Marcello Delitala

Research activity

The research activity is devoted to model complex systems in applied sciences, and to the qualitative and computational analysis

The theoretical work has been coupled with applications in the following fields: biological systems, dynamics of social and economical systems, vehicular traffic flow.

Marcello Delitala is part of the local group of mathematical physics.

Publications

The publications including scientific papers in refereed journals, books and chapters of books, are listed below.

Scientific papers

  • E. Piretto, M. Delitala, M. Ferraro, Efficiency of cancer treatments: in silicons experiments, Math. Model. Nat. Phenom., 2019, https://doi.org/10.1051/mmnp/2019031.
  • E. Piretto, M. Delitala, P. Kim, F. Frascoli, Effects of mutations and immunogenicity on outcomes of anti-cancer therapies for secondary lesions, Mathematical Biosciences, https://doi.org/10.1016/j.mbs.2019.108238, 2019.
  • E. Piretto, M. Delitala, M. Ferraro, How combination therapies shape drug resistance in heterogeneous tumoral populations, Letters in biomathematics, 1-18, 2019.
  • E. Piretto, M. Delitala, M. Ferraro, Combination therapies and intra-tumoral competition: Insights from mathematical modeling, J. Theoret. Biol., 149-159, 2018.
  • M. Delitala, T. Lorenzi, Emergence of spatial patterns in a mathematical model for the co- culture dynamics of epithelial-like and mesenchymal-like cells, Math Biosci Eng, 14, 79–93, 2017.
  • T. Lorenzi, R. H. Chisholm, M. Melensi, A. Lorz, M. Delitala, Mathematical model reveals how regulating the three phases of T-cell response could counteract immune evasion, Immunology, 146, 271-280, 2015.
  • M. Delitala, T. Lorenzi, A mathematical model for value estimation with public information and herding, Kinetic and Related Models, 7, 29–44, 2014.
  • M. Delitala, T. Lorenzi, Evolutionary Branching Patterns in Predator-Prey Structured Populations, Discrete Contin. Dyn. Syst. Ser. B, 18, 2267-2282, 2013.
  • M. Delitala, U. Dianzani, T. Lorenzi, M. Melensi, A mathematical model for immune and autoimmune response mediated by T-cells, Comput. Math. Appl., 66, 1010-1023, 2013.
  • M. Delitala, T. Lorenzi, Recognition and learning in a mathematical model for immune response against cancer, Discrete Contin. Dyn. Syst. Ser. B, 18, 891-914, 2013.
  • M. Delitala, T. Lorenzi, Drift–diffusion limit of a model for the dynamics of epithelial and mesenchymal cell monolayers, Appl. Math. Letters, 26, 826-830-2013.
  • M. Delitala, T. Lorenzi, Asymptotic dynamics in continuous structured populations with mutations, competition and mutualism, J. Math. Anal. Appl., 389, 439-451, 2012.
  • M. Delitala, T. Lorenzi, A mathematical model for the dynamics of cancer hepatocytes under therapeutic actions, J. Theoret. Biol., 297, 88-102, 2012.
  • M. Delitala, P. Pucci, M.C. Salvatori, From methods of the
    mathematical kinetic theory for active particles to modelling virus mutations, Math. Mod. Meth. Appl. Sci., 21, 843-870, 2011
  • M. Delitala, T. Lorenzi, A mathematical model for progression and heterogeneity in colorectal cancer dynamics, Theor. Popul. Biol., 79, 130–138, 2011.
  • C. Bianca, M. Delitala, On the modelling genetic mutations and immune system competition, Comput. Math. Appl., 61, 2362–2375, 2011.
  • A. Bellouquid, M. Delitala, Asymptotic limits of a discrete kinetic theory model of vehicular traffic, Appl. Math. Letters, 24, 972-978, 2011.
  • M.L. Bertotti, M. Delitala, Clusters formation in opinion dynamics: A qualitative analysis, Z. angew. Math. Phys., 61, 583-602, 2010.
  • N. Bellomo, C. Bianca, M. Delitala, Complexity analysis and mathematical tools towards the modelling
    of living systems, Physics of Life Reviews, 6, 144-175, 2009.
  • S. De Lillo, M. Delitala, M.C. Salvatori, Modelling epidemics and virus mutations by methods of the mathematical kinetic theory for active particles, Math. Mod. Meth. Appl. Sci., 19, 1405-1425, 2009.
  • N. Bellomo and M. Delitala, On the coupling of higher and lower scales using the mathematical kinetic theory of active particles, Appl. Math. Lett., 22, 646-650, 2009.
  • N. Bellomo and M. Delitala, From the mathematical kinetic, and stochastic game theory for active particles to modelling mutations, onset, progression and immune
    competition of cancer cells, Physics of Life Reviews, 5, 183–206, 2008.
  • P. Degond and M. Delitala, Modelling and Simulation of Vehicular Traffic Jam Formation, Kinetic and Related Models, 1, 279-293, 2008.
  • M.L. Bertotti, M. Delitala, On the existence of limit cycles of opinion formation processes under time periodic influence of persuaders, Math. Mod. Meth. Appl. Sci., 18, 913-934, 2008.
  • M.L. Bertotti, M. Delitala, On a discrete generalized kinetic approach for modelling persuaders influence in opinion formation processes, Math. Comp. Model., 48, 1107–1121, 2008.
  • N. Bellomo, A. Bellouquid, M. Delitala, From the mathematical kinetic theory of active particles to multiscale modelling of complex biological systems, Math. Comp. Model., 47, 687--698, 2008.
  • F. Berthelin, P. Degond, M. Delitala, M. Rascle, A model for the formation and evolution of traffic jams, Arch. Rational Mech. Anal., 187, 2, 185-220, 2008.
  • M.L. Bertotti, M. Delitala, Conservation laws and asymptotic behavior of a model of social dynamics, Nonlinear Anal. Real. World. Appl., 9, 183-196, 2008.
  • M.L. Bertotti, M. Delitala, N. Bellomo, From the Kinetic Theory of Active Particles to the Modelling of Social Behaviors and Politics, Quality and Quantity, 41, 545-555, 2007.
  • M. Delitala, A. Tosin, Mathematical modeling of vehicular traffic: a discrete kinetic approach, Math. Mod. Meth. Appl. Sci., 17, 901–932, 2007.
  • V. Coscia, M. Delitala, P. Frasca, On the mathematical theory of vehicular traffic flow II. Discrete velocity kinetic models, Int. J. Nonlinear Mech., 42, 411-421, 2007.
  • M.L. Bertotti, M. Delitala, On the qualitative analysis of the solutions of a mathematical model of social dynamics, Appl. Math. Letters, 19, 1107-1112, 2006.
  • E. De Angelis, M. Delitala, Modelling complex systems in applied sciences methods and tools of the mathematical kinetic theory for active particles, Math. Comp. Model. 43, 1310-1328, 2006.
  • A. Bellouquid, M. Delitala, Mathematical Methods and Tools of Kinetic Theory towards Modelling Complex Biological Systems, Math. Mod. Meth. Appl. Sci. 15, 1639-1666, 2005.
  • N. Bellomo, A. Bellouquid, M. Delitala, Mathematical topics on the modelling complex multicellular systems and tumor immune cells competition, Math. Mod. Meth. Appl. Sci. 14, 1683-1733, 2004.
  • M.L. Bertotti, M. Delitala, From discrete kinetic and stochastic game theory to modelling complex systems in applied sciences, Math. Mod. Meth. Appl. Sci. 14, 1061-1084, 2004.
  • M. Delitala, Generalized kinetic theory approach to modeling spread and evolution of epidemics, Math. Comp. Model. 39, 1-12, 2004.
  • A. Bellouquid, M. Delitala, Kinetic (cellular) models of cell progression and competition with the immune system, Z. angew. Math. Phys. 55, 295-317, 2004.
  • M. Delitala, Nonlinear models of vehicular traffic flow - New frameworks of the mathematical kinetic theory, CR Mécanique 331, 817-822, 2003.
  • E. De Angelis, M. Delitala, A. Marasco, A. Romano, Bifurcation analysis for a mean field modeling of tumor and immune system competition, Math. Comp. Model. 37, 1131-1142, 2003.
  • M. Delitala, Critical analysis and perspectives on the kinetic (cellular) theory of immune competition, Math. Comp. Model. 35, 63-75, 2002.
  • N. Bellomo, M. Delitala, V. Coscia, On the mathematical theory of vehicular traffic fow I - Fluid dynamic and kinetic modeling, Math. Mod. Meth. Appl. Sci. 12, 1801-1843, 2002.

 

 

 

interview

 

Research in short:

video interview.

 

Books

  • M. Delitala and G. Ajmone Marsan Eds., Managing complexity reducing perplexity
    in biological systems, Springer Proceedings in Mathematics & Statistics, 2014,
    ISBN 978-3-319-03758-5. [Edited Book] More informations can be recovered at www.springer.com
  • A. Bellouquid, M. Delitala, Mathematical Modeling of Complex Biological Systems. A Kinetic Theory Approach, (Birkhäuser, Boston), 2006. More informations can be recovered at www.springer.com

Other publications

  • M. Delitala, T. Lorenzi, M. Melensi, Competition between cancer cells and T cells under immunotherapy: a structured population approach, ITM Web of Conferences, 5, 00005, 2015. Doi: 10.1051/itmconf/20150500005 [Proceedings]
  • M. Delitala, T. Hillen, The language of systems biology, in Managing complexity
    reducing perplexity in biological systems, M. Delitala and G. Ajmone Marsan Eds.,
    pg. 131–133, Springer Proceedings in Mathematics & Statistics, 2014. [Chapter of Book]
  • G. Ajmone Marsan, M. Delitala, Preface, in Managing complexity
    reducing perplexity in biological systems, M. Delitala and G. Ajmone Marsan Eds., pg.
    ix–xv, Springer Proceedings in Mathematics & Statistics, 2014. [Chapter of Book]
  • M. Delitala, T. Lorenzi, Mathematical modelling of cancer under target therapeutic actions: selection, mutation and drug resistance, in Managing complexity
    reducing perplexity in biological systems, M. Delitala and G. Ajmone Marsan Eds.,
    pg. 81 –89, Springer Proceedings in Mathematics & Statistics, 2014. [Chapter of Book]
  • M. Delitala, T. Lorenzi, Formations of evolutionary patterns in cancer dynamics (pp. 179--190) in Pattern Formation in Morphogenesis. Problems and mathematical issues, Eds. V. Capasso, M. Gromov, A. Harel-Bellan, N. Morozova and L.L. Pritchard, Springer Proceedings in Mathematics, Vol 15, 2013. [Chapter of Book]
  • N. Bellomo, E. De Angelis, M. Delitala, Lecture notes on mathematical modelling from applied sciences to complex systems, SIMAI e-Lecture Notes, ISSN 1970-4429, vol. 8, (pp.1-164), 2010. [Teaching book]
  • A. Bellouquid and M. Delitala, From The Kinetic Theory for Active Particles to Modelling the Immune Competition (pp. 31-47), in Selected Topics on Cancer Modelling Genesis - Evolution - Immune Competition - Therapy, Eds. N. Bellomo, M. Chaplain and E. De Angelis, Birkhäuser (Boston), 2008. [Chapter of Book]
  • N. Bellomo, E. De Angelis, and M. Delitala, Lecture Notes on Mathematical Modelling in Applied Sciences, SIMAI e-Lecture Notes, ISSN 1970-4429, 1, (pp. 1-148) 2008, doi:10.1685/SELN08001 [Teaching book]
  • M. Delitala, On the Mathematical Modelling of Complex Biological Systems. A Kinetic Theory Approach, Bollettino UMI, Serie IX, I(3), 603-618, 2008. [Proceeding XVIII Conference UMI - Bari, 2007]
  • N. Bellomo, A. Bellouquid, M. Delitala, Methods and Tools of the Mathematical Kinetic Theory toward Modeling Complex Biological Systems (pp. 175-194) in Transport Phenomena and Kinetic Theory, Eds. C. Cercignani and E. Gabetta, Birkhäuser (Boston), 2007. [Chapter of book]