This supplement should be used in conjunction with the book: P. Brandimarte, Numerical
Methods in Finance: a MATLAB-Based Introduction, Wiley, 2001. Please refer to the web page
(www.polito.it/»brandimarte) for further updates and supplements. Any comment is welcome. My e-mail
address is: brandimarte@polito.it.

1As stressed in the book, we use such examples for purely didactic reasons; clearly, there is little use for
Monte Carlo simulation when the correct result may be obtained by an analytical formula.

1



function [P, CI] = MCButterfly(S0,r,T,sigma,NRepl,X1,X2,X3)

nuT = (r-0.5*sigma^2)*T;

siT = sigma*sqrt(T);

Veps = randn(NRepl,1);

Stocks = S0*exp(nuT + siT*Veps);

In1 = find((Stocks > X1) & (Stocks < X2));

In2 = find((Stocks >= X2) & (Stocks < X3));

Payoff = exp(-r*T)*[(Stocks(In1)-X1); (X3-Stocks(In2)); ...

zeros(NRepl - length(In1) - length(In2),1)];

[P, V, CI] = normfit(Payoff);

Figure 2: Crude Monte Carlo code to price a butter°y spread combination.

in sign to obtain the antithetic stock price samples Stocks2. Note that in this case we must
preserve the order of the samples in order to pair the corresponding payo®s properly.

It is common to choose X2 close to the current stock price S0, as this strategy is based on
the bet that the stock price will not move too much. Let us check the results in such a case.
Using blsprice we may get the theoretical result.

>> S0 = 60;

>> X1 = 55;

>> X2 = 60;

>> X3 = 65;

>> T = 5/12;

>> r = 0.1;

>> sigma = 0.4;

>> calls = blsprice(S0, [X1, X2, X3], r, T, sigma);

>> Pth = calls(1) - 2*calls(2) + calls(3)

Pth =

0.6124

Next, we may compare the two Monte Carlo methods (as usual, we use half the replications
with antithetic sampling to get a fair comparison, since in this case the parameter NRepl refers
to the number of antithetic pairs):

>> randn('seed',0)

>> [P, CI] = MCButterfly(S0,r,T,sigma,100000,X1,X2,X3);

>> P

P =

0.6145

>> CI(2) - CI(1)

ans =

0.0156

>> [P, CI] = MCAVButterfly(S0,r,T,sigma,50000,X1,X2,X3);

>> P

P =

0.6121

>> CI(2) - CI(1)

2



function [P, CI] = MCAVButterfly(S0,r,T,sigma,NRepl,X1,X2,X3)

nuT = (r-0.5*sigma^2)*T;

siT = sigma*sqrt(T);

Veps = randn(NRepl,1);

Stocks1 = S0*exp(nuT + siT*Veps);

Stocks2 = S0*exp(nuT - siT*Veps);

Payoff1 = zeros(NRepl,1);

Payoff2 = zeros(NRepl,1);

In = find((Stocks1 > X1) & (Stocks1 < X2));

Payoff1(In) = (Stocks1(In) - X1);

In = find((Stocks1 >= X2) & (Stocks1 < X3));

Payoff1(In) = (X3 - Stocks1(In));

In = find((Stocks2 > X1) & (Stocks2 < X2));

Payoff2(In) = (Stocks2(In) - X1);

In = find((Stocks2 >= X2) & (Stocks2 < X3));

Payoff2(In) = (X3 - Stocks2(In));

Payoff = 0.5 * exp(-r*T) * (Payoff1 + Payoff2);

[P, V, CI] = normfit(Payoff);

Figure 3: Using antithetic sampling to price a butter°y spread combination.

ans =

0.0216

Apparently, the result obtained with antithetic sampling is closer to the correct result, but
in practice you would consider the con¯dence interval, which is larger with antithetic sampling.
This does not mean that you will always have an increase in variance, as this depends on the
input data (try changing the strikes to see this). Anyway, since one run does not tell us much,
a better comparison may be carried out by checking the mean square error with respect to the
exact result:

>> randn('seed',0)

>> for i=1:100, V1(i) = MCButterfly(S0,r,T,sigma,100000,X1,X2,X3);, end

>> for i=1:100, V2(i) = MCAVButterfly(S0,r,T,sigma,50000,X1,X2,X3);, end

>> mean((V1 - Pth).^2)

ans =

1.5550e-005

>> mean((V2 - Pth).^2)

ans =

3.8167e-005

Indeed, we see the mean square error is rather small, yet it is doubled by antithetic sam-
pling. The reader is encouraged to try a control variate approach to this problem.

References

[1] J.C. Hull. Options, Futures, and Other Derivatives (4th ed.). Prentice Hall, Upper Saddle
River, NJ, 2000.

3


