
Adding Multi-Homing and Dual-Stack Support to the 
Session Initiation Protocol  

 

Mario Baldi, Fulvio Risso, Livio Torrero 
Dipartimento di Automatica e Informatica, 

Politecnico di Torino, Torino, Italy 
{mario.baldi, fulvio.risso, livio.torrero}@polito.it 

 
 

Abstract— Although the SIP protocol claims a complete dual-
stack support, some aspects, such as interoperability between 
different address realms and support for multi-homed hosts, are 
not taken into consideration. This leads to an extensive usage of 
proxies as gateways, e.g., between different address realms. 
ALEX (“Address List Extension”) is a simple extension to the 
SIP header that addresses these limitations, providing additional 
scalability for SIP proxies and allowing the establishment of 
direct channels between peers, while still guaranteeing backward 
compatibility with traditional SIP implementations. 

Keywords-component; SIP, IPv6, transition, ALEX, ICE 

I. INTRODUCTION 
The Session Initiation Protocol [1] (SIP) has been originally 

developed with a peer-to-peer approach in mind. In the original 
proposal, a SIP infrastructure is needed only during session 
establishment, while subsequent SIP messages should be 
exchanged directly by the two endpoints of the session, called 
SIP user agents (UAs). However, recent practice is increasingly 
oriented toward an extended usage of intermediate nodes (SIP 
proxies) also during the established phase of a SIP session to 
overcome direct connectivity problems (e.g. UAs with private 
addresses or dual stack hosts), which results in the protocol 
operating sub-optimally according to a client/server approach. 
This is usually accepted due to the low bandwidth required by 
SIP messages compared to media flows; in fact, most of the 
work is done for optimizing media sessions rather than SIP 
session establishment. However, as more applications (e.g. e-
presence) are based on SIP signaling, the amount of SIP 
messages in the network may no longer be negligible. 

This paper presents and validates an extension to SIP called 
Address List Extension (ALEX) that enables direct 
connectivity for both signaling messages and media flows. This 
extension is especially targeted to dual-stack and multi-homed 
hosts since it guarantees better network usage and reduces 
proxy scalability problems. 

This paper is organized as follows. Section II discusses the 
motivations for such an extension, alternative approaches, and 
other related work. Section III provides an overview of ALEX 
and discusses the architectural modifications it brings to the 
SIP stack. A first implementation is presented in Section IV 
together with some experimental results. Section V draws some 
conclusions and outlines future work directions. 

II. MOTIVATIONS 
The introduction of new generation networks based on IPv6 

is creating some problems concerning the interoperability with 
existing IPv4-only networks: this results in the extensive usage 
of gateways in order to ensure connectivity between these 
different address realms. In the SIP context, SIP proxies 
provide gateway functionality by being forced to handle all SIP 
messages through the insertion of a record-route field in 
the header of each message and UAs do no longer exchange 
messages directly. RFC 3261 [1] recommends a moderate 
usage to avoid performance (RTT increases due to the 
triangulation) and scalability (proxies are forced to process a 
huge amount of messages) issues. In fact SIP proxies should be 
used only to forward the initial messages that establish the 
session after locating the called party’s UA, while all the other 
messages of the dialog should be exchanged directly.  

ALEX has been developed to avoid limitations stemming 
from deployment of gateways: the idea is to make UAs smart 
enough to create a direct channel, thus reducing the load on 
proxies and improving latency for SIP and other (e.g., media) 
messages. Furthermore ALEX adds an efficient multi-homing 
support to SIP since it allows a UAs to know the complete list 
of available addresses, therefore choosing the most suitable 
pair for the session. 

A. The problem with direct connectivity 
RFC 3261 states that the single contact field included in 

the header of SIP request messages must contain a single URI 
(Universal Resource Identifier) providing information on how 
to contact the caller. Since most UAs do not have a DNS entry, 
such URI often contains a caller’s IP address (more details 
have been presented in [3]). The choice of such address is non-
trivial for a dual-stack UA, since it does not know whether the 
called peer and the network between them support IPv6. As a 
result, connectivity problems might arise even when a large 
portion of the network is dual-stack, e.g. the entire left-hand 
side network in Figure 1. For instance, if in this scenario UAA 
uses an IPv6 contact field, UAB is not able to send a SIP 
messages to UAA directly, but PRB must acts as a translator, 
such as in the bottom half of Figure 1. Vice versa, if UAA used 
an IPv4 contact field, it would loose the possibility to 
establish direct sessions on IPv6 transport to any UA, because 



the called peer cannot know that the calling UA has IPv6 
support (neither its IPv6 address). 

Proxy PRA

UABUAA

Proxy PRB

Dual-stack network IPv4-only network

Proxy PRA

UABUAA

Proxy PRB

IPv6

IPv6

IPv6

IPv4

IPv4

SIP session setup

Established SIP session

 
Figure 1. Example of SIP messages in case of dual-stack entities. 

While the record-route field ensures connectivity 
between IPv4 and IPv6 networks, this results in additional 
overhead on PRB since all SIP messages and possibly media 
packets are routed through it. In order to quantify the overhead 
due to the extensive usage of record-route, let’s consider 
a sample scenario in which each user has N peers in the buddy 
list and a decentralized e-presence model is used (the only 
approach available, for example, in p2pSIP [11]). Each user 
subscribes the status of its N peers [4] (i.e., 4 messages for each 
peer: one SUBSCRIBE [2] plus one NOTIFY [2] and the 
related answers) periodically every SUBSCRIBE Refresh 
Time. Moreover, some additional messages are sent in case a 
peer changes its status (e.g. from “online” to “away”). 

TABLE I.  VALUES USED FOR COMPUTING SIP PROXY OVERHEAD 

Description Value 
SUBSCRIBE Refresh Time 600 sec (10 min) 

Number of status changes per hour 2 
Number of contacts in the buddy list 10 

Number of users in the Service Provider realm 10 millions 
Average SIP Message size 700 bytes 

 
Using the values listed in Table I, the SIP proxy of a 

medium-sized operator (10 million subscribers) has to sustain a 
run-time traffic of 780K messages per second, equivalent to an 
approximate load of 4.4Gbps. It is interesting to note that in 
case SIP messages are sent directly between peers (i.e. only the 
messages required to establish the session are routed through 
proxies), the load on the Service Provider Proxy diminishes to 
28K messages per second, equivalent to an approximate load of 
156 Mbps (assuming that users establish the first session within 
a period of 2 hours).  

Although decentralized e-presence is not mandatory and 
not implemented in some domains, this example demonstrates 
that in real networks the amount of SIP messages traversing 
these SIP proxies might be significant. Hence, the capability of 
exchanging SIP messages directly between peers can add a 
new degree of scalability to the SIP infrastructure. 
Furthermore, the direct exchange of messages reduces the 
problem of switching from a faulty SIP proxy to another one, 
with the obvious burden in terms of maintaining the status of 
the sessions. In summary, keeping the proxy outside the path of 
SIP messages is advisable unless there is a specific reason to do 
otherwise (e.g., monitoring all the signaling traffic). 

B. Multi-homing support 
One of the key features of IPv6 networks is multi-homing 

support: a host can have multiple IPv6 addresses thus ensuring 
connectivity across separate networks. Moreover, in future 
networks the usage of multiple interfaces could be a key to 
improve performance. However, SIP cannot take advantage of 
this because a UA can announce only a single address in the 
contact field. It would be desirable, instead, that a UA be 
able to discover an optimal path to a second UA through a 
specific interface.  

C. Related work 
SIP deployment with IPv6 is rather inefficient because it 

does not properly support the transition from IPv4 to IPv6 
which relies on dual-stack hosts. Among the solutions 
proposed in the past, a first one proposed to send a dialog-
creating request using the IPv6 protocol first. The problem was 
that the UA needs to be informed in case of failure, but no 
dedicated answer code (e.g., “unsupported address family”) is 
available, even though a 3xx answer was considered a possible 
compromise. Another approach consisted in the UA sending an 
IPv6 request and an IPv4 one at the same time: at least one of 
the request was expected to reach the called party. 

The current state-of-the-art solution to this problem uses 
two separate approaches for signaling and media forwarding: 
for SIP signaling, connectivity is ensured adding a record-
route field to all the SIP messages of a session [6] so that SIP 
proxies act as gateways between the IPv4 and IPv6 networks; 
for media flows, the Interactive Connectivity Establishment 
(ICE) [7] mechanism is deployed. 

ICE adds new fields to the Session Description Protocol 
(SDP) [5] that are used to negotiate the characteristics of a 
media session. These additional fields contain the complete list 
of addresses available to a UA to be used in a media session 
(both IPv4 and IPv6), a priority associated to each address, and 
a default address to use. ICE has a major limitation as it is 
applicable only to media flows, i.e., it does not provide direct 
connectivity for SIP messages. ALEX, although shares some 
ideas with ICE, overcomes this issue. 

III. ALEX OVERVIEW 
ALEX defines a new mechanism within the SIP protocol 

(while leaving companion protocols, such as SDP, unchanged) 
that allows direct message exchange and direct session 
establishment through the addition of a new field (ALEX-
item) to the SIP header. Each ALEX-item contains a 
network address-port pair related to the new session (i.e. if the 
host has N network addresses, at least N ALEX-items will 
exist), which results in multiple ALEX items per message to 
provide information for both SIP signalling and media flows. 
To deploy the best application-layer connectivity, both UAs 
start probing all the possible connectivity solutions by 
exchanging STUN [8][9] messages. Connectivity checking in 
ALEX is similar to the one used in ICE; the key difference is 
that ICE aims only at establishing direct media connectivity, 
while ALEX creates also a direct SIP channel between UAs. 



A. ALEX item format 
ALEX-items are used to announce the host addresses and 

transport-layer ports available as endpoints of SIP and media 
channels. Currently, two types of ALEX-items, both sharing 
the same structure, are defined: one related to SIP flows and 
one related to media flows. An ALEX-item is constituted by 
two parts: (i) a basic block common to all ALEX-items that 
is used to identify the item and to specify the flow type and the 
network address, and (ii) one or more expansion blocks, 
depending on the type of ALEX-item. 

Network Addresses:
- 130.192.2.17 (IPv4)
- 2001:A60::81 (IPv6)
- 2001:A60::82 (IPv6)

Transport-layer ports:
- 5060 (SIP)
- 7000 (RTP, audio)
- 7001 (RTCP, audio)

UAA UAB

Network Addresses:
- 130.192.25.18 (IPv4)
- 2001:A60::83 (IPv6)
- 2001:A60::84 (IPv6)

Transport-layer ports:
- 5060 (SIP)
- 6000 (RTP, audio)
- 6001 (RTCP, audio)  

Figure 2: Network addresses and ports used in the ALEX negotiation. 

The example in Figure 2 shows two ALEX compliant UAs 
trying to establish two media flows. UAA will send the INVITE 
message reported in Figure 3 (showing only the most important 
fields) that includes several ALEX-items composing the 
ALEX Address List. This message includes three ALEX-items 
related to the SIP flow and three related to the audio flow. 

INVITE <sip:UA2@ipv6.polito.it> SIP/2.0 
From: UA1 <sip:UA1@ipv6.polito.it >;tag=a73kszlfl  
To: UA2 <sip:UA2@ipv6.polito.it > 
Contact: <sip:UA1@130.192.2.17:5060> 
Supported: ALEX 
ALEX-item:sip;0.5;d;130.192.2.17;5060 
ALEX-item:audio;0.5;d;rtp;7000;rtcp;7001 
ALEX-item:sip;0.8;[ 2001:A60::81];5060 
ALEX-item:audio;0.8;rtp;7100;rtcp7101 
ALEX-item:sip;0.8;[ 2001:A60::82];5060 
ALEX-item:audio;1.0;rtp;7100;rtcp7101 

 
v=0 
o=- 2890844526 2890842807 IN IP4 130.192.2.17 
m=audio 7000 RTP/AVP 0 
c=IN IP4 130.192.2.17  

Figure 3: INVITE message (SIP + SDP) including ALEX-items. 

The components of an ALEX-item are somewhat intuitive. 
For example, the ALEX-item related to the audio flow in the 
INVITE message can contains the following fields: 

• Component label: specifies the flow referred by the 
ALEX-item. Currently, values are “sip”, “audio”, 
“video”. 

• Q-value: a numeric priority value (in the [0,1] interval; 
1 is for the highest priority) used to establish a priority 
among ALEX-items related to the same channel  

•  Default flag (“d”): if present, it indicates the set of 
default addresses that should ensure immediate 
connectivity.  

• Expiration time (not present in Figure 3): validity 
time in seconds for the ALEX-item. It is preceded by 
the keyword “expires:” and it is optional: if it is not 
present the expiration time is automatically set to 3600 
s. 

• Address: this field stores the network address related 
to the ALEX-item. IPv6 addresses are surrounded by 
square brackets. If this field is not present the address 

is assumed to be equal to the one stored in the previous 
ALEX-item in the message. 

• Flow component label: it is a label placed at the 
beginning of each expansion block. Currently, values 
are “rtp”, “rtcp”.  

• Port: number of the transport-layer port of the specific 
flow.  

Note that the ALEX-item considered has two expansion 
blocks: one related to RTP and one related to RTCP. The 
presence of such expansion blocks in the same ALEX-item 
shows the correlation between them: if the RTCP flow cannot 
be established, the related RTP one is useless. Again note that 
the SIP related ALEX-items have no multiple expansion 
blocks: simply, in the case of SIP, the basic block is followed 
by the port related to the network address. 

B. ALEX phases 
ALEX modifies the establishment of a SIP session adding 

four phases, shown in Figure 4, and detailed in the following. 

UAA
INVITE (with ALEX-items)

Address announcement

180 Ringing (with ALEX-items)

PRA PRB UAB

Creation of connection lists 
and validation phase

STUN checks
(both media and SIP)

Updated INVITE 
200 OK

Session update
SIP channel

Media channel

Validation Table

…

…

…

…

Local addr Remote addr

Validation Table

…

…

…

…

Local addr Remote addr

Validation Table

…

…

…

…

Local addr Remote addr

Validation Table

…

…

…

…

Local addr Remote addr

 
Figure 4: Dialog establishment using ALEX. 

1) Address announcement 
Two UAs exchange the complete lists of their addresses by 

adding the ALEX-item fields to the SIP request that creates 
the dialog and its related answer, respectively. Each ALEX-
item field stores exactly one network address and at least one 
port (more details in the following) related to both SIP and 
media flows. While UAA will send Alex-items in its 
INVITE message, UAB should send its ALEX-items back to 
UAA as soon as it is possible, e.g. in the 180 RINGING 
provisional response. This message can include only the SIP 
related ALEX-items (the SDP payload might be unknown at 
this time, hence ALEX-items related to audio and video may 
be missing); in such a case the ALEX-items related to media 
flows will be sent in the “200 OK” answer. This can be useful 
because, if the validation phase completes before the sending 
of the 200 OK, UAB may decide to modify the list of items 
included: for example if an IPv6 SIP channel has been 
discovered, UAB may include only the ALEX-items 
containing IPv6 network addresses in the final response, thus 
converging immediately to the optimal choice. Obviously, the 
called party will add ALEX-item fields to its answer only if 
the request contained the Supported: ALEX header, 
followed by the ALEX list. 



2) Creation of the validation tables 
When both the UAs exchanged successfully their ALEX-

items, they start organizing them in validation tables. There 
will be a validation table for each flow involved. For example, 
considering the UAs that started the session depicted in Figure 
4, there will be a validation table for SIP and one for the audio 
flow. Both the UAs populate these validation tables exactly in 
the same way. First of all, the priority of each candidate 
channel is set to the lowest priority value of the components 
involved and the expiration time of each candidate channel is 
set to the lowest priority value of the components involved. All 
the candidate entries are listed ordering them by decreasing 
priority values with the exception of the default entries that are 
placed on top of the table. If two or more entries have the same 
priority value, they are sorted using the priority of the 
components sent by the creator of the session. Then, each row 
is obtained by combining each address-port pair to be used by 
the UA with each addresses-port pair advertised by the other 
UA. 

Considering the media flows, each entry of the related 
validation table is made up of two parts, one related to RTP 
and one to RTCP. These two parts are considered a unique 
entity and they will be checked at the same time. Entries must 
be homogeneous, i.e. the RTP item related to an audio session 
must be paired only with the corresponding RTP audio 
information on the other peer. 

3) Address validation phase 
When all the validation tables are ready, the validation 

phase begins. The connectivity checks are executed sending 
STUN Binding Requests using the addresses and the ports of 
each candidate entry. Upon the receipt of a binding request, the 
STUN server sends back a Binding Response containing in the 
payload the source network address-port pair seen in the 
request. By doing this, the sender checks connectivity with the 
receiver and discovers its network address (and port) seen by 
the receiver. 

Since the validation process aims at establishing a direct 
SIP channel first, all SIP candidate entries are checked first. 
The SIP channel helps to discover the optimal channels for the 
remaining flows: for example if the SIP validation detected 
IPv4-only connectivity, there is no reason to further test IPv6 
connectivity for media flows. It is worth noting that RTP and 
RTCP network address-port pairs are correlated, hence their 
validation is interdependent, i.e., both pairs originating from 
the same network address must be successfully validated in 
order for such address-port pairs to be usable. 

The default channels (i.e. the ones with the “d” flag) are 
checked first but are used only if the checks on all the other 
channels fail. ICE performs similar connectivity checks, but 
ALEX checks also the SIP address pairs and not only the 
media ones. As soon as the connectivity is verified the UAs can 
start using the channel: ideally a smart UA can switch 
automatically from a channel to another, without sending or 
receiving specific update messages. By the way, if it is not 
possible, the UA is expected to store this channel in the ALEX-
cache in order to use it in subsequent sessions.  Note that the 
validation phase is completely independent from the INVITE 
transaction: the ACK request may be sent even though the 

validation phase is not completed (in this case, a sub-optimal 
couple of addresses can be used). This means that the SIP 
standard timers need not to be modified to support the ALEX 
extension. 

4) Session Update 
As soon as optimal channels for both SIP and media flows 

are available, UAA and UAB can start using them. Optionally 
UAA can send a re-INVITE message including a standard SDP 
payload containing the addresses related to the optimal media 
channels discovered. This is done to inform intermediate 
entities that possibly monitor the media traffic between the 
UAs. UAB sends a “200 OK” answer with an updated SDP 
payload for the same purpose.  

C. Backward compatibility 
To ensure backward compatibility with ALEX-unaware 

UAs, the SIP default component is placed in the Contact 
field. For the same reason the default groups for media streams 
are placed in the “m=” lines of the SDP payloads. When a 
standard SIP UA receives the INVITE request depicted in 
Figure 3, it will start using the default addresses and ports as 
default remote targets for both SIP and media flows. It is 
important to note that the ALEX extension does not modify 
any fields required for the session establishment, such as the 
contact field or the record-route field: this approach 
ensures full backward compatibility (for instance, if an UA 
cannot fully understand a mandatory field, must discard the 
message). Obviously, an ALEX-unaware UA must be able to 
parse a message containing ALEX-items correctly, e.g. 
discarding unknown headers.  

D. The ALEX cache 
The ALEX cache is a data structure used to store the 

optimal candidates pairs. This cache is a sort of “neighbor 
cache” for an ALEX compatible UA, in which address pairs 
are kept until their expiration time: these pairs can be used to 
simplify the establishment of subsequent dialogs, e.g., because 
the best network address pairs can be checked first. This 
feature is not present in ICE and can be use to speed up 
connectivity checks, reducing the number of STUN messages 
exchanged. The ALEX-cache provides information about the 
involved network address-port pairs and specifies the related 
flow type together with the priority and the expiration time. 

E. Using ALEX in non-INVITE dialogs 
Formerly the ALEX mechanism has been illustrated in the 

case of INVITE sessions. By the way ALEX applies to all SIP 
dialogs. For example, consider the case of a dialog created by a 
SUBSCRIBE request. Upon the receipt of such a message, an 
ALEX-aware UA sends back to the subscriber a “101 Dialog 
Establishment” response containing its ALEX-items: the 
receipt of this message starts connectivity checks. Only when 
the checks are over, the UA that received the SUBSCRIBE 
sends back a “200 OK” answer to complete the transaction. 
This procedure results in the creation of a direct SIP channel 
between the UAs: this channel can be optionally used by the 
subscriber to send an updated SUBSCRIBE message 
containing the Contact URI related to the channel established. 



The same channel is used to send immediately a NOTIFY 
message to the subscriber. This feature is not available in case 
of ICE-only UAs, since ICE can be applied only to media 
flows. 

F. Reliability of ALEX-items 
ALEX-items are inserted in SIP messages, which are 

always confirmed; hence a loss of an ALEX-item is not a 
problem, because the SIP implementation will retransmit the 
entire message anyway. Only provisional messages do not 
follow this rule; an ALEX-item inserted into such a message 
must be repeated in the next SIP message (e.g. the 200 OK). 

G. Fitting ALEX into the SIP stack 
One important difference between ICE and ALEX relates 

to the position of the new mechanism within the SIP protocol 
stack, which is depicted in Figure 5.  

Application

STUN

SIP messagesSIP

SDP

API for media 
sessions

API for SIP 
sessions

API for SDP encapsulation
in SIP messages

STUN messages

Application

STUN

SIP messages
SIP

SDP

API formedia sessionsAPI for SIP 
sessions

API forSDP encapsulation in 
SIP messages

STUN messages

Architectureof applications using ICE Architectureof applicationsusingALEX

 
Figure 5 architectural differences between ALEX and ICE. 

ALEX relies on a new field within the SIP portion of the 
message; in addition, ALEX performs connectivity checks to 
establish direct channels: these checks are handled directly by 
the SIP module that controls a STUN client/server engine. 
Since these changes affect only the SIP stack executed on UAs, 
these are independent from the application that uses SIP for 
signaling. Vice versa, in the ICE model SDP has to be 
modified in order to support address exchange, STUN-based 
validation, etc. Moreover, in the case of ICE SIP cannot benefit 
from possible direct connectivity. Additionally, ALEX does 
not require modifications on SIP proxies, and it is compatible 
with UAs running a non-ALEX SIP stacks. 

IV. EXPERIMENTAL RESULTS 
In order to test the behavior of an ALEX-capable UA, 

ALEX has been integrated in the code of an existing UA. 
OpenWengo [10] was chosen because its source code is 
publicly available and it offers rich media features. The 
modifications required to support ALEX were limited to about 
5,800 lines of C code, concentrated mostly in the SIP stack 
whose original size was approximately 31,800 lines. The 
changes consisted in the modification of the SIP message 
parser to support the new header fields. The dialog data 
structure has been updated to store temporary information 
during connectivity checks. Finally, a new data structure has 
been introduced to implement the ALEX cache and a control 
interface has been added to the SIP stack, in order to handle 
STUN checks and to generate SDP payloads used during the 
session update procedure. 

The ALEX extension has been tested in the scenarios listed 
in Figure 6, each featuring a different combination of the 
protocols deployed on the networks between SIP entities. The 
tests consisted in several media session establishments initiated 
by UAA. In all tests ALEX has proven to be effective in 
enabling UAs to exchange SIP messages and media flows 
directly. Moreover, channels, i.e., IP addresses (and possibly 
specific interfaces associated to them), were chosen optimally: 
IPv6 addresses in the first scenario and IPv4 addresses in the 
remaining two scenarios.  

Proxy PRA

UABUAA

Proxy PRBa
b

c

IPv4IPv6/IPv4IPv4Scenario 3

IPv6/IPv4IPv4IPv6/IPv4Scenario 2

IPv6/IPv4IPv6/IPv4IPv6/IPv4Scenario 1

cba

IPv4IPv6/IPv4IPv4Scenario 3

IPv6/IPv4IPv4IPv6/IPv4Scenario 2

IPv6/IPv4IPv6/IPv4IPv6/IPv4Scenario 1

cba

 
Figure 6. Test scenarios. 

In the first two scenarios the tests were executed in our 
labs, while in the last one the two UAs were connected through 
commercial DSL accesses: under these conditions the average 
round trip time for the STUN transactions was about 120 ms. 
Even in this condition, address validation was completed 
before UAA received the “200 OK” answer, hence no delay 
could be perceived by end users. The average time between a 
“180 RINGING” message and the corresponding “200 OK” 
message computed during the tests was of about 3 seconds: this 
value is partly due to the time required by the UA to process 
the INVITE message and to the reaction time of the person 
answering the call. On the other hand, the average time to 
complete the connectivity checks was of about 163.2 ms, 
confirming the claim that the delay resulting from the 
validation overhead is not perceivable by end users. 
Furthermore, as shown in Table II, the tests demonstrated that 
the overhead due to connectivity checks is limited, even when 
the establishment of an end-to-end channel is not possible (in 
which case STUN Binding Requests are retransmitted multiple 
times).  

TABLE II.  OVERHEAD INTRODUCED BY CONNECTIVITY CHECKS  

STUN bytes (% of total) Overall bytes sent  
(INVITE transaction) 

UAB IPv6 
addresses  

Scenario 1 Scenario 2 Scenario 1 Scenario 2 
2 5.2% 5.6% 15,586 15,770 
3 6.3% 7.1% 16,462 16,604 
4 7.5% 8.6% 17,087 17,307 

 
The values in Table II have been computed assigning a 

single IPv6 address to UAA and a growing number of IPv6 
addresses to UAB, as specified in the leftmost column; both 
UAs had a single IPv4 address. The two rightmost columns 
display the average total number of bytes sent on the network 
by both the UAs and the proxies during media session 
establishment, respectively in the case of scenario 1 and 
scenario 2. The second and third columns show the percentage 
of these bytes related to connectivity checks, respectively in the 
case of scenario 1 and scenario 2. Note that in scenario 2 there 
is no direct IPv6 connectivity between domains. By the way, 
since the UAs can communicate with their proxies using IPv6 



addresses, the IPv6 addresses are inserted in the ALEX-
items. For this reason, the STUN requests sent to probe the 
IPv6 addresses get no answer and are retransmitted three times 
to be sure of the lack of connectivity. It is worthwhile 
highlighting that even in this case the overhead due to 
connectivity checks is limited (8.6% versus 7.5% when STUN 
requests do not need to be retransmitted). 

The tests also enabled us to compare the overhead 
introduced by ALEX with the one introduced by ICE with the 
aim of demonstrating that direct SIP connectivity comes at a 
limited cost. For this purpose Table III compares the bytes 
transmitted by ALEX to announce an IPv4 address together 
with an increasing number of IPv6 addresses to the ones 
transmitted by ICE. The number of IPv6 network addresses 
announced varied from 1 up to 4. Notice that ALEX was used 
to announce addresses related to SIP connectivity as well as 
media flows (only one in the tests).  

TABLE III.  ESTIMATION OF THE OVERHEAD DUE TO THE SIZE OF ALEX-
ITEMS 

# of IPv6 
addresses 

ALEX overhead 
(bytes) 

ICE overhead 
(bytes) 

ALEX overhead 
compared to ICE (%) 

1 136 144 -6.25% 
2 229 225 +1.78% 
3 322 306 +5.23% 
4 415 387 +7.23% 

 
As shown in Table III, when four IPv6 addresses are 

announced the size of SIP messages including ALEX-items 
is just 7.23% greater than the size of SIP messages containing 
ICE candidates, i.e., ALEX does not make SIP messages 
significantly larger when compared to ICE. 

Interoperability with ALEX-unaware UAs was tested as 
well: sessions between an ALEX-Openwengo UA and 
Counterpath Eyebeam UA were completed successfully; the 
same outcome was achieved with Cisco 7940 VoIP phones. 
Specifically, in all tests both SIP dialogs and media flows were 
established successfully, which demonstrated that ALEX-
aware UAs can be deployed in standard SIP environments.  

V. CONCLUSIONS AND FUTURE WORK 
ALEX (Address List Extension) provides a complete 

solution for both dual-stack and multi-homing support in SIP 
thus restoring the original peer-to-peer like paradigm for both 
signaling and media flows. 

ALEX extends the concept of direct connectivity 
introduced with ICE to both signaling channel and media 
channels. The results obtained from the tests demonstrated the 
proposed solution to be effective: in most of the considered 
cases it was possible to establish direct connectivity. Moreover, 
the tests showed that the network overhead due to the 
additional information exchanged is comparable to the ICE 
solution. ALEX can be deployed to ensure direct SIP and 
media connectivity through NATs, which is the focus of our 
future work. Furthermore the usage of ALEX to establish direct 
SIP and media channels in peer-to-peer environments is under 
investigation. 

ACKNOWLEDGMENT 
The authors wish to thank Luca De Marco, whose graduation 
project partly focused on these issues. 

REFERENCES 
[1] J. Rosemberg et al., SIP: Session Initiation Protocol, IETF Network 

Working Group, RFC 3261, Jun 2002. 
[2] J. Rosenberg, H. Shulzrinne, Session Initiation Protocol (SIP) – Specific 

Event Notification, IETF Network Working Group, RFC 3265, Jun 
2002. 

[3] M. Baldi, F. Marinone, F. Risso, L. Torrero, ALEX: Improving SIP 
Support in Systems with Multiple Network Addresses, Proceedings of the 
5th IEEE International Symposium on Signal Processing and Information 
Technology, Athens, Greece, Dec 2005. 

[4] J. Rosenberg, A Presence Event Package for the Session Initiation 
Protocol (SIP), IETF Network Working Group, RFC 3856, Aug 2004. 

[5] M. Handley, V. Jacobson, SDP: Session Description Protocol, IETF 
Network Working Group, RFC 2327, Apr 1998. 

[6] G. Camarillo et al, IPv6 Transition in the Session Initiation Protocol 
(SIP), IETF Network Working Group, draft-ietf-sipping-v6-transition-
05.txt, May 2007. 

[7] J. Rosenberg, Interactive Connectivity Establishment (ICE): A Protocol 
for Network Address Translator (NAT) Traversal for 
Offer/AnswerProtocols, IETF Network Working Group, Internet Draft 
draft-ietf-mmusic-ice-17.txt, Jan 2008. 

[8] Rosenberg, J. et al, Simple Traversal of User Datagram Protocol (UDP) 
through Network Address Translators (NATs), RFC 3489, March 2003 

[9] Rosenberg, J. et al, Session Traversal Utilities for NAT (STUN), draft-
ietf-behave-rfc3489bis-06, (work in progress), Jan 2008. 

[10] The Openwengo Project. Available at http://www.openwengo.org. 
[11] P2PSIP, IETF Working Group. Available at http://www.p2psip.org. 

 

 
 

 


