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Preface

The Lecture Notes collected in this book refer to a university course deli-
vered at the Politecnico of Torino to students attending the Lectures of the
master Graduation in Mathematical Engineering.

The Lectures Notes correspond to the first part of the course devoted
to modelling issues to show how the application of models to describe real
world phenomena generates mathematical problems to be solved by ap-
propriate mathematical methods. The models dealt with in these Lecture
Notes are quite simple, proposed with tutorial aims, while relatively more
sophisticated models are dealt with in the second part of the course.

The contents are developed through four chapters. The first one pro-
poses an introduction to the science of mathematical modelling and focus
on the three representation scales of physical reality: microscopic, macro-
scopic and statistical over the microscopic states. Then, the three chapters
which follow deal with the derivation and applications of models related to
each of the afore-mentioned scales.

As it is shown, already in Chapter 1, different mathematical structures
correspond to each scale. Specifically models at the microscopic scale are
generally stated in terms of ordinary differential equations, while models at
the macroscopic scale are stated in terms of partial differential equations.
Models of the mathematical kinetic theory, dealt with in Chapter 4, are
stated in terms of integro-differential equations.

The above different structures generate a variety of analytic and com-
putational problems. The contents are devoted to understand how compu-
tational methods can be developed starting from an appropriate discretiza-
tion of the dependent variables.

The Lecture Notes look at application focussing on modelling and
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vi Preface

computational issues, while the pertinent literature on analytic methods is
brought to the attention of the interested reader for additional education.

After the above introduction to the contents and aims of the Lecture
Notes, a few remarks are stated to make a little more precise a few issues
that have guided their redaction.

e All real systems can be observed and represented at different scales by
mathematical equations. The selection of a scale with respect to others
belong, on one side, to the strategy of the scientists in charge of deriving
mathematical models, and on the other hand to the specific application of
the model.

e Systems of the real world are generally nonlinear. Linearity has to be
regarded either as a very special case, or as an approximation of physical
reality. Then methods of nonlinear analysis need to be developed to deal
with the application of models. Computational methods are necessary to
solve mathematical problems generated by the application of models to the
analysis and interpretation of systems of real world.

e Computational methods can be developed only after a deep analysis of the
qualitative properties of a model and of the related mathematical problems.
Different methods may correspond to different models.

e Modelling is a science which needs creative ability linked to a deep know-
ledge of the whole variety of methods offered by applied mathematics. In-
deed, the design of a model has to be precisely related to the methods to be
used to deal with the mathematical problems generated by the application
of the model.

These Lectures Notes attempt to provide an introduction to the above
issues and will exploit the use of electronic diffusion to update periodically
the contents also on the basis of interactions with students, taking advan-
tage of suggestions generally useful from those who are involved pursuing
the objective of a master graduation in mathematics for engineering sci-
ences.

Nicola Bellomo, Elena De Angelis, Marcello Delitala



1

An Introduction to the Science
of Mathematical Modelling

1.1 An Intuitive Introduction to Modelling

The analysis of systems of applied sciences, e.g. technology, economy,
biology etc, needs a constantly growing use of methods of mathematics
and computer sciences. In fact, once a physical system has been observed
and phenomenologically analyzed, it is often useful to use mathematical
models suitable to describe its evolution in time and space. Indeed, the
interpretation of systems and phenomena, which occasionally show complex
features, is generally developed on the basis of methods which organize their
interpretation toward simulation. When simulations related to the behavior
of the real system are available and reliable, it may be possible, in most
cases, to reduce time devoted to observation and experiments.

Bearing in mind the above reasoning, one can state that there exists
a strong link between applied sciences and mathematics represented by
mathematical models designed and applied, with the aid of computer sci-
ences and devices, to the simulation of systems of real world. The term
mathematical sciences refers to various aspects of mathematics, specifically
analytic and computational methods, which both cooperate to the design
of models and to the development of simulations.

Before going on with specific technical aspects, let us pose some prelim-
inary questions:

e What is the aim of mathematical modelling, and what is a mathemat-
ical model?

e There exists a link between models and mathematical structures?

e There exists a correlation between models and mathematical methods?
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e Which is the relation between models and computer sciences?
Moreover:

e Can mathematical models contribute to a deeper understanding of phys-
ical reality?

e [s it possible to reason about a science of mathematical modelling?

e Can education in mathematics take some advantage of the above
mentioned science of mathematical modelling ?

Additional questions may be posed. However, it is reasonable to stop
here considering that one needs specific tools and methods to answer pre-
cisely to the above questions. A deeper understanding of the above topics
will be achieved going through the chapters of these Lecture Notes also tak-
ing advantage of the methods which will be developed later. Nevertheless
an intuitive reasoning can be developed and some preliminary answers can
be given:

e Mathematical models are designed to describe physical systems by equa-
tions or, more in general, by logical and computational structures.

e The above issue indicates that mathematical modelling operates as a
science by means of methods and mathematical structures with well defined
objectives.

e Intuitively, it can be stated that education in mathematics may take ad-
vantage of the science of mathematical modelling. Indeed, linking mathe-
matical structures and methods to the interpretation and simulation of real
physical systems is already a strong motivation related to an inner feature
of mathematics, otherwise too much abstract. Still, one has to understand
if modelling provides a method for reasoning about mathematics.

e At this preliminary stage, it is difficult to reason about the possibility
that mathematical models may contribute to a deeper understanding of
physical reality. At present, we simply trust that this idea will be clarified
all along the contents of these Lectures Notes.

This chapter has to be regarded as an introduction to the science of
mathematical modelling which will be developed through these Lecture
Notes with reference to well defined mathematical structures and with the
help of several applications intended to clarify the above concepts. Specif-
ically it deals with general introduction to mathematical modelling, and is
organized into six more sections which follow this introduction:

— Section 1.2 deals with the presentation of some simple examples of mathe-
matical models which act as a preliminary reference for the various concepts
introduced in the following sections. Then, the definition of mathematical
model is given as an equation suitable to define the evolution in time and
space of the variable charged to describe (at each specific scale) the physical
state of the real system.
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— Section 1.3 deals with a preliminary aspect of the modelling process, that
is the identification of the representation scales, microscopic, macroscopic
and statistical, needed to observe and represent a real system. The above
concepts are related to a variety of examples of models at each one of the
above scales.

— Section 1.4 deals with the dimensional analysis of mathematical models.
It is shown how writing the model in terms of dimensionless variables is
useful towards computational analysis and allows to extract suitable scaling
parameters which can be properly used towards a qualitative understanding
of the properties of the model.

— Section 1.5 analyzes the various concepts proposed in the preceding sec-
tions by means of models of vehicular traffic flow. Such a system can be
described by different models and scales, all of them are analyzed with
reference to the above mentioned definitions and scaling methods.

— Section 1.6 deals with a classification of models and mathematical prob-
lems still referring to the various aspects of the modelling process dealt
with in the preceding sections.

— Section 1.7 provides a description and critical analysis of the contents of
this chapter with special attention to complexity problems. The analysis is
also proposed in view of the contents of the next chapters.

1.2 Elementary Examples and Definitions

This section deals with the description of three simple examples of math-
ematical models which will be a technical reference for the definitions given
in the following sections. The models are derived by an intuitive approach,
while well defined modelling methods will be developed in the chapters
which follow and applied to the design of relatively more sophisticated
models.

The first example describes linear oscillations of a mass constrained to
move along a line, while the second one refers to modelling heat diffusion
phenomena. The third example is a generalization of the second one to a
nonlinear case.
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FExample 1.2.1
Linear Elastic Wire-Mass System

Consider, with reference to Figure 1.2.1, a mechanical system consti-
tuted by a mass m constrained to translate along an horizontal line, say
the z-axis. The location of the mass is identified by the coordinate of its
center of mass P, which is attached to an elastic wire stretched with ends in
A and P. The assumptions defining the mechanical model are the following;:

A 000000 — P

L J

Figure 1.2.1 — Elastic wire-mass system

e The system behaves as a point mass with localization identified by
the variable x.

e The action of the wire is a force directed toward the point A with
module: T =k .

e Friction forces are negligible with respect to the action of the wire.
Application of Newton’s principles of classical mechanics yields

d2
m KZ = —kz. (1.2.1)

The mathematical model is an evolution equation for the following vec-

tor variable:
dx
u= <u1 =x,uy = dt> : (1.2.2)

Using the above variables, the second order ordinary differential equa-
tion (1.2.1) reads

dU1

dt

dus k

— Al

(1.2.3)
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which is a linear equation.

FExample 1.2.2
Linear Heat Diffusion Model

Consider the one-dimensional linear heat diffusion model in a rod. The
assumptions defining the mechanical model are the following:

e The state of the system is described by the temperature v = u(t, x)
along the axis of the rod identified by the variable z € [0,1]. Variations
orthogonal to the axis of the rod are neglected as the walls of the rod are
perfectly isolated.

e The heat flow ¢ per unit area is proportional to the temperature
gradient:
ou

= —hg —> 1.24
q 05, (1.2.4)

where hg is the heat conduction coefficient.

e The material properties of the conductor are identified by the heat
conduction coefficient hg and heat capacity cg.

The mathematical model can be obtained equating the net heat flux in
a volume element to the rate of increase of the heat capacity in the volume.
Let ¢7 and g~ be, respectively, the ingoing and outgoing heat fluxes for
unit area, see Figure 1.2.2 The above balance writes

Co A@ dr = —A(q"

N J0q
5 —q¢ )=—-A_—dx> (1.2.5)

ox

where A is the cross section of the rod.

gt —p —p T

Figure 1.2.2 — Diffusion in one space dimension
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Using Eq. 1.2.4 yields:

ou 0%y ho
ot 0 92 0 Co ( )
The above model can also be used to describe the steady temperature
distribution, which is obtained equating to zero the right-hand side term

d?u
which can also be written as a system of two coupled equations in normal
form

du (1.2.8)
de

Example 1.2.3
Nonlinear Heat Diffusion Model

Nonlinearity may be related to the modelling of the heat flux phe-
nomenon. For instance, if the heat flux coefficient depends on the tem-
perature, say h = h(u), the same balance equation generates the following
model:

(?;; _ aax [k(u)gz] o k(w) = Y (1.2.9)

[m}

The reader with a basic knowledge of elementary theory of differential
equations will be soon aware that the above two simple models generate
interesting mathematical problems. In fact, Model 1.2.1 needs initial con-
ditions for t = ty both for u; = uq(t) and uy = us(t), while Models 1.2.2
and 1.2.3 need initial conditions at ¢ = tg and boundary conditions at z = 0
and x = 1 for u = u(t, z).

The solution of the above mathematical problems ends up with sim-
ulations which visualize the behavior of the real system according to the
description of the mathematical model.

After the above examples, a definition of mathematical model can be
introduced. This concept needs the preliminary definition of two elements:
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e Independent variables, generally time and space;

e State variables which are the dependent variables, that take val-
ues corresponding to the independent variables;

Then the following concept can be introduced:

e Mathematical model, that is a set of equations which define the
evolution of the state variable over the dependent variables.

The general idea is to observe the phenomenology of a real system in
order to extract its main features and to provide a model suitable to describe
the evolution in time and space of its relevant aspects. Bearing this in mind,
the following definitions are proposed:

Independent variables

The evolution of the real system is referred to the indepen-
dent variables which, unless differently specified, are time t,
defined in an interval (t € [to,T]), which refers the observation
period; and space x, related to the volume V, (x € V) which
contains the system.

State variable

The state variable is the finite dimensional vector variable
u=u(t,x) : [to,T]xV —R", (1.2.10)

where u = {uy,...,u;,...,u,} is deemed as sufficient to de-
scribe the evolution of the physical state of the real system in
terms of the independent variables.

Mathematical model

A mathematical model of a real physical system is an evo-
lution equation suitable to define the evolution of the state
variable u in charge to describe the physical state of the sys-
tem itself.

In order to handle properly a mathematical model, the number of equa-
tions and the dimension of the state variable must be the same. In this
case the model is defined consistent:

Consistency

The mathematical model is said to be consistent if the num-
ber of unknown dependent variables is equal to the number of
independent equations.
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This means that one has to verify whether an equation belonging to the
model can be obtained combining the remaining ones. If this is the case,
that equation must be eliminated.

The space variable may be referred to a suitable system of orthogonal
axes, 0(x,y, z) with unit vectors i, j, k, so that a point P is identified by
its coordinates

P=Pkx)=zi+yj+zk. (1.2.11)

The real physical system may be interacting with the outer environment
or may be isolated. In the first case the interactions has to be modelled.

I Closed and Open Systems

A real physical system is closed if it does not interact with
the outer environment, while it is open if it does.

The above definitions can be applied to real systems in all fields of ap-
plied sciences: engineering, natural sciences, economy, and so on. Actually,
almost all systems have a continuous distribution in space. Therefore, their
discretization, that amounts to the fact that u is a finite dimensional vector,
can be regarded as an approximation of physical reality.

In principle, one can always hope to develop a model which can repro-
duce exactly physical reality. On the other hand, this idealistic program
cannot be practically obtained considering that real systems are character-
ized by an enormous number of physical variables. This reasoning applies
to Example 1.2.1, where it is plain that translational dynamics in absence
of frictional forces is only a crude approximation of reality. The observation
of the real behavior of the system will definitively bring to identify a gap
between the observed values of u; and us and those predicted by the model.

Uncertainty may be related also to the mathematical problem. Re-
ferring again to the above example, it was shown that the statement of
mathematical problems need uig and wugg, i.e. the initial position and ve-
locity of P, respectively. Their measurements are affected by errors so that
their knowledge may be uncertain.

In some cases this aspect can be dealt with by using in the model and/or
in the mathematical problems randomness modelled by suitable stochastic
variables. The solution of the problem will also be represented by random
variables, and methods of probability theory will have to be used.

As we have seen, mathematical models are stated in terms of evolution
equations. Examples have been given for ordinary and partial differential
equations. The above equations cannot be solved without complementing
them with suitable information on the behavior of the system corresponding
to some values of the independent variables. In other words the solution
refers to the mathematical problem obtained linking the model to the above
mentioned conditions. Once a problem is stated suitable mathematical
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methods have to be developed to obtain solutions and simulations, which
are the prediction provided by the model.

The analysis of the above crucial problems, which is a fundamental
step of applied mathematics, will be dealt with in the next chapters with
reference to specific classes of equations.

1.3 Modelling Scales and Representation

As we have seen by the examples and definitions proposed in Section
1.2, the design of a mathematical model consists in deriving an evolution
equation for the dependent variable, which may be called state variable,
which describes the physical state of the real system, that is the object of
the modelling process.

The selection of the state variable and the derivation of the evolution
equation starts from the phenomenological and experimental observation
of the real system. This means that the first stage of the whole modelling
method is the selection of the observation scale. For instance one may look
at the system by distinguishing all its microscopic components, or averaging
locally the dynamics of all microscopic components, or even looking at the
system as a whole by averaging their dynamics in the whole space occupied
by the system.

For instance, if the system is a gas of particles inside a container, one
may either model the dynamics of each single particle, or consider some
macroscopic quantities, such as mass density, momentum and energy, ob-
tained averaging locally (in a small volume to be properly defined: possibly
an infinitesimal volume) the behavior of the particles. Moreover, one may
average the physical variables related to the microscopic state of the par-
ticles and/or the local macroscopic variables over the whole domain of the
container thus obtaining gross quantities which represent the system as a
whole.

Specifically, let us concentrate the attention to the energy and let us
assume that energy may be related to temperature. In the first case one
has to study the dynamics of the particles and then obtain the temperature
by a suitable averaging locally or globally. On the other hand, in the other
two cases the averaging is developed before deriving a model, then the model
should provide the evolution of already averaged quantities. It is plain that
the above different way of observing the system generates different models
corresponding to different choices of the state variable. Discussing the
validity of one approach with respect to the other is definitively a difficult,
however crucial, problem to deal with. The above approaches will be called,
respectively, microscopic modelling and macroscopic modelling.
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As an alternative, one may consider the microscopic state of each mi-
croscopic component and then model the evolution of the statistical distri-
bution over each microscopic description. Then one deals with the kinetic
type (mesoscopic) modelling which will be introduced in this chapter and
then properly dealt with later in Chapter 4. Modelling by methods of
the mathematical kinetic theory requires a detailed analysis of microscopic
models for the dynamics of the interacting components of the system, while
macroscopic quantities are obtained, as we shall see, by suitable moments
weighted by the above distribution function.

This section deals with a preliminary derivation of mathematical frame-
work related to the scaling process which has been described above. This
process will ends up with a classification both of state variables and mathe-
matical equations. Simple examples will be given for each class of observa-
tion scales and models. The whole topic will be specialized in the following
chapters with the aim of a deeper understanding on the aforementioned
structures.

Both observation and simulation of system of real world need the def-
inition of suitable observation and modelling scales. Different models and
descriptions may correspond to different scales. For instance, if the mo-
tion of a fluid in a duct is observed at a microscopic scale, each particle
is singularly observed. Consequently the motion can be described within
the framework of Newtonian mechanics, namely by ordinary differential
equations which relate the force applied to each particle to its mass times
acceleration. Applied forces are generated by the external field and by
interactions with the other particles.

On the other hand, the same system can be observed and described at a
larger scale considering suitable averages of the mechanical quantities linked
to a large number of particles, the model refers to macroscopic quantities
such as mass density and velocity of the fluid. A similar definition can be
given for the mass velocity, namely the ratio between the momentum of the
particles in the reference volume and their mass. Both quantities can be
measured by suitable experimental devices operating at a scale of a greater
order than the one of the single particle. This class of models is generally
stated by partial differential equations.

Actually, the definition of small or large scale has a meaning which
has to be related to the size of the object and of the volume containing
them. For instance, a planet observed as a rigid homogeneous whole is
a single object which is small with respect to the galaxy containing the
planet, but large with respect to the particles constituting its matter. So
that the galaxy can be regarded as a system of a large number of planets,
or as a fluid where distances between planets are neglected with respect to
the size of the galaxy. Bearing all above in mind, the following definitions
are given:
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I Microscopic scale

A real system can be observed, measured, and modelled at the
microscopic scale if all single objects composing the system
are individually considered, each as a whole.

I Macroscopic scale

A real system can be observed, measured, and modelled at the
macroscopic scale if suitable averaged quantities related to
the physical state of the objects composing the system are
considered.

I Mesoscopic scale

A real system can be observed, measured, and modelled at
the mesoscopic (kinetic) scale if it is composed by a large
number of interacting objects and the macroscopic observable
quantities related to the system can be recovered from mo-
ments weighted by the distribution function of the state of
the system.

As already mentioned, microscopic models are generally stated in terms
of ordinary differential equations, while macroscopic models are generally
stated in terms of partial differential equations. This is the case of the
first two examples proposed in the section which follows. The contents will
generally be developed, unless otherwise specified, within the framework of
deterministic causality principles. This means that once a cause is given,
the effect is deterministically identified, however, even in the case of deter-
ministic behavior, the measurement of quantities needed to assess the model
or the mathematical problem may be affected by errors and uncertainty.

The above reasoning and definitions can be referred to some simple
examples of models, this also anticipating a few additional concepts which
will be dealt in a relatively deeper way in the chapters which follow.

Ezxample 1.3.1
Elastic Wire-Mass System with Friction

Following Example 1.2.1, let us consider a mechanical system consti-
tuted by a mass m constrained to translate along a horizontal line, say the
x-axis. The location of the mass is identified by the coordinate of its center
of mass P, which is attached to an elastic wire stretched with ends in A
and P. The following assumption needs to be added to those of Model 1.2.1
defining the mechanical model:

e Friction forces depend on the p-th power of the velocity and are direct
in opposition with it.
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Application of Newton’s model yields

d’x dz\?

The mathematical model, according to the definitions proposed in Sec-
tion 1.2, is an evolution equation for the variable u defined as follows:

u= (ul =z, up = Zf) : (1.3.2)

Using the above variables, the second order ordinary differential equa-
tion (1.3.1) can be written as a system of two first order equations:

du1 w

-, — U2,

di (1.3.3)
dup k¢ op

d ~ m ' m 2

The above example has shown a simple model that can be represented
by an ordinary differential equation, Eq. (1.3.3), which is nonlinear for
values of p different from zero or one.

Observing Eq. (1.3.3), one may state that the model is consistent,
namely there are two independent equations corresponding to the two com-
ponents of the state variable. The physical system is observed singularly,
i.e. at a microscopic scale, while it can be observed that the model is stated
in terms of ordinary differential equations.

Linearity of the model is obtained if ¢ = 0. On the other hand, if & is
not a constant, but depends on the elongation of the wire, say k = koz? a
nonlinear model is obtained

du1 w

-, — U2,

di (1.3.4)
duy ko g1

dt m !

Independently of linearity properties, which will be properly discussed
in the next Chapter 2, the system is isolated, namely it is a closed system.
For open system one should add to the second equation the action of the
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outer environment over the inner system. A simple example is the following:

du1 w

-, — U2,

ddt ) 1 (1.3.5)
duz _ _Fo g+1 2 ,

o mul + mF(t)

where F' = F(t) models the above mentioned action.

The above models, both linear and nonlinear, have been obtained link-
ing a general background model valid for large variety of mechanical sys-
tems, that is the fundamental principles of Newtonian mechanics, to a
phenomenological model suitable to describe, by simple analytic expres-
sions, the elastic behavior of the wire. Such models can be refined for each
particular system by relatively more precise empirical data obtained by
experiments.

The example which follows is developed at the macroscopic scale and
it is related to the heat diffusion model we have seen in Section 1.2. Here,
we consider a mathematical model suitable to describe the diffusion of a
pollutant of a fluid in one space dimension.

As we shall see, an evolution equation analogous to the one of Example
1.2.2 will be obtained. First the linear case is dealt with, then some gen-
eralizations, i.e. non linear models and diffusion in more than one space
dimensions, are described.

FExample 1.3.2
Linear Pollutant Diffusion Model

Consider a duct filled with a fluid at rest and a pollutant diffusing in the
duct in the direction z of the axis of the duct. The assumptions which
define the mechanical model are the following:

e The physical quantity which defines the state of the system is the
concentration of pollutant:

c=c(t,x) : [to, T] x [0,¢] — R4, (1.3.6)

variations of ¢ along coordinates orthogonal to the x-axis are negligible. The
mass per unit volume of the pollutant is indicated by pg and is assumed to
be constant.

e There is no dispersion or immersion of pollutant at the walls.

e The fluid is steady, while the velocity of diffusion of the pollutant is
described by a phenomenological model which states that the diffusion ve-
locity is directly proportional to the gradient of ¢ and inversely proportional
to c.
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The evolution model, i.e. an evolution equation for ¢, can be obtained
exploiting mass conservation equation. In order to derive such equation let
consider, with reference to Figure 1.2.2, the flux ¢ = ¢(¢, x) along the duct
and let ¢ and ¢~ be the inlet and outlet fluxes, respectively. Under suit-
able regularity conditions, which are certainly consistent with the physical
system we are dealing with, the relation between the above fluxes is given
by:

9q

T =g 4+ 2dz. 1.3.7
¢"=q" + 5 de (1.3.7)

A balance equation can be written equating the net flux rate to the
increase of mass in the volume element A dx, where A is the section of the
duct. The following equation is obtained:

dc d(cv)
A— A
Po A A,

dz =0, (1.3.8)

where v is the diffusion velocity which, according to the above assumptions,
can be written as follows:

ho Oc
= —— 1.3.
v e (1.3.9)

and hg is the diffusion coefficient.
Substituting the above equation into (1.3.8) yields

Oc 0%c ho
— =ko—= ko = — 1.3.10
at Oa$2 ) 0 po ) ( )

which is a linear model.

Nonlinearity related to the above model may occur when the diffusion
coefficient depends on the concentration. This phenomenon generates the
nonlinear model described in the following example.

Example 1.3.3
Nonlinear Pollutant Diffusion Model

Consider the same phenomenological model where, however, the dif-
fusion velocity depends on the concentration according to the following
phenomenological model:

b= —hy M) O (1.3.11)

c Ox’
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where h(c) describes the behavior of the diffusion coefficient with ¢. The
model writes as follows

G2 (k;(@:;i) L k=" (13.12)

Phenomenological interpretations suggest:
k(0) = k(epr) =0, (1.3.13)

where c¢js is the maximum admissible concentration. For instance

k(c) = clep —¢) (1.3.14)
so that the model reads:
de 0%c oc\?
5= cley — €)= 57 + (em — 2¢) <8x> . (1.3.15)
O

The above diffusion model can be written in several space dimensions.
For instance, technical calculations generate the following linear model:

FExample 1.3.}
Linear Pollutant Diffusion in Space

Let us consider the linear diffusion model related to Example 1.3.2, and
assume that diffusion is isotropic in all space dimensions, and that the
diffusion coeflicient does not depend on c¢. In this particular case, simple
technical calculations yield:

de 2 2 o
— = —t — 4+ — = ko Ac. 1.3.1
ot (8m2+8y +a2>c 0Ac (1.3.16)

The steady model is obtained equating to zero the right-hand side of
(1.3.16):

( o* 9* 07

—+t— + =koAc=0. 1.3.17
8x2+8y2+822)c 02¢ ( )
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The above (simple) examples have given an idea of the microscopic and
macroscopic modelling. A simple model based on the mesoscopic descrip-
tion will be now given and critically analyzed. Specifically, we consider an
example of modelling social behaviors such that the microscopic state is de-
fined by the social state of a certain population, while the model describes
the evolution of the probability density distribution over such a state. The
above distribution is modified by binary interactions between individuals.

Example 1.3.5
Population Dynamics with Stochastic Interaction

Consider a population constituted by interacting individuals, such that:

e The microscopic state of each individual is described by a real
variable u € [0, 1], that is a variable describing its main physical properties
and/or social behaviors. As examples, in the case of a population of tumor
cells this state may have the meaning of maturation or progression stage,
for a population of immune cells we may consider the state u as their level
of activation.

e The statistical description of the system is described by the number
density functions

N = N(t,u), (1.3.18)

which is such that N(¢,u) du denotes the number of cells per unit volume
whose state is, at time ¢, in the interval [u, u + du].

If ng is the number per unit volume of individuals at ¢t = 0, the following
normalization of N with respect to ng can be applied:

F= f(tu) = Nt ). (1.3.19)

no

If f (which will be called distribution function) is given, it is pos-
sible to compute, under suitable integrability properties, the size of the
population still referred to ng:

n(t) = /0 F(tu) du. (1.3.20)

The evolution model refers to f(¢,u) and is determined by the interac-
tions between pairs of individuals, which modify the probability distribution
over the state variable and/or the size of the population. The above ideas
can be stated in the following framework:

e Interactions between pairs of individuals are homogeneous in space
and instantaneous, i.e. without space structure and delay time. They may



An Introduction to the Science of Mathematical Modelling 17

change the state of the individuals as well as the population size by shifting
individuals into another state or by destroying or creating individuals. Only
binary encounters are significant for the evolution of the system.

e The rate of interactions between individuals of the population is mod-
elled by the encounter rate which may depend on the state of the inter-
acting individuals

n=n(v,w), (1.3.21)

which describes the rate of interaction between pairs of individuals. It is
the number of encounters per unit time of individuals with state v with
individuals with state w.

e The interaction-transition function

A= A(v,w;u), (1.3.22)

gives the probability density distribution of the transition, due to binary

encounters, of the individuals which have state v with the individuals having

state w that, after the interaction, manufacture individuals with state w.
The product between 1 and A is the transition rate

T (v, w;u) =n(v,w)Av, w;u). (1.3.23)

e The evolution equations for the density f can be derived by balance
equation which equates the time derivative of f to the difference between
the gain and the loss terms. The gain term models the rate of increase of
the distribution function due to individuals which fall into the state v due
to uncorrelated pair interactions. The loss term models the rate of loss in
the distribution function of u-individuals due to transition to another state
or due to death.

Combining the above ideas yields the following model

gtf(t’ u) = /0 /0 (v, w)A(v, w;u) f(t,v) f(t,w) dvdw

—f(t,u)/o n(u,v) f(t,v)dv. (1.3.24)

The above example, as simple as it may appear, gives a preliminary
idea of the way a kinetic type modelling can be derived. This topic will
be properly revisited in Chapter 4. At present we limit our analysis to
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observing that a crucial role is defined by the modelling of interactions
at the microscopic scale which allows the application of suitable balance
equation to obtain the evolution of the probability distribution.

1.4 Dimensional Analysis for Mathematical Models

Examples 1.2.1 and 1.3.2 can be properly rewritten using dimensionless
variables. This procedure should be generally, may be always, applied. In
fact, it is always useful, and in some cases necessary, to write models with
all independent and dependent variables written in a dimensionless form
by referring them to suitable reference variables. These should be properly
chosen in a way that the new variables take value in the domains [0, 1] or
[—1,1].

The above reference variables can be selected by geometrical and/or
physical arguments related to the particular system which is modelled.
Technically, let w, be a certain variable (either independent or dependent),
and suppose that the smallest and largest value of w,, respectively w,,
and w)yy, are identified by geometrical or physical measurements; then the
dimensionless variable is obtained as follows:

w=—2"%m e o,1]. (1.4.1)
Wprr — W

For instance, if w, represents the temperature in a solid material, then
one can assume w,, = 0, and wy; = w., where w, is the melting tempera-
ture for the solid.

In principle, the description of the model should define the evolution
within the domain [0, 1]. When this does not occur, then the model should
be critically analyzed.

If w, corresponds to one of the independent space variables, say it cor-
respond to x,, ¥,, and z, for a system with finite dimension, then the said
variable can be referred to the smallest and to the largest values of each
variable, respectively, T, Ym, 2m, and Ty, yar, and zpy.

In some cases, it may be useful referring all variables with respect to
only one space variable, generally the largest one. For instance, suppose
that =, = ym = 2zm = 0, and that yy; = axp, and zp, = bxps, with
a,b < 1, one has

: (1.4.2)

with € [0,1], y€[0,a], z€]0,b].
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Somehow more delicate is the choice of the reference time. Technically,
if the initial time is to and ¢, is the real time, one may use the following:

ty—to

t
Tc_tO

. t>0, (1.4.3)

where generally one may have ty = 0. The choice of T, has to be related
to the actual analytic structure of the model trying to bring to the same
order the cause and the effect as both of them are identified in the model.
For instance, looking at models in Example 1.2.1, the cause is identified
by the right-hand side term, while the effect is the left-hand term. The
model should be referred to the observation time during which the system
should be observed. This time should be compared with 7.

Bearing all above in mind let us apply the above concepts to the state-
ment in terms of dimensionless variables of the two models described in
Examples 1.2.1 and 1.3.2.

Example 1.4.1
Dimensionless Linear Elastic Wire-Mass System
Let us consider the model described in Example 1.2.1, with the addition
of the following assumption:

e A constant force F' is directed along the x-axis.
Therefore, the model can written as follows:

=F —ka,. (1.4.4)

It is natural assuming ¢ = F/k, t = t,/T., and x = z,/¢. Then the
model writes

m d*z
Assuming;:
m 9 m
=1 = T, °=—
kT.? k
yields
d2
E§:17$’ (1.4.6)

which is a second order model.
The evolution can be analyzed in terms of unit of T.,.
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Example 1.4.2
Linear Dimensionless Pollutant Diffusion Model

Consider the model described in Example 1.3.2 which, in terms of real
variables, can be written as follows:

ey 9%c, ho
=kg —— ko = — 1.4.7
atv 0 ang ) 0 pO ) ( )

It is natural assuming u = ¢, /ey, t =t,/Te, and = xz,, /€. Then the
model writes

1 0u ko O%u
Moreover, taking:
koT, 0?
=1 = T.=—
02 ko
yields
ou  O%u
[m]

In particular Eq. (1.4.9) shows that the same model is obtained, after
scaling, to describe linear diffusion phenomena in different media. Indeed,
only T, changes according to the material properties of the media. This
means that the evolution is qualitatively the same, but it evolves in time
with different speeds scaled with respect to T..

Writing a model in terms of dimensionless variables is useful for various
reasons, both from analytical point of view and from the computational
one, which will be examined in details in the chapters which follow. One of
the above motivations consists in the fact that the procedure may introduce
a small dimensionless parameter which characterizes specific features of the
evolution equation, e.g. nonlinear terms, time scaling, etc. As we shall see
in Chapter 2, the above parameters allow the development of perturbation
techniques such that the solution can be sought by suitable power expansion
of the small parameter.
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1.5 Traffic Flow Modelling

Various models have been proposed in the preceding sections corre-
sponding to the microscopic, macroscopic, and kinetic representation. This
section will show how the same physical system can be represented by dif-
ferent models according to the selection of different observation scales.

Let us consider the one dimensional flow of vehicles along a road with
length ¢. First the independent and dependent variables which, in a suitable
dimension form, can represent the relevant phenomena related to traffic flow
are defined, then some specific models will be described.

In order to define dimensionless quantities, one has to identify charac-
teristic time T and length £, as well as maximum density n,; and maximum
mean velocity vys. Specifically:

nys is the maximum density of vehicles corresponding to bump-to-bump
traffic jam;

vy is the maximum admissible mean velocity which may be reached by
vehicles in the empty road.

It is spontaneous to assume vy T = ¢, that means that T is the time
necessary to cover the whole road length ¢ at the maximum mean veloc-
ity vas. After the above preliminaries, we can now define dimensionless
independent and dependent variables.

The dimensionless independent variables are:

e ¢t = t,/T, the dimensionless time variable referred to the characteristic
time T', where t,. is the real time;

e © =z, /¢, the dimensionless space variable referred to the characteristic
length of the road ¢, where x, is the real dimensional space.

The dimensionless dependent variables are:

e u = n/ny, the dimensionless density referred to the maximum density
nps of vehicles;

o V = Vgr/un, the dimensionless velocity referred to the maximum mean
velocity vy, where Vg is the real velocity of the single vehicle;

e v = vg/vy, the dimensionless mean velocity referred to the maximum
mean velocity vys, where vg is the mean velocity of the vehicles;

e ¢, the dimensionless linear mean flux referred to the maximum admissible
mean flux qyy.

Of course a fast isolated vehicle can reach velocities larger that vys. In
particular a limit velocity can be defined

Vo= 1+ p)on, w>0, (1.5.1)
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such that no vehicle can reach a velocity larger than V,. Both vy; and
1 may depend on the characteristics of the lane, say a country lane or a
highway, as well as to the type of vehicles, say a slow car, a fast car, a lorry,
etc.

The above variables can assume different characterization according to
the modeling scales which can be adopted for the observation and modeling.
In particular, one may consider, according to the indications given in the
previous sections, the following types of descriptions:

e Microscopic description: the state of each vehicle is defined by posi-
tion and velocity as dependent variables of time.

e Kinetic (statistical) description: the state of the system is still iden-
tified by position and velocity of the vehicles however their identification
refers to a suitable probability distribution and not to each variable.

e Macroscopic description: the state is described by locally averaged
quantities, i.e. density, mass velocity and energy, regarded as dependent
variables of time and space

In detail, in the microscopic representation all vehicles are individ-
ually identified. The state of the whole system is defined by dimensionless
position and velocity of the vehicles. They can be regarded, neglecting their
dimensions, as single points

where the subscript refers to the vehicle.

On the other hand, according to the kinetic (statistical) descrip-
tion, the state of the whole system is defined by the statistical distribution
of position and velocity of the vehicles. Specifically, it is considered the
following distribution over the dimensionless microscopic state

f=rftzV), (1.5.3)

where f dx dV is the number of vehicles which at the time ¢ are in the phase
domain [z, z + dx] x [V,V 4+ dV].

Finally, the macroscopic description refers to averaged quantities
regarded as dependent variables with respect to time and space. Math-
ematical models are stated in terms of evolution equations for the above
variables. If one deals with density and mean velocity, then models will
be obtained by conservation equations corresponding to mass and linear
momentum:

u=u(t,z) €[0,1], v=uw(tz)€[0,1]. (1.5.4)
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Before describing a specific model for each of the above scales, it is nec-
essary to show how the information recovered at the microscopic scale and
by the kinetic representation can provide, by suitable averaging processes,
gross quantities such as density and mass velocity.

In the microscopic presentation, one can average the physical quantities
in (1.5.2) either at fixed time over a certain space domain or at fixed space
over a certain time range. For instance the number density u(t, z) is given
by the number of vehicles N(¢) which at the time ¢ are in [x — h, z + h], say

u(t, z) = ;ZHM (1.5.5)
A similar reasoning can be applied to the mean velocity
;M@
o(t,z) = Non ; Vi(t), (1.5.6)

where, of course, the choice of the space interval is a critical problem and
fluctuations may be generated by different choices.

In the kinetic representation, macroscopic observable quantities can be
obtained, under suitable integrability assumptions, as momenta of the dis-
tribution f, normalized with respect to the maximum density nj; so that all
variables are given in a dimensionless form. Specifically, the dimensionless
local density is given by

T4p
u(t,z) = / f(ta,V)dV, (1.5.7)
0
while the mean velocity can be computed as follows:

ot 2) = BV](tz) = 260 1 )/H”Vf(t,x,V)dV. (1.5.8)
0

u(t,z) u(t,z

After the above preliminaries, we can now describe some specific mod-
els. Actually very simple ones will be reported in what follows, essentially
with tutorials aims. The first model is based on the assumption that the
dynamics of each test vehicle is determined by the nearest field vehicle.

Example 1.5.1
Follow the Leader Microscopic Model

The basic idea of this model, see [KKW], is that the acceleration @; (t+71")
of the ¢ — th vehicle at time ¢t 4+ 1" depends on the following quantities:
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e The speed V;(t) of the vehicle at time ¢,
e The relative speed of the vehicle and of its leading vehicle at time t:
‘/i—l(t) - ‘/Z(t)?
e The distance between the vehicle and its leading vehicle at time t:
in_l(t) — .’Ez(t)

Hence the ordinary differential equation which describes the model is as
follows:

Viea(t) — Vi)
(xi—1(t) — z(1))!
where T is the reaction time of the driver, and a,m, [, are parameters to be
fitted to specifical situations.

Zi(t+T) = a(Vi(t)™

(1.5.9)

The model which will be described in what follows was proposed by
Prigogine and Hermann, [PH], and is based on the assumption that each
driver, whatever its speed, has a program in terms of a desired velocity
which can be computed by suitable experiments. Specifically f; = fq(V)
denotes, in what follows, the desired-velocity distribution function,
meaning that f;(V)dx dV gives the number of vehicles that, at time ¢ and
position = € [z, z + dx], desire to reach a velocity between V and V + dV.

FExample 1.5.2
Prigogine Kinetic Model

Prigogine’s model describes the traffic flow according to the scheme

where the operator Jp is the sum of two terms

Jplf] = J[f] + Jilf], (1.5.11)

which describe the rate of change of f due to two different contributes:

e The relaxation term .J,., due to the behavior of the drivers of changing
spontaneously speed to reach a desired velocity.

e The (slowing down) interaction term .J;, due to the mechanics of the
interactions between vehicles with different velocities.

Moreover, it is assumed that the driver’s desire also consists in reaching
this velocity within a certain relaxation time T;., related to the normalized
density and equal for each driver.
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In detail, Prigogine’s relaxation term is defined by

FA®Y) = g (V) = St V), (1512
with
B u(t, x)
T.[f](t,z) =7 m ) (1.5.13)

where 7 is a constant. The relaxation time is smaller the smaller is the
density; instead for density approaching to the bumper condition, u — 1,
this term grows indefinitely.

The term J; is due to the interaction between a test (trailing) vehicle and
its (field) heading vehicle. It takes into account the changes of f(t,z,V)
caused by a braking of the test vehicle due to an interaction with the
heading vehicle: it contains a gain term, when the test vehicle has velocity
W >V, and a loss term, when the heading vehicle has velocity W < V.
Moreover, J; is proportional to the probability P that a fast car passes a
slower one; of course this probability depends on the traffic conditions and
so on the normalized density. Taking the above probability defined by the
local density yields:

14pu
T2, V) = ult, x)f(t,x,V)/O (W = V) f(ta, W) dW . (15.14)

Hence the model finally writes:

%:: + Vgi :W (fa(V) = f(t,2,V)) +u(t,z)

1+p
xf(t,:c,V)/O (W = V)f(t.a,W)dW .  (15.15)

The macroscopic model which follows is based on conservation of mass
and linear momentum, see [BCD], which can be written as follows:

Gu + —(uv) =
ot Ou (1.5.16)
ov ov

ot ox
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where g defines the average acceleration referred to each particle. Square
brackets are used to indicate that the model of g may be a functional of the
arguments. In practice it may be not simply a function of the variables,
but also of their first order derivatives. The word acceleration is used,
when dealing with traffic flow models, to avoid the use of the term force
for a system where the mass cannot be properly defined.

It is worth stressing that the above framework simply refers to mass
and momentum conservation, while energy is not taken into account. This
choice is practically necessary for a system where the individual behavior
plays an important role on the overall behavior of the system.

Example 1.5.3
Hydrodynamic Analogy and Macroscopic Models

As we have seen, models can be obtained by Eq. (1.5.16) with the addi-
tion of a phenomenological relation describing the psycho-mechanic action
g = glu,v] on the vehicles. For instance, if one assumes (in dimensionless
variables)

glu,v] = glu] = —igg , (1.5.17)

then, the following

(1.5.18)
ov ov 1 @

= ==
ot + Ox udx’
is obtained, where p is the pressure. A possible relation is the equation of
ideal gases: p = cu”, where c is a constant (in isothermal conditions).
If, instead of (1.5.17), we assume the following:

10p 2 0%

g[u, U] = —E% 3’U,R€ @ 9 (1519)
we have
ou 0
a + %(UU) = 0,
(1.5.20)

v dv  1dp 2 0%

— v —=—-=-—=+ —.
ot + Ox uwor 3uR. 0x2
Here R, = VoLug/p with Vp, L and wg reference speed, length and
density respectively, and p > 0 a material parameter called viscosity. R,
is a positive constant called Reynolds number, that gives a dimensionless
measure of the (inverse of) viscosity. System (1.5.20) defines the equations
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of motion of a viscous, compressible fluid in one spatial dimension. As it is
obvious, the presence or the absence of the viscous term leads to a change
in the mathematical structure of the equations, with consequences in the
properties of the model.

Let us stress again that the above models have to be regarded as simple
examples proposed to show how different representation scales generate
different models corresponding to the same physical system.

1.6 Classification of Models and Problems

The above sections have shown that the observation and representation
at the microscopic scale generates a class of models stated in terms of ordi-
nary differential equations, while the macroscopic representation generates
a class of models stated in terms of partial differential equations. In details,
the following definitions can be given:

I Dynamic and static models

A mathematical model is dynamic if the state variable u
depends on the time variable t. Otherwise the mathematical
model is static.

I Finite and continuous models

A mathematical model is finite if the state variable does not
depend on the space variables. Otherwise the mathematical
model is continuous.

A conceivable classification can be related to the above definitions and
to the structure of the state variable, as it is shown in the following table:

finite static u=1u,
finite dynamic u=u(t)
continuous static u = u(x)
continuous dynamic u=u(t,x

Figure 1.6.1 — Classification of mathematical models




28 Lectures Notes on Mathematical Modelling in Applied Sciences

The above classification corresponds to well defined classes of equations.
Specifically:

e finite dynamic models correspond to ordinary differential equa-
tions;

e continuous dynamic models correspond to partial differential eq-
uations.

Static models, both finite and continuous, have to be regarded as parti-
cular cases of the corresponding dynamic models obtained equating to zero
the time derivative. Therefore:

e finite static models correspond to algebraic equations;
e continuous static models correspond to partial differential equa-
tions with partial derivatives with respect to the space variables only.

As specific examples of static models, the following two examples cor-
respond, respectively, to Example 1.2.1 and Example 1.3.5.

Example 1.6.1
Static Configurations of an Elastic Wire-Mass System

Consider, with reference to Figure 1.2.1, the mechanical system described
in Example 1.2.1. Equating to zero the left hand side term, i.e. the time
derivatives, yields, in the linear case, the following model

i (1.6.1)

o, (1.6.2)

Example 1.6.2

Static Configurations of a Population Dynamics Model

The static configuration of the stochastic population dynamics model
described in Example 1.3.5 are obtained equating to zero the left side term
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of Eq. (1.3.24)

/ / n(v, w)A(v, w;u) f(t,v) f(t,w) dv dw
0 0

—f(t,u)/0 n(u,v) f(t,v)dv=0. (1.6.3)

1.7 Critical Analysis

This chapter has been proposed as an introduction to modelling, clas-
sification and organization of mathematical models and equations. It has
been stated that a deeper insight into mathematical aspects can be effec-
tively developed only if a well defined class of models (and equations) is
effectively specialized. Therefore, the above relatively deeper analysis is
postponed to the chapters which follow.

This section simply anticipates some topics and concepts which will be
analyzed properly in the chapters which follow. Specifically, we anticipate
some ideas concerning model validation and complexity problems in
modelling.

Referring to model validation one can state, in general, that a model
can be regarded wvalid if it is able to provide information on the evolution of
a real system sufficiently near to those obtained by experiments on the real
system. So far a conceivable modelling procedure needs the development
of the following steps:

e The real system is modelled by suitable evolution equations able to de-
scribe the evolution of the dependent variables with respect to the inde-
pendent ones.

e Mathematical problems are generated by linking to the model all condi-
tions necessary for its solution. These conditions should be generated by
experimental measurements on the real system.

e The above problems can be possibly solved and the output of the simu-
lations is compared with the experimental observations.

e If the distance (according to a concept to be properly defined in mathe-
matical terms) between the above simulations and experiments is less than
a critical value fixed a priori, then the model can be regarded valid, other-
wise revisions and improvements are necessary.
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Unfortunately, the concept of validity is not universal, but it refers to
the circumstances related to the above comparisons. Indeed, a model which
is valid to describe certain phenomena, may loose validity with reference
to different phenomena. Therefore development of models and their ap-
plication needs a constant critical analysis which can go on following a
systematic analysis and improvements of each model.

Referring now to complexity problems in modelling, it is worth
stating that this concept can be applied to the real system, as well as to the
model and to the mathematical problems. In principle all systems of the real
world are complex, considering that the number of real variables suitable to
describe each system may be extremely large, if not infinite. Once applied
mathematicians try to constrain the real system into a mathematical model,
i.e. into a mathematical equation, then a selection of the variables suitable
to describe the state of the real system is done.

In other words, every model reduces the complexity of the real system
through a simplified description by a finite number of variables. Enlarging
the number of variables makes the model virtually closer to the real system.
On the other hand this enlargement may cause complexity in modelling.
In fact a large number of variables may need experiments to identify the
phenomenological models related to the material behavior of the system,
which may require high costs to be realized, and, in some cases, may be
impossible.

However, suppose that the applied mathematician is able to design a
model by a large number of variables, then the related mathematical prob-
lem may become too difficult to be dealt with. Technically, it may happen
that the computational time to obtain a careful solution increases expo-
nentially with the number of variables. In some cases, mathematics may
not even be able to solve the above problems. The above concepts refer to
complexity related to mathematical problems. Once more, this is a
critical aspects of modelling which involves a continuous intellectual effort
of applied mathematicians.

It is plain that the attempt to reduce complexity may fall in contrast
with the needs posed by validation. Let us anticipate some concepts related
to wvalidation of models. Essentially, a validation process consists in
the comparison between the prediction delivered by the model and some
experimental data available upon observation and measurement of the real
system. If this distance is “small”, then one may say that the model is
valid. Otherwise it is not.

The above distance can be computed by a suitable norm of the differ-
ence between the variable which defines the state of the model and the
measurement obtained on the real system related to the same variable. Of
course, different norms have to be used according to the different classes of
models in connection to the different representation scales.
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Let us critically focus on some aspects of the validation problems and
their interplay with complexity problems:

e The validation of a model is related to certain experiments. Hence a
validity statement holds only in the case of the phenomena related to the
experiment. In different physical conditions, the model may become not
valid.

e The evaluation of the distance between theoretical prediction and mea-
surements needs the selection of a certain norm which needs to be consistent
not only with the analytic structure of the model, but also with the data
available by the measurements.

e The concept of small and large related to the evaluation of the devi-
ations of the theoretical prediction from the experimental data has to be
related both to the size (in a suitable norm) of the data, and to the type
of approximation needed by the application of the model to the analysis of
real phenomena.

e Improving the accuracy (validity) of a model may be contrasted by the
complexity problems concerning both modelling and simulations. In some
cases accuracy may be completely lost due to errors related to complex
computational problems

Mathematical modelling constantly supports the development of applied
sciences with the essential contribution of mathematical methods. In the
past centuries, a systematic use of modelling methods have generated classi-
cal equations of mathematical physics, namely equations describing hydro-
dynamics, elasticity, electromagnetic phenomena etc. Nowadays, modelling
refers to complex systems and phenomena to contribute to the development
of technological sciences.

Mathematical models already contribute, and in perspective will be used
more and more, to the development of sciences directly related to quality
of life, say, among others, biology, medicine, earth sciences.

Modelling processes are developed through well defined methods so that
it is correct to talk about the science of mathematical modelling. The
first stage of this complex process is the observation of the physical sys-
tem which has to be modelled. Observation also means organization of
experiments suitable to provide quantitative information on the real sys-
tem. Then a mathematical model is generated by proper methods to deal
with mathematical methods.

Generally a mathematical model is an evolution equation which can po-
tentially describe the evolution of some selected aspects of the real system.
The description is obtained solving mathematical problems generated by
the application of the model to the description of real physical behaviors.
After simulations it is necessary to go back to experiments to validate
the model. As we shall see, problems are obtained linking the evolution
equation to the so-called initial and/or boundary conditions. Indeed,
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the simplest differential model cannot predict the future if its behavior in
the past and on the boundaries of the system are not defined.

The above procedure will be revisited all along these Lecture Notes and
it will be particularized with reference to specific models or class of models.
However, simply with the aim of introducing the reader to some aspects of
the statement of problems and development of mathematical methods, the
previously described Examples 1.3.1 and 1.2.2 will be revisited with special
attention to statement of problems and simulations.

Example 1.7.1
Simulations for the Elastic Wire-Mass Model
Consider the model proposed in Example 1.3.1 as it is described, in the
nonlinear case, by Eq. (1.3.3). Simulations should provide the evolution in
time of the variables u; = uq(t) and us = ua(t).
It is plain that the above evolution can be determined from the initial
state of the system:

U0 — U1 (t()) s U20 = UQ(to) . (171)

In other words, different behaviors correspond to different initial states.
A very simple way (actually, as we shall discuss in Chapter 2, too simple) to
obtain the above simulation consists in developing a finite difference scheme
organized as follows:
i) Consider the discretization of the time variable:

It:{to,tl,...,ti,...}, h:ti+1—ti. (172)

ii) Given the initial state (1.7.1), compute, with reference to Eq. (1.3.3),
the state u1; = uq(t1) and ug; = us(t1) by the following scheme:

U1l = Ui + u20 b,
k ¢ ) (1.7.3)

ug1 =ugo +h| — —uio — — uy
m m

iii) Continue the above scheme at the step (i + 1) of the discretization by
the following scheme:

Up(i41) = U1i + Uz o,
k ¢ ) (1.7.4)

Ug(iy1) = U2i + h< — UL T Uy

where U1 = U7 (tz) and U2; = UQ(ti).
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The mathematical problem is stated linking conditions (1.7.1) to the
mathematical model, while the related mathematical method is developed
in items i) — iii).

Example 1.7.2
Simulations for Linear Heat Transfer Model

Consider the mathematical model proposed in Example 1.2.2 as it is
described by Eq. (1.2.6). Similarly to Example 1.7.1, simulations should
provide the evolution in time and space of the variable u = u(t, ). Also in
this case, the above simulations can be developed by appropriate mathe-
matical methods, if additional information is given on the behavior of u at
the initial time and at the boundaries of the space domain.

Specifically, let us assume it is known the initial state of the system:

uo(x) = u(to,z), Vae€l0,1], (1.7.5)

and the behavior at the boundaries x = 0 and x = 1, say the fluxes:

alt) = q(t,0), Bt) =q(t.1), YVt>to. (1.7.6)

Different behaviors correspond to different initial and boundary states.
A very simple (actually too simple as we shall discuss in Chapter 3) way to
obtain the above simulation consists in developing a finite difference scheme
organized as follows:
i) Consider the discretization (1.7.2) of the time variable, and the following
discretization for the space variable:

Iw:{330:O,xl,...,$j,...,$n:1}, d:$j+1—$j, (177)

ii) Compute, with reference to (1.2.4), the fluxes at the boundary of each
tract (finite volume) [z;,2,11] by their approximate values gj4+1 =
qj+1(t):

ho
gj+1 = —— (Uj41 = 1) (1.7.8)
where u; = u;(t) = u(t,z;),Vj=1,---n—1

iii) Apply the following scheme at each time and for each volume corre-
sponding to the space discretization:

du; 1 k
j:l & —C()id(qj+1 — QJ) = d—g(u]-+1 — 2Uj + uj—l) . (179)
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i1

d
iv) Apply the time discretization to % as in Example 1.7.1.

The mathematical problem is stated linking conditions (1.7.5)—(1.7.6)
to the mathematical model, while the related mathematical method is de-
veloped in items i) — iv).

The reader should be aware that the above examples have been dealt
with at an intuitive and, may be, naive level and that the above topics have
to be revisited in a deeper framework. Then, at this stage, some simple
remarks are proposed with the aim of pointing out some crucial features
of the modelling process, which will be specifically discussed in the various
chapters which follow with direct reference to particular models.

e A mathematical model, although approximating the physical re-
ality, should not hide relevant features. In particular, it should not hide
nonlinear behaviors or nonlinear features of the phenomena which is mod-

elled.

e Analysis of mathematical models essentially means solution of math-
ematical problems obtained by providing suitable initial and/or boundary
conditions to the state equation. This type of analysis needs the develop-
ment of mathematical methods that can be organized for classes of models
and which may differ for each class. Mathematical methods, according
to what we have said in the preceding item, should be those of nonlinear
analysis. Linearity should be regarded as a particular situation.

e Generally, mathematical problems are not as mathematicians wish.
In other words, real situations are not such that existence, uniqueness, and
regularity of the solution can be proved. Often, mathematical problems are
imposed by physical reality. In fact, it may often happen that although
some information on the solution is given, some features of the model (the
parameters) or of the mathematical problem (initial or boundary condi-
tions) cannot be measured. Inverse problems are almost always ill posed.
On the other hand, it is plain that the solution of inverse-type problems is
of relevant importance in the construction of mathematical models.

e Physical systems sometimes show stochastic behaviors. In some sit-
uations, even if the mathematical model is of a deterministic type, the
related mathematical problem may be of a stochastic type. In fact, initial
or boundary conditions cannot be measured precisely and this type of in-
formation may be affected by some stochastic noise. Stochastic behaviors
in mathematical models may be an unavoidable feature, and, consequently,
suitable mathematical methods need to be developed in order to deal with
stochastic problems.
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e The modelling process may be regarded as a sort of loop that might
be interrupted when there is a satisfactory agreement between simulation
and observation of the phenomena.

e Modelling not only leads to a simulation of physical reality, but can
also contribute to a deeper understanding of physical systems. Indeed, after
the simulation, the experimental observation can be revisited and hopefully
improved.

Part of the contents of a letter, [Bb], appeared on the review journal of
the American Society of Mechanical Engineers is reported as it summarizes
some of the concepts which have been reported above.

It is worth pointing out that modelling is a creative science, which requires
observation, initiative, and invention. Modelling motivates applied math-
ematics which, on the other hand, needs to support modelling and con-
tributes to address the invention along mathematically reasonable paths.
Further mathematical models can often contribute to a deeper understand-
ing of physical reality. Indeed, the construction of a mathematical model
contributes to discover the organized structures of physical systems. More-
over, the simulation can point out behaviors which have not been, or even
cannot, be observed.

Then one may state that mathematical modelling constantly supports
the development of technological and natural sciences by providing the
essential contribution of the mathematical methods.

Finally, it is worth focusing on a complexity problem related to scaling.
It may happen, in the case of systems constituted by a large number of
interacting elements that, although the dynamics of each element is well
understood, the collective behavior of the whole system is not properly
described by the sum of the dynamics of each element. The complexity
source is that collective behaviors follow a dynamics totally different from
that of the behavior of a few entities. It is not simply a matter of selection
of the proper scale, while models should take into account the fact that
in large systems, the various elements do not behave in the same way and
individual behaviours can play a relevant role in the overall evolution of the
whole system.
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2

Microscopic Scale Models

and Ordinary Differential Equations

2.1 Introduction

This chapter deals with modeling and related mathematical problems
within the framework of the microscopic observation scale. According to
the classification of models and equations proposed in Chapter 1, modeling
at the microscopic scale means deriving an evolution equation for each
element constituting the whole system: generally, the evolution model is
stated in terms of a system of ordinary differential equations.

Specifically, if m is the dimension of the state variable which defines the
state of each element and n the number of elements, then the dimension
of the system is n x m. Equations are generally linked by the mutual
interactions of the elements belonging to the system and to external actions
on the elements of the system.

Microscopic modeling can be developed when the number of elements is
somehow small (in some sense to be properly specified). Otherwise, when
their number becomes large, the computational complexity to handle a large
system of equations may involve difficulties which cannot be technically
dealt with. Actually, technical difficulties do not refer to the derivation of
the model, but to the computational treatment of a system of equations
too large to be handled: specifically the computational time may grow
exponentially with the number of equations. In this case a different way of
modeling can be developed in order to reduce complexity.

This chapter deals with models and problems which do not yet generate
the above type of complexity. However, this delicate matter cannot be
hidden, being aware that reducing complexity is one of the challenging
aspects of the science of mathematical modeling.

37
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After the above preliminaries, the contents and organization of this
chapter can be described. Specifically, after this introduction:

— Section 2.2 deals with modeling methods at the microscopic scale. As we
shall see, although it is not possible to assess a unique procedure to derive
a model, still some general rules can be identified. Some specific examples
will show how models can be derived within the mathematical framework
of ordinary differential equations.

— Section 2.3 deals with a classification of ordinary differential equations,
and the mathematical statement of the problems, which is obtained by
linking the evolution equation to the conditions that are necessary to its
solution. If these conditions are given corresponding to the initial value of
the independent variable, say t = tg, one has an initial-value problem, also
called Cauchy problem. Otherwise, if these quantities are given at both
ends of the range of the independent variable, say ¢t = ty and t = t;, one
has a boundary-value problem.

— Section 2.4 deals with the representation of solutions to mathematical
problems described in Section 2.3. Then an introduction to discretization
methods is proposed to obtain quantitative results, that is the simulations
related to the solution of the above problems. This topic is related both to
initial and boundary value problems. The contents have to be regarded as
an introduction to computational methods. The interested reader will be
introduced to topics which need to be properly revisited by means of the
essential contribution of the pertinent literature.

— Section 2.5 is concerned with the qualitative analysis of dynamical sys-
tems; in particular, stability definitions and linear and non-linear stability
methods are dealt with.

— Section 2.6 deals with regular and singular perturbation methods deve-
loped to analyze the qualitative and quantitative behavior of solutions to
initial value problems for finite models.

— Section 2.7 provides a brief introduction to the problem of bifurcation,
analyzing the dependence of the equilibrium points and of their stability
properties on the parameters of the model.

— Section 2.8 develops a critical analysis on the contents of this chapter
focused, as already mentioned, on modelling and computational problems.



Microscopic Scale Models and Ordinary Differential Equations 39

2.2 On the Derivation of Mathematical Models

In general, it is not reasonable to assess only one method to derive
models at the microscopic scale. However some common lines can be iden-
tified. Therefore a conceivable modeling procedure will be here described
and applied in the derivation of some specific models.

Consider the following sequential steps which may be followed for the
derivation of finite mathematical models:

Step 1. Phenomenological observation of the physical system which
needs to be modeled.

Step 2. Identification of the various elements composing the system
and identification of the dependent (state) variables suitable to describe
the state of each element, and hence of the whole system.

Step 3. Modeling the causes which generate the dynamics and iden-
tification of the cause-effect relationships, as well as of the conservation
equations (when they exist) of quantities related to the state of the system.

Step 4. Derivation of the mathematical model, i.e. an evolution equa-
tion for the dependent variables, by exploiting the above relationships be-
tween cause and effects and the conservation equations.

Phenomenological State Cause—effect Mathematical
Observation Variables Relationships Model

Figure 2.2.1 — Derivation of mathematical models

When the system is a mechanical one, in the framework of classical me-
chanics, then the derivation of the model follows methods of Newtonian and
Lagrangian mechanics, as documented in the book [BPR|. The examples
which follow will show how the above steps can be practically developed in
the modeling systems of real world. Specifically, the first system is related
to technology, the second one to economical sciences and marketing, and
the third one to populations dynamics. Through the derivation of each
model, the four above Steps 1-4 will be explicitly dealt with.

Once the model has been derived, the analysis and the application of
the model follows. The above method will now be applied to the derivation
of a model in electrical engineering sciences.
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Ezxample 2.2.1
Linear Electric Circuits

Consider the standard circuit with resistor R, inductance L, and capacitor
C, in series, as shown in Figure 2.2.2, where it is also shown that the circuit
is subject to the voltage F. The model is expected to describe the flow of
the current and its derivation can be developed through the steps which
follow:

Step 1. The phenomenological observation of the system indicates that
it is an electric circuit: the electromotive force F = F(t) may vary in time,
while R, L, and C' are constant parameters.

Step 2. The system is composed of one only element: the circuit, the
state of the system may be described either by the charge ¢ (to be measured
in Coulombs), or by the intensity of the current i = dg/dt (to be measured
in Ampere).

Step 3. The relationship between cause and effect can be described by
Kirchoft’s law (actually a phenomenological model) which states that
the sum of the tension drops in each element equals the electromotive force
E(t). Moreover, it is assumed that Ohm’s model is valid: the tension drop
in the resistor is V(t) = Ri(t), with R constant.

Step 4. The evolution model is obtained exploiting the above relation-
ship, which, considering that all parameters are constant, writes

di . q
La + Ri+ ol E(t). (2.2.1)

Considering that ¢ is the derivative with respect to time of the charge
q, yields the following second order model:

d*¢ Rdq q  E(t)
@  TateT L (222)

The above model can be written as a system of first order equations
using the following variables:

dqg duy
MEG Ry T

so that the following system is obtained:

du1
dt
dus
dt

= Uz,

(2.2.3)
= au; + Bus + vE(t),
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[m}

Remark 2.2.1. The derivation of the model, that is Eq. (2.2.3), is obtained
by particularizing the general procedure described at the beginning of this
section and visualized in Fig. 2.2.1.

The above modelling approach leads to the derivation of the follow-
ing models, the first one in marketing sciences, while the second one is in
population dynamics.

C

Figure 2.2.2 — Electric Circuit.

Example 2.2.2
Modeling Marketing Dynamaics

Consider the interactions between the economical system constituted by
potential buyers with the users of brand names in a closed marketing envi-
ronment. Modeling the above system should provide the evolution in time
of the numbers of the above interacting subjects. The mathematical model
can be derived through the following steps:

Step 1. The system is constituted by potential buyers with the users of
brand names in a closed marketing environment. Interactions modify their
number.

Step 2. The state of system is supposed to be described by the number
uy of potential buyers and the number uy of users of brand names.
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Step 3. The relationship between cause and effect can be described
by a simple phenomenological model such that u; grows in time with a
constant rate and linearly depending on us. On the other hand such a
growth is contrasted by the interaction between w; with w5, with p > 1,
due to saturation phenomena. Similarly us grows due to the interaction
between w; with ud, with ¢ > 1. On the other hand such a growth is
contrasted by us due to saturation of offer in the market.

Step 4. The evolution model is obtained exploiting the above modeling
of the cause and equating the cause to the effect, that is the time derivative
of u; and uy. The following model is obtained:

d

o i 4,

) (2.2.4)
u

dftQ = Bujul — dus,

where a defines the natural rate of growth of buyers, § refers to the de-
crease of buyers due to their contact with brand names, while brand names
increase the rate of growth of buyers as ruled by the parameter . The
parameter 3 is again used for their increase due to the contact with buyers,
while § refers to decay of brand names.

Example 2.2.3
Population Dynamics

Consider a system of n interacting populations fully isolated. Modeling
the above system should provide the evolution in time of the number of
individuals of the above interacting populations. The mathematical model
can be derived through the following steps:

Step 1. The system is fully isolated, i.e., it is assumed that there is not
interaction with the outer environment. Moreover, one assumes that the
state of the system is simply described by the number u; of individuals of
each population.

Step 2. The cause—effect relationship is assessed by two phenomenolog-
ical aspects. The first aspect states that the population growth of the i-th
species linearly depends upon the number of the individuals belonging to
the said species. A second aspect states that the interaction between indi-
viduals of different species produces a decrease proportional to the product
of individuals of the interacting species.
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Step 3. The mathematical model is simply obtained equating the
cause

AQ;U; — Uj Z bijuj (225)
j=1
to the effect
dui -
dt = a;U; — Uy Z bijuj . (226)
j=1
]

The above three simple models 2.2.1-2.2.3 show some technical differ-
ences. The first model refers to one element only, the second one to a
system of two elements, while the number of elements in the third one may
be arbitrarily large. All models need to be rewritten in terms of dimension-
less variables after a proper selection of reference quantities as indicated in
Chapter 1.

2.3 Classification of Models and Mathematical Problems

Section 2.2 has shown that mathematical models can be derived at the
microscopic scale in order to describe the ttme evolution of a finite dimen-
sional state variable: u = u(t), where u is the set of dependent variables
u=(up,...,u,...,u,) defined over the domain [tg,¢;] of the independent
variable ¢.

Remark 2.3.1. In Examples 2.2.2 and 2.2.3 one may observe that the
first one describes the interactions between two objects, while the second
one is concerned with the interactions among n populations. Actually, the
model is meaningful if n is small. Indeed, when the number of populations
becomes large, interactions between pair of individuals may be affected by
the presence of a third population. In other words, the coefficients are
no longer constant, but may depend on the state of the system. This is
definitely an origin of complexity to be properly analyzed.

This section deals with the classification of microscopic models which
are structured in terms of ordinary differential equations, which will be
assumed to be always written in dimensionless form. The classification
refers to models where the independent variable is the time . However, it
holds for any type of independent variable and it is based on the structure
of the mathematical equations.
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Specifically, let us consider first systems of equations written in the
commonly called normal form

d
% = fl(t7u17"'7un)7
(2.3.1)
duy,
% = fn(t,ul,...,un),

which can be written, with obvious meaning of notation, in the compact
vector form

du

- =f(tu). (2.3.2)

Another interesting class of models is the one which refers to higher-
order scalar equations

d™u du dr1u
—_ = t el IR T . 2. .
an < "t dt”—1> (2:33)

The above equation can be rewritten in terms of a normal system of n
equations in n unknowns by the change of variables

du d"tu
— = — . ... n = —F——=" 2. .4
Uy u, U2 dt 9 , U dtn—1 ( 3 )
which yields the normal form
dw _,
dt — w2,
d'LLQ u
-, — us,
dt (2.3.5)
duy,
% = F(tut,. . up) .

This means that the following classification can be given for Eq. (2.3.1).
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I Linear Models

A system of ordinary differential equations (the model) is
considered linear if it can be written as follows:

% = an (g + - + A (Bt + by (8),
(2.3.6)
ddit" — i (B)ur + -+ @ (Dt + ba(8)
or in a compact form
du
& = Alu+b(), (2.3.7)

where A(t) is the n x n matrix of the coefficients a;;(t), and
b(t) is a column vector with n components.

I Linear Homogeneous Models

A linear system of ordinary differential equations (the model)
is considered homogeneous if b(t) = 0 or in a compact form

du

— = A(t)u. 2.3.8

2= Al (235)
I Linear Models with Constant Coefficients

A system of ordinary differential equations (the model) is
considered linear with constant coefficients if the matrix
of the coefficients a;; and the column vector b are constants.
It can be written as follows:

du
— =A b. 2.3.9
a ~ vt (2:3.9)

I Nonlinear Models

A system of ordinary differential equations (the model) is
considered nonlinear if the terms f; are nonlinear functions
of the dependent variables u.
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I Nonlinearly Weakly Perturbed Models

A system of ordinary differential equations (the model) is
considered weakly perturbed semilinear if it can be written
in the form:

CCZT‘: = A(tju+b(t) +<£(t,u), (2.3.10)

where € is a small, dimensionless parameter.
A further aspect which plays an important role in modeling is the pres-
ence of time in the evolution equation.

I Autonomous Models

A system of ordinary differential equations (the model) is
considered autonomous if the time t does not explicitly ap-
pear as an argument of f. Otherwise, the model is called
nonautonomous.

For instance, in Eq. (2.3.9) A and b are a constant matrix and a con-
stant vector respectively, so the system is autonomous. On the other hand,
mathematical models presenting time dependent forcing terms are nonau-
tonomous.

Remark 2.3.2. Linear systems can be written in the following form

du

— = 2.3.11
M ), (2311)

where L(u) is a linear operator, i.e.
L(ug +ug) = L(u1) + L(uz), L(Au)=AL(u), (2.3.12)

where A is a real constant. On the other hand nonlinear systems can be
written as follow:

d
d—l: = N(u), (2.3.13)

where N does not satisfy condition (2.3.12).
In general one may have to deal with models of the type:

du d™u
f(t,u,dtw'-adtn>—0' (2.3.14)

In this case, writing the model in normal form as indicated in Eq. (2.3.1)
may be hard or even impossible. Actually, the above very particular cases
are not dealt with in these Lecture Notes.
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Let us now consider mathematical problems which are generated by the
analysis of real systems. These problems are stated by joining the evolution
equation with the conditions necessary for its solution. Conditions for the
solutions of problems are called initial and limit conditions which may
be defined as follows:

I Initial and Limit Conditions

Consider Eq. (2.3.1) defined in the time interval [to,t1]; we
call the tnitial condition the value

u;(to) = wio (2.3.15)

of the variable u; at t = tg, and the limit condition the value

Uj (tl) = Uj1 (2316)
of the variable u; at the time t = t;.

Initial conditions define the state of the system before the evolution
starts, while limit conditions define constraint on the final configuration
that is assumed by the system.

Linking the evolution equation to initial and/or limit conditions gene-
rates the following mathematical problems:

I Initial-value problem

The initial-value problem for Eq. (2.3.1) is obtained by cou-
pling the system of n evolution equations with n initial con-

ditions u;y, fori =1,...,n
d
= f(t,u),
dt (2.3.17)
ll(to) = Up .

One may look at the initial-value problem as presented by the input—
output system shown in Figure 2.3.1. The output is the dynamical re-
sponse, while the mechanical model is contained in the box. If the
model is subject to an external field, the block representation also includes
the term b as one of the inputs, as shown in Figure 2.3.2, while the me-
chanical model is still contained in the box. The forcing term is related to
the physical situation characterizing the interactions between the inner and
outer system.

It should be noted that a system of n ordinary differential equations
needs n initial conditions — one per state variable — in order to be trans-
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Input Output
Mechanical
Initial Model Dynamical
conditions response

Figure 2.3.1 — Input—output box for a homogeneous system

Input Output
Mechanical @
Initial Model Dynamical
conditions response
b

Figure 2.8.2 — Input—output box for a nonhomogeneous system

formed into an initial-value problem. If some of the initial conditions are
replaced with limit conditions, then one has a boundary-value problem. In
this case, it is not necessary to have a condition per state variable. Indeed,
the problem can be stated with two conditions, i.e., both initial and limit
conditions on a component, and no condition at all on the other one. This
situation is described in the following definition:
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I Boundary-value problem

The boundary-value problem for Eqgs. (2.3.1) is obtained by
linking the system of n evolution equations to p < n initial
conditions

Uz(to) = U0 , izl,...,p, (2318)

each associated with a different component, and to (n — p)
limit conditions

ui(tl):uil, t=p+1,...,n, (2319)
each associated with a different component.

The above conditions can be replaced by linear or nonlinear combina-
tions of the boundary conditions.

The formal application of the above concepts to the statement of prob-
lems for some of the models described in Section 2.2 is dealt with in the
following examples.

Example 2.3.1
Initial Value Problems for Marketing Models

Consider the mathematical model described through Example 2.2.2. The
initial value problem is obtained linking the values that the variables wu;
and uo attain at the initial time ¢ = ¢3. The problems is as follows:

(d
% = a — Buyul +yua,
dUQ
—p = Burug = bug, (2.3.20)

ui(to) = uio,

[ u2(to) = 20,

where u19 and ugy are given constants.
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FExample 2.3.2
Boundary Value Problems for a Population Model

Consider the mathematical model described through Example 2.2.3 for a
two population dynamics. A boundary value problem is obtained for exam-
ple linking the values that the variable u; attain at the initial time ¢t = ¢,
and the one that us attain at the final time ¢ = ¢;. The problem is as
follows:

(du
dil = a1uy — ul(bllul + b12u2) )
t
du
dTQ = agug — ug(barty + bagis) (2.3.21)

ui(to) = uio,

UQ(tl) = Uu21 .

2.4 Solution Schemes and Time Discretization

It was shown in Section 2.3 that once a model has been properly derived,
its practical application to the analysis of the behavior of real system needs
the statement of a mathematical problem and the related technical solution.
It follows that mathematical methods for ordinary differential equations
should be developed to obtain quantitative simulations.

The development of analytic methods does not generally give sufficiently
operative tools to deal with mathematical problems. In fact, the presence of
nonlinearity in the model often (or almost always) requires the development
of computational schemes and possibly scientific software for the application
of solution algorithms.

Several books are available in the literature which deal with analytic
and/or computational methods. For instance, and among others, one may
consider the book [MRal, into which, after the definition of the proper
analytic background concerning existence of solutions, stability properties,
bifurcation analysis, various computational schemes are developed with the
aid of the Software Mathematica. A similar line is followed in the previously
cited book [BPR], which is mainly oriented on the analysis of models of clas-
sical mechanics. The interested reader is addressed to the above literature
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to obtain a relatively more complete background on analytic and compu-
tational methods. This chapter will generally refer to the above books for
a deeper understanding of the analytical and computational methods.
This section provides a concise description of solution schemes by an-
alytic and discretization methods. Completeness is not claimed, the aim
being simply to show how it is possible to obtain quantitative results from
simulation of a large variety of class of problems. In details, this section is
organized through four subsections which deal with the following topics:

i) existence of solutions for initial value problems;

ii) analytic methods for linear initial value problems;

)
iii) discretization schemes for initial value problems;
)

iv) boundary value problems.

2.4.1 Existence of solutions for initial value problems

This subsection deals with qualitative analysis related to the solution of the
initial-value problems for ordinary differential equations. Referring to the
above class of problems, the following definitions can be given:

I Well-posedness

A problem is well formulated if the evolution equation is
associated with the correct number of initial (or boundary)
conditions for its solution, while a problem is well posed if
the solution exists, it is unique and depends continuously on
the initial data.

The main purpose of a model related to a certain physical system is
to predict, for a certain time interval, the behavior of the system starting
from the knowledge of the state at the initial time ¢y3. The predictions of
the model are then obtained by solving the initial-value problem. To do
that, there are some basic requirements that a problem should satisfy:

i) The solution should exist, at least for the period of time desired;
ii) The solution should be unique;

iii) The solution should depend continuously on the initial data and on the
parameters of the model, so that if a small error is made in describing
the present state, one should expect the effect of this error to be small
in the future.

As already stated, if these requirements are satisfied, then the initial-
value problem is said to be well posed.

Consider a norm in IR", which might be, for instance, the Euclidean
norm:

Jufl = (Z“?> , (24.1)
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and give the following definition

I Lipschitz condition

A vector function f(t,u) satisfies a Lipschitz condition in a
region D of the (t,u)-space if there exists a constant L (called
Lipschitz constant), such that, for any (t,u) and (t,v) in D
one has:

|£(t,u) = £(¢,v)|| < L|u—v]. (2.4.2)

where both terms on the left-hand side of (2.4.2) are referred
to the same instant of time.

The Lipschitz condition is a property related both to continuity and
differentiability. Indeed, it can be proved that if f(¢,u) is defined in a
bounded, closed, and convex domain D, and if the partial derivatives of f
with respect to u; exist with

ofi
811,]‘

max  sup <M, (2.4.3)

BI=Lom (ta)eD

then f satisfies a Lipschitz condition in D with Lipschitz constant equal to
M. We recall that a domain is convex if any segment joining two points of
the domain lies entirely within the domain.

Of course, if f(¢,u) satisfies a Lipschitz condition in D, f is a continuous
function of u in D for each fixed t. The opposite is not true: for instance,
V/u? is continuous, however it does not satisfies the Lipschitz condition in
any region containing the origin.

On the other hand, if (¢, u) is differentiable to respect to u, for all times,
then it satisfies the Lipschitz condition, but the opposite it is not true, as
it is shown by |u| that satisfies the Lipschitz condition with constant L = 1
though it is not differentiable in u = 0.

Functions like f(u) = u? with ¢ > 1, or f(u) = coshu do not satisfy the
Lipschitz condition in IR. In fact, roughly speaking, their derivative grows
without bound as u goes to infinity. However, they satisfy the Lipschitz
condition in any closed bounded interval with Lipschitz constant equal to
the maximum of the absolute value of the derivative in the interval.

Let us now consider, after the above preliminary definitions, the qual-
itative analysis of the initial-value problem with initial time denoted by
to. FExistence and uniqueness of solutions is stated by the following two
theorems:
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Theorem 2.1 FExistence

If f(t,u) is continuous in the rectangle

R={(t,u): [[u—ul| <K, [t —t| <T}, (2.4.4)

then there exists at least one solution to the initial-value problem
(2.3.17) and it is of class C* for |t — to| < T, where

~ K
T:min{T,M} and M = max |f(t,u)]|.

(t,u)eR

Theorem 2.2 Uniqueness

If, in addition to the continuity condition of Theorem 2.1, the func-
tion f satisfies a Lipschitz condition in R, then the solution u(t) to
the initial-value problem (2.3.17) is unique, and

u(t) — uol| < MT. (2.4.5)

Notice that the Lipschitz condition is not needed to assure the existence
of a solution of the initial-value problem. Instead, it is essential in the
uniqueness proof. Actually, Theorem 2.1 can be slightly improved, mainly
by specializing the proofs to particular cases. For instance, existence results
can be obtained for f(¢,u) with a limited number of finite discontinuities.

Consider now the problem of the continuous dependence on the
tnitial data, and let U and u be the two solutions of the two initial-value
problem (2.3.17) with initial data u(tg) = up and u(tg) = o, respectively.

Theorem 2.3 Continuous dependence on the initial data

If f is continuous and satisfies the Lipschitz condition, then
|6(t) — a(t)|| < [|to — To ||l (2.4.6)

where L is the Lipschitz constant.

Finally, referring to the analysis of the continuous dependence on f,
consider for t € [to,to + 1] the initial-value problems

d d
M ttu), o=t
dt and dt (2.4.7)

u(ty) =up, u(ty) = uj,
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with f and f* defined and continuous in a common domain D.

Theorem 2./ Continuous dependence on f

If one of f or f* satisfies a Lipschitz condition with constant L and

if

|£(t,u) — £5(t,0)|| <€, V(t,u) €D, (2.4.8)
then
Ju(t) = w )] < [Juo — wf|eH=rel + Z[eFrmol 1] (2.49)

where u(t) and u*(t) are the solutions of the two initial-value prob-
lems defined in (2.4.7).

Although the above analysis answers the questions posed at the begin-
ning of this section and can be applied to most of the initial-value problems
occurring in nature, an important question still remains unanswered : how
large is the domain of the solution? The existence results shown above
assure existence and uniqueness of the solution which may, however, lead
to useless estimates on the existence interval.

Of course, the domain might be larger than the estimate given by the
theorems, possibly extending to all ¢ > tg. Then one needs criteria to
determine the largest possible domain of existence. This question gives
rise to the class of what is known as the extension theorems. Namely,
extensions of the solution can be developed if one can prove that the norm
of the solution does not grow too fast. This type of analysis is often based
on a deep understanding of the qualitative properties of the system. For
instance boundness properties can be recovered by a qualitative analysis
of energy conservation. Of course, one needs to prove that the a priori
estimates hold true in the same function space where the local existence
theorem has been stated. This type of analysis can be recovered in the
classical literature on ordinary differential equations, see for example [Po].

2.4.2 Analytic methods for linear initial value problems

In general, analytic solutions can be sought for in the case of linear
systems of ordinary differential equations. The qualitative analysis of
linear systems is widely dealt with in the literature and can be approached
in several ways. Some general results can be summarized here:

Remark 2.4.1. Any linear system

du

= =A(Du+b(t), (2.4.10)
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with continuous coefficients on a time interval [0, T| satisfies the Lipschitz
condition with

i,j=

Remark 2.4.2. The initial-value problem

du
— = A(u+b(1), (2.4.12)
u(ty) =up,

with A;;(t) and b;(t) defined and continuous for |t — to| < T, has a unique
solution for |t — to| < T, by Theorems 2.1-2.2

Remark 2.4.3. If ui(t),...,u,(t) are m solutions of the homogeneous
linear system

d
d—‘t‘ —A(t)u, ueR", (2.4.13)
then any linear combination
Y Ciui(t), Ci,....Cn€R (2.4.14)
i=1

is still a solution of (2.4.13).

Theorem 2.5 Solutions of the Linear Homogeneous Models

There exist n linearly independent solutions uy,...,u, of (2.4.13)
such that any solution of (2.4.13) can be written as

u(t) = i Ciuy(t), (2.4.15)

for suitable 61, cees én € R.

Remark 2.4.4. The initial value problem

du _ A(t)u,
dt (2.4.16)

u(to) = up,
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is then solved by imposing to u(t), given by (2.4.15), the n initial conditions
to find the values of the constants C1,...,C,.

A set of independent solutions for the homogeneous problem is called a
fundamental set and it can be ordered into a matrix

uu(t) s uln(t)
U(t) = S : (2.4.17)
Un1(t) 0 Upn(t)
called the fundamental matriz.

The above results can be exploited to obtain also analytic solutions of
the nonhomogeneous linear Eq. (2.4.10):

Theorem 2.6 Solutions of the Linear Models
Any solution of Eq.(2.4.10) can be written as follows:

u(t) = zn: Ciu;(t) +uf(t), (2.4.18)
=1

for suitable coefficients C1,...,C, € R, where {uy(t),...,u,(t)} is
a fundamental set for the homogeneous system (2.4.13) associated to
(2.4.10), and u is a solution of Eq. (2.4.10).

Summarizing the results stated in the above Theorems, the solution of
a linear initial value problem (2.4.12) is obtained along the following steps:
Step 1. Find a fundamental set {u;(t),...,u,(t)} for the homogeneous
system (2.4.13) associated to (2.4.10).

Step 2. Find a solution u of the nonhomogeneous system (2.4.10). This
step sometimes can be made by inspection, otherwise one can use the rule
which determines u(t) in terms of an indefinite integral

f(t) = U(1) / U= ()b(t) dt, (2.4.19)

where U is the fundamental matrix defined by the functions obtained in
Step 1.

Step 3. Impose the n initial conditions to (2.4.18) to find the values of the
coefficients C1, ..., C,.

In the case of systems of ordinary differential equations with constant
coefficients

d
chtl — Au, ueR”, (2.4.20)
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it is possible to give a general procedure to complete Step 1, and Step 2
can be developed in a simplified way. In fact, one can look for solutions in
the form

u(t) = vel. (2.4.21)
Substituting (2.4.21) into (2.4.20) indicates that A and v have to satisfy

(A —A)v =0. (2.4.22)

Hence, they have to be an eigenvalue and the corresponding eigenvector
of the matrix A. Detailed calculations differ technically according to the
fact that the number of distinct eigenvalues differs from n or is the same.
In particular

e If A has n linearly independent eigenvectors vy, ..., v, corresponding
to the eigenvalues Aq,...,\, (which need not all be distinct and may be
complex), then the solution of (2.4.20) is

u=CvieMt 4+ Cpvpet (2.4.23)

A complex conjugate pair of eigenvalues \,.£i)\; and eigenvectors v, iv;
gives rise to a solution

u = (Cr +iCi)(vy + ivy)eM T 4 (O —iCy) (v — iv)ePr 0!

— 9Nt [(C’Tvr — Civ;) cos(Ait) — (Covi + Civy) sin()\it)] . (2.4.24)

This matter has to be dealt with differently if there are eigenvalues with
multiplicity » > 1 and p < r corresponding eigenvectors. Without entering
into details, we consider just the following particular case:

e If A has n — 2 distinct eigenvalues Aq,..., A\,_o with corresponding
distinct eigenvectors vq,...,v,_o and a double eigenvalue A\,,_1 = A, = A
corresponding to a single eigenvector v, the solution of (2.4.20) is as follows:

u=CvieM 4. 4 Cpgvy,_ge?n2!

+ [Cr1v 4 Cp(w + vit) | M (2.4.25)

where w is a solution of (A — AI)w = v.
The case of a single equation of order n

d™u du
Qn—— + ot ar—

i o Haou=0 (2.4.26)
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is somewhat simpler since the procedure above can be reduced to the solu-
tion of what is commonly called the characteristic equation

ap\" + -+ aA+ag=0. (2.4.27)

A real root A corresponds to the solution (co + --- + cut“)e’\t, where
i is the multiplicity of X\. A complex conjugate pair, AT = A\, + i)\, and
AT = A, — i)\, corresponds to the solution

eA”tUCO—+...ﬁ—cut“)cosAit%—(do—%...ﬁ—dut“)shlAit . (2.4.28)

where again p is the multiplicity of AT.

2.4.3 Discretization schemes for initial value problems

Generally, mathematical models, as we have seen in various examples, are
nonlinear. In this case, the analysis of mathematical problems needs more
sophisticated analytic methods and explicit solutions are almost never ob-
tained, while computational schemes have to be applied. The above schemes
are all based on the concept of discretizing the time variable ¢ € [tg, T into
a suitable set of points:

I ={to, ... ti,...,ta =T, (2.4.29)

and by approximating the solution in the points of the discretization by
suitable algorithms.

This section provides a brief survey to deal with the above discretization
scheme. The analysis is in two steps. We first introduce the concepts of
accuracy and stability.

In order to understand these concepts, consider the simplest conceivable
method for solving initial-value problems, the forward Euler method. If one
knows the state variable at time t; and wants to compute its value at time
ti+1 = t; + h, the simplest idea consists in approximating the solution of

du
@~ (2.4.30)
u(t;) = u; .
with
Since
d
f@mmnzégm, (2.4.32)
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the above discretization corresponds to a Taylor expansion of the solution
u stopped at first order, which corresponds somewhat to following the di-
rection of the tangent to the solution in ¢;, as shown in Figure 2.4.1.

UA

i+l

Figure 2.4.1 — Representation of forward Fuler method

I Truncation Error

The truncation error T, is defined as the norm of the
difference between the solution to the differential equation and
the numerical solution divided by the time step used in the
numerical scheme.

In the case of forward Euler method it can be proved, under suitable
regularity assumptions, that

2u

ﬁ(f) , Se(titiv)- (2.4.33)

Terr = —

| s
Q,

I Accuracy

If the truncation error goes like h?, the method is p-th or-
der, which means that halving the step divides the error by 2P.
This is what is generally meant by accuracy of the method.

From (2.4.33), for the forward Euler method the error goes like h and
one has a first order method.

Another important requirement of a numerical scheme is that the time
step has to be chosen so that the scheme is absolutely stable:
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I Absolute Stability

A numerical scheme is absolutely stable in a point ah of the
complex plane if a sequence {u;} generated by the method
applied to the model

d
ditL =au, (2.4.34)

with time step At = h is bounded for i — +00.

I Stability Region
The stability region is the set of points ah in the complex
plane for which the method is absolutely stable

It can be proved that each scheme is characterized by a stability region,
which can be used to determine a condition on the time step to be used in
the integration. The procedure to be used is the following;:

Step 1. Starting from a nonlinear model, consider its linearized form

du
— =A 2.4.35
dt w ( )

obtained for instance by linearization about the initial condition;

Step 2. Compute the eigenvalues Ay, ..., A, of A, the so-called spec-
trum of the linearized model;

Step 3. Choose, if possible, a not too restrictive time step h such that
hA1, ..., hA, all belong to the stability region.

Therefore, the numerical errors are not amplified as the integration is
continued. If, instead, there are some eigenvalues which remain outside the
stability region, then one must be aware that the numerical errors grow
exponentially in time. The literature on computational methods reports
about a large variety of algorithms to obtain simulations of finite models.
The interested reader is addressed to Chapter 3 of the book [BP] as well as
to [MRa] for computational schemes.

Consider, as an example of algorithm, the Runge—Kutta methods
which are very popular for their adaptability and versatility and work quite
well for all nonstiff problems. They are obtained by evaluating the function
f at different values of ¢ and u, and by suitably combining these values.
In this way it is possible to obtain methods of any order of accuracy. For
instance, one has

h
2 order : W1 = u; + 5 <K1 -+ K2> , (2436)
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where
K1 = f(ti, lli) s K2 = f(tz + h, u; + hKl) . (2437)
rd h
3 order : u;+1 = Uy + 6 K1 + 4K2 + Kg 5 (2438)
where
Kl — f(tla u’L) )
h h
Kg =f <tz‘ + 5, u; + 2K1> s (2.4.39)
Ks =f(t; + h,u; + h(2Ky — Ky)) .
th h
4" order : U;+1 = Uy + g (Kl + 2K2 + 2K3 + K4> y (2440)
where
Kl - f(tu ul) )
h h
Ky =f (ti Tt 2K1> ;
(2.4.41)
Ko —f(t;+ 2w+ UK
3 — i 2 , Ug 2 2 )

K, = f(tz + h,u; + th) .

Recalling that the initial-value problem with initial condition u(t¢;) = u;
can be written in integral form as

um:m+[f@mm@, (2.4.42)

i

and, in particular,

(i) = w, + /t T ks, u(s)) ds, (2.4.43)

i

it can be observed that both the third- and the fourth-order methods are
closely related to Simpson’s rule applied to the integrals in (2.4.43).

The stability regions of the second-order method has an ellipsoidal
shape, while that of the third- and fourth-order methods are bean-like
shaped.
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Third and fourth-order Runge-Kutta methods are recommended in dea-
ling with problems for which the spectrum is not available, since they in-
clude both a part of the imaginary axis and a part of the negative real axis.
The disadvantage of these schemes is that several evaluations of f have to
be performed per time step and therefore if the computation of f is very
heavy, this method may demand an excessive amount of labor per step and
becomes inconvenient.

Runge-Kutta methods have the property of being self-starting as well
as adaptive. In other words, the time step can be changed at any moment
according to an estimate of the local error. Unfortunately, it is not trivial
to get the above estimate of time step. In this case, to be practical, the
time step has then to be decreased if the difference between the two values
(over h) is larger than a specified maximum tolerance and can be increased
if this difference is smaller than the minimum required tolerance. Of course,
this checking is time consuming.

2.4.4 On boundary value problems

Boundary-value problems for ordinary differential equations with time as
independent variable often arise in several applications. For example when
some of the initial conditions at ¢ = ¢y cannot be measured and are replaced
by the corresponding conditions at a certain control time, say t = t1, where
their identification is possible.

Finding a solution to boundary-value problems is not an easy task. We
remember that initial-value problems generally have unique solutions, while
some boundary-value problems may have more than one solution and others
have no solutions at all, as it will be shown in the Example 2.4.1 below.

An existence theorem may be formulated for linear boundary-value
problems. Here, we will refer to a linear second order problem

d?u du

ﬁ + al(t)a + ag(t)u = b(t) ,

u(to) =, (2‘4.44)
U(tl) = Uuz,

and consider the following theorem
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Theorem 2.7 Existence and uniqueness
If ag, a1, and b are continuous in [to,t1] and if

2
- if ao(t>:0,

Ay
11 —tg < (2445)
2\/Af + 240 — Ay
Ao

otherwise,

where

|CLO(7§)‘ S AO and |CL1(7§)’ S Al Vit € [to,tl],

then the boundary-value problem (2.4.44) has a unique solution in
[to, t1].

Remark 2.4.5. When the existence of the solution of a linear boundary
value problem is assured (for example from Theorem 2.7), we can apply
to the problem the results of Theorems 2.5-2.6. Then imposing the initial
and/or boundary conditions we get the solution of the problem.

In order to clarify the importance of the existence and uniqueness issues
related to boundary-value problems, consider the following example.

Example 2.4.1
Nonuniqueness and Buckling of a Rod

Consider a simple mass-spring system governed by the ordinary differential
equation

d?u
= +Q%u=0, (2.4.46)

where Q2 = k/m, which has solution
u(t) = Crcos(Q2 t) + Cosin(2 t). (2.4.47)
If we join to (2.4.46) the initial conditions

d
w(0) =up  and d—j(O) =y, (2.4.48)

the unique solution is

/

u(t) = g cos(t) + % sin(Qt) . (2.4.49)
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In a similar way, if we join to (2.4.46) the boundary conditions
u(0) = ug and u(T) = ur, (2.4.50)
with T # hn/Q, h € N, we again have a unique solution

up — ug cos(QT)
sin(Q7)

u(t) = ug cos(Qt) + sin(Qt) . (2.4.51)

If T = hr/Q, the boundary-value problem has no solution at all if
ur # (—1)"ug, and infinitely many solutions given by

u(t) = ugcos(Qt) + Csin(Q), VCeR, (2.4.52)

if ur = (—l)huo.
The existence theorem considered above assures existence and unique-
ness only if
2v/2 s

T<— < = . 2.4.
<0 <g (2.4.53)

Using the following argument this result can be used to explain the
buckling of a rod. Consider a rod of length T subject at its ends to a
compressive load F', as shown in Figure 2.4.2. The linear theory of elasticity
tells us that for small deformations the angle of deflection u of the rod can be
found by solving (2.4.46) with Q% = F//(EI), where E is Young’s modulus
of elasticity for the rod, and I is the moment of inertia of the cross section
of the rod about its axis.

Figure 2.4.2 — Buckling of a rod: (a) small loads, (b) large loads

The previous discussion can then be reprocessed in the following terms:
if T < 7/, that is if F < EI7?/T?, then there is no deflection, but
as soon as F' reaches the critical compressive load (first buckling load)
F = EIx?/T?, the solution is not unique and no longer small, which also
indicates a failure of the linear theory of elasticity to model the situation.
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2.5 Stability Methods

As already mentioned, it is possible giving a general procedure to obtain
analytic solutions only for some classes of linear differential equations or
for very special nonlinear problems. On the other hand, it is impossible in
most cases to find analytic solutions. It is then desirable to have at least
some knowledge on the qualitative behavior of the solution.

In details, this Section is organized in three subsection which follows
this brief introduction. The first subsection proposes some preliminary
definitions, while the next two subsections explain suitable methods for the
analysis of the stability of equilibrium configurations, respectively the linear
stability method the first subsection, and the nonlinear stability method the
second one.

2.5.1 Stability Definitions

In view of the study of the equilibrium configurations and their stability
of a mathematical model, we introduce the following definition:

I Equilibrium points
Consider the autonomous system of ordinary differential equa-
tions
du
—=f . 2.5.1
= () (25.1)
The states u, such that
f(u,) =0 (2.5.2)

are called the equilibrium points. If u(0) = u., then u(t) =
u, for all times.

It is trivial to verify that if an equilibrium point is occupied initially, it
is maintained for all times.

The next problem is to decide whether an initially perturbed system
gradually returns back to the equilibrium point, or at least remains next to
it, or wanders away. The following definitions are given:
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Stability and instability of equilibrium points
The equilibrium state u. is said to be stable if for any e > 0 it

is possible to find a §(e) > 0 such that for any initial condition
u(0) with

|u(0) — u|| < d(e), (2.5.3)

one has that

|u(t) —uc|]| <e  Vt>o0. (2.5.4)

An equilibrium state that is not stable is called unstable.

Asymptotic stability and basin of attraction
A stable equilibrium point u. is also asymptotically stable
if there is a neighborhood D, of u. such that for u(0) € D,,
one has

lim |ju(t) —u.|| =0. (2.5.5)

t——+o0

The largest possible D, is called the basin of attraction of
u. and is denoted in the following by B..

The definition of stability has a local meaning. Indeed, if we want that
the system remains, within a given tolerance, near u., the initial condition
has to be sufficiently close to u.. In general an equilibrium position can be
stable to small perturbations, but unstable to large ones.

Conditional stability and global stability

Consider an asymptotically stable equilibrium point. If it is
stable with respect to small perturbations but unstable with
respect to large ones, then the basin of attraction B, is not
the entire space and only the solutions starting in B, will tend
toward u.. In this case u. is said to be conditionally stable,
otherwise u. is said to be globally stable.

2.5.2 Linear Stability Methods

The aim of this subsection is to provide suitable methods for linear stabil-
ity analysis of equilibrium points. The simplest approach to establish the
stability properties of an equilibrium configuration is to investigate what
happens if the perturbation is very small. The stability condition we will
provide is often referred to as the linear stability criterion.

Consider then the autonomous system (2.5.1) and the expansion of f
in a Taylor series about the equilibrium state, which can be performed
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under suitable regularity assumptions on f. In this way it is possible to
approximate each component of f;(u), i =1,...,n as follows

fi(w) & fi(ue) + (w =) - Vfi(ue) + o ju =), (2.5.6)

where by the definition of equilibrium point f;(u.) = 0. Therefore for
infinitesimal perturbations v = u—u, about the equilibrium state, one can
neglect the other terms in the expansion, and the differential system (2.5.1)
can be approximated with its linearized form

‘% = J(u.)v, (2.5.7)

where J is the Jacobian matrix of the vector f

ofh 0K 0N
Ou;  Oug Ooun,
Of2 0f  Of
g= | 9m Ou Ot (2.5.8)
fn Ofn  Ofn
Ou;  Ous ouy,

Equation (2.5.7) is a linear differential system with constant coefficients
which can be solved using the analytic methods presented in Section 2.4.

It is possible to relate these reasoning on the linearized system (2.5.7) to
the behavior of the nonlinear system via the following classical linearized
stability criterion.

Theorem 2.8 Linear stability

If f(u) is twice continuously differentiable, denoting by \; the eigen-
values of the Jacobian matrix evaluated at the equilibrium state and
by Re(A;) the real part of \;, one has:

If Yi=1,...,n Re()\;) <0, then u, is asymptotically stable;
If 3% such that Re(\;) > 0, then u. is unstable.

It is crucial to remark that this theorem guarantees the existence of
a sufficiently small neighborhood Z. of u. such that if u(0) € B, then
u(t) tends to u., but does not give an algorithm for the actual computation
of the basin of attraction D.. For this reason, this criterion is also named
stability with respect to infinitesimal perturbations. This is certainly
a limit to the utility of the above theorem for the applications. However,
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it is useful for instability analysis. Indeed, if u. is linearly unstable, i.e.,
unstable with respect to infinitesimal perturbations, then it is also unstable
to larger perturbations.

If u. is asymptotically stable, then (2.5.7) can be solved to describe the
evolution of the system for suitably small initial values.

A
) )

(a) (b)

Figure 2.5.1 — Qualitative behavior of the dynamic response: (a) stable,
(b) unstable node.

The above concepts can be specialized in the case of two-dimensional
dynamic systems such that the Jacobian defined in (2.5.8) is a 2 x 2 square
matrix. In this case some particular dynamic responses can be classified
and their qualitative behavior can be visualized. In particular we consider
the following two cases:

e If A\ and Ay are both real eigenvalues, then, if A\; # Ay the solution of
(2.5.7) can be written as Eq. (2.4.23), which reduces to:

v(t) = CyvieMt + Cyvaer?t (2.5.9)

where C7 and C5 are integration constants, and v; and vy are the eigen-
vectors of J.
In particular, if \; and Ao are both negative, one has

lim v(t)=0, (2.5.10)

t——+oo

and this equilibrium point is called a stable node. On the other hand, if
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one of the eigenvalue is positive, it follows that

lim v(t) = +o0. (2.5.11)

t——+o0

The equilibrium point is called an unstable node if both eigenvalues
are positive and a saddle point otherwise. In this latter case, two of the
trajectories meet at the equilibrium point and two depart from it. They
are therefore called stable and unstable manifolds.

A A
Vg Us

N SN
G- Gy

=

(a) (b)

Figure 2.5.2 — Qualitative behavior of the dynamic response: (a) stable
and (b) unstable focus.

o If the eigenvalues are complex conjugate, i.e., Ay = A+iw, Ao = A—1iw,
the solution to the initial-value problem (2.5.7) can be written as in Eq.
(2.4.24) as a linear combination of sine and cosine functions.

In particular, if

A=Re(A1) =Re(X2) <0 = , 1121 v(t)=0, (2.5.12)
the equilibrium point is called a stable focus. If, instead,
A=Re(A) =Re(A2) >0 = . li+m [v(t)| = +oo, (2.5.13)

the equilibrium point is called an unstable focus. Finally, if

A= Re(A) =Re(A2) =0,
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then v(¢) stays bounded and the equilibrium state is a center point.

The qualitative behavior of the solution in the case of stable and un-
stable node is represented in Figure 2.5.1. The qualitative behavior of the
solution in the case of stable and unstable focus is represented in Figure
2.5.2.

Figure 2.5.3 — Qualitative behavior of the dynamic response: (a) saddle
and (b) center point.

Finally, the qualitative behavior of the solution in the case of saddle
and center point is represented in Figure 2.5.3.

If Ay = Ao, the discussion gives the same results though (2.5.9) cannot
be the solution of (2.5.7) as shown in (2.4.23).

Note that for n = 2 the eigenvalues of J are

_wd | fap

A
2 4

—detdJ, (2.5.14)
where trJ = Ji; + Joo, and have both negative real part if and only if

trJ <0 and detJ > 0. (2.5.15)

As known, analogous methods can be developed for n > 3. However, in
this case the classification of the equilibrium states is much more complex.
Existence of equilibrium points and analysis of their stability properties can
be analyzed using scientific programs as those described in the book [BPR].
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Ezxample 2.5.1
Stability for the van der Pol Model
As an example, consider the evolution equation represented by the van

der Pol model which can for instance model the behavior of some nonlinear
electric circuits. The mathematical model can be written as follows

i _,

;“ (2.5.16)
v . .

at =(a— 522)0 -,

and is characterized by a unique equilibrium given by

v=20, .
2.5.1
{(a—ﬂiQ)ervi:O, ( )

that is ¢ = v = 0, which, according to what has just been stated, is linearly
stable if « is negative, as the Jacobian

. 0 1
Ji=v=0)= (—’y a) (2.5.18)
has always positive determinant and trace equal to a. Hence, the equi-
librium point is stable if o < 0. More in details, the eigenvalues of the
Jacobian are

A= % [a + \/M} , (2.5.19)

which are complex conjugate if |a| < 2,/7, and real if |a| > 2,/7.
The stability results can be summarized in the following table

«a eigenvalues stability result
a< =2,/ real and negative stable node
—2,/7<a<0 complex with Re(\) < 0 stable focus
a=0 purely imaginary (£i,/7) center point
0<a<2/y complex with Re(\) > 0 unstable focus
a> 2.y real and positive unstable node

Figure 2.5.4 — Stability analysis for the van der Pol Model
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2.5.3 Nonlinear Stability

The linear stability criterion guarantees stability with respect to indefinitely
small disturbances. To obtain this result one has to study the linear system
(2.5.7), which is an approximation of the real model. In order to obtain
more information on nonlinear stability criteria by only using the right-hand
side of the ordinary differential equation, Liapunov suggested a method
which for this reason is usually called Liapunov direct method. For
those who are not familiar with stability theory, the method consists in
finding a function, called Liapunov function, which essentially plays the
role of a generalized energy for the system. If this “energy” decreases as
the system evolves, i.e., if the system is dissipative, then the system will
tend to a stable configuration.
Bearing this in mind, we introduce the following concept:

I Liapunov function

Let u, be an isolated equilibrium of the system of equation
du/dt = f(u) in some open neighborhood D, of u.. A function
V = V(u) is called a Liapunov function if it satisfies the
following properties:

i) It is continuous in D, and differentiable in D, — {u.};

ii) It has a local minimum in u., i.e., for instance

V(u,) =0, V(u) >0  for ue D, —{u.}

with D., open neighborhood of u.;

iii) It is a nonincreasing function of time over any solution u(t)
with initial condition u(tg) = ug € D, — {u.}, i.e. ¥t >0

dv "0V du; = OV
E(u(t)) = 5 a = %fi(u(t)) <0. (2.5.20)
i=1 v i=1 v

Theorem 2.9 Liapunov stability

If there exists a Liapunov function V' in a neighborhood D, of the
isolated equilibrium state u,, then u. is stable. Furthermore, if
dV/dt(u(t)) < 0, then u, is also asymptotically stable.

It is important to remark that the condition dV/dt(u(t)) < 0 means
that V' decreases as the system evolves. This implies that the trajectory
will remain in the region delimited by the level curve V(u) = V(uy).

It is hard to say, in general, how to proceed to identify the best Liapunov
function. For instance, in the case of systems of two equations, let consider
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the quadratic function

V = av? + 2bvivy + v3 (2.5.21)

with @ > b?, that is always nonnegative. Then one has to check that the
sign of

1dV

5 E = (CLUl + b’U2)f1(Ula 'UQ) + (b’Ul + ’U2)f2(1}1, Ug) (2522)

be negative in some region near v; = vy = 0 for some values of a and b with
a > b2,
Another method is to look for V' as a quadratic form V = v - Av with
A such that
JTA+AT =1, (2.5.23)

where J is the Jacobian of f in v = 0, and I is the identity matrix.
Liapunov Theorem 2.9 is partially inverted by the following theorem:

Theorem 2.10 Chetayev theorem

Let u. be an isolated equilibrium of du/dt = f(u) in some open set
D. If there exists a differentiable function V' = V(u) and an open
set D, such that

i) u. belongs to the border D, of D,
ii) V(u) > 0 in Dy and V(u) =0 on 0D,

iif) %‘: >0in Dy,

then u. is unstable.

Example 2.5.2
Stability through Liapunov Method

Consider the system

dU1
o . + ug,
(2.5.24)
duz + 2uqu
=2 _u
dt 2 142,
which has u1 = us = 0 and u; = ug = —1/2 as equilibrium points. The

reader can prove that u; = ug = 0 is linearly unstable (saddle), while the
other equilibrium point is linearly stable (focus).
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In order to check the nonlinear stability of uy = us = —1/2, it is useful
to introduce the perturbation (vi,vs2) defined by

1 1
(75 :—5—1-211, u2=—§+1}2- (2.5.25)

Eq. (2.5.24) then rewrites in terms of the new variables as

dv1
o n +v2,
(2.5.26)
L
dt = —U1 V1V .
Consider then the function
3
V =0} —-vv+ 51@ , (2.5.27)

which is positive definite as can be written as V = v - (Av), where v =
(v1,v2) and

1
L =3
A= (2.5.28)
1 3
2
has both positive eigenvalues.
The computation of dV/dt yields
av d d
o= (201 — Ug)% + (Bvg — vl)% = —v? — 03 + 60102 — 2070, . (2.5.29)
Rewriting
—v} — v3 + 6v1v3 — 203y <0, (2.5.30)
as follows
(2vg + 1)vf — 60103 +v3 >0, (2.5.31)

the equality is solved by

303+ \/v3(903 — 205 — 1)

2.5.32
vl 205 + 1 ( )
If 9v2 — 2vy — 1 < 0, that is, if
1-vV10 1++10
vy €1 = 9 ) 9 )
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then (2.5.31) is always satisfied, as in I, 2vs +1 > 0.

2.6 Regular and Singular Perturbation Methods

As we have already seen, mathematical models must always be written
in terms of suitable dimensionless variables. This technical manipulation
may generate dimensionless numbers which are small with respect to unity,
while the independent and dependent variables are of the order of unity. Al-
most always, these parameters have a well defined physical meaning which
should be related to the solution of mathematical problems (or vice versa).

This section provides a brief introduction to regular and singular pertur-
bation methods by means of simple examples where the dependent variable
is a scalar or a two dimension vector.

We first define a perturbed model. Let € be a positive number which
is small with respect to unity.

I Regularly Perturbed Model

A finite mathematical model

- =f(tue), (2.6.1)

u(to,€) = ugp(e) .

is called regularly perturbed if f(t,u,c) and uy(e) depend
smoothly on their arguments.

I Singularly Perturbed Model

A finite mathematical model is called singularly perturbed
if it can be written as

du
a0 (2.6.2)

u(to,€) = up(e) .

The above definitions are given for a scalar problem. Their generaliza-
tion to systems of equations is technical.
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As it is shown in the examples which follow, the parameter £ (in a
regularly perturbed problem) is linked to the presence in the model of nearly
negligible physical phenomena, while in a singularly perturbed problem
the parameter € is generally related to the scaling and to the dimensional
analysis of the variables.

Different methods have to be developed for each of the above classes of
models, as it will be shown in the next subsections. The starting point is
the idea of looking for an asymptotic expansion, in the sense of Poincaré,
for ¢ — 0, uniformly valid in an interval [tg,T], for the solution u(t,e) of
the perturbed problem, and we write

u(t,e) ~ Y ui(t)e'  as  e—0. (2.6.3)
1=0

This means that there exists a positive constant €9 and VN > 0, there exist
functions {u; ()}, defined in [to, T], and a positive constant Ky such that

’u(t,s) — Zf\io u;(t)e" < Ky, (2.6.4)

€N+1

for all € € (0,£¢) and for all t € [to, T.
Using the Landau symbol “O”, condition (2.6.4) can be written

N
u(t,e) = Z ui(t)et + O(eN T as e—0, (2.6.5)
i=0

uniformly valid for ¢ € [tg, T]. The series on the right-hand side of (2.6.3)
is called asymptotically convergent, uniformly in [tg,T]. The concepts of
convergent series and asymptotically convergent series are quite different:
we refer to [DF] for a discussion about convergence versus asymptotic con-
vergence.

Starting from the above preliminaries it is shown in the next subsec-
tion how to deal with the relatively simpler case of regular perturbations.
Subsequently the case of singular perturbed problems is considered.

2.6.1 Regular perturbation method for initial value problems

Let us consider the regularly perturbed problem (2.6.1) and let us define
as limiting problem associated to (2.6.1) the initial value problem obtained
from (2.6.1) fore =0

at ’ (2.6.6)
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Due to the smoothness of f(t,u,e) and ug(e) with respect to their argu-
ments, we espect that the solution u(t,e) of (2.6.1) depends smoothly on
t and ¢ and that it tends to the solution u(?)(¢) of the limiting problem
(2.6.6), as € — 0, uniformly with respect to t € [to, T].

Following [DF], let us assume that f(t,u,¢), defined on R? x [0, 1], has
the following asymptotic expansion

o0

flt,u,e) ~ Z FO(t,u)e’ as e—0, (2.6.7)

=0

uniformly valid in any bounded domain of R?, with the functions () (¢,u)
infinitely differentiable in IR?, and assume that

(€) ~ Z upie’ . (2.6.8)
i=0

Then let us look for an asymptotic expansion for the solution of problem
(2.6.1)

£) ~ i u® (t)et (2.6.9)
=0

along the following steps:
Step 1. Substituting (2.6.9) in (2.6.7), yields

f(t,u(t,e), Z&? f”(,iu(j)(t)sj)
j=0
NZ {f<> (0)(t))+8§() none Zum )ed
19%2f0)
+§af2 O (Zum 53) }

= 1O @) + <{ 2L ¢ 0 ) 1)

OO0+ Y 28 1) 1

192 f( )

2 Ju?

i f(2)(t,u(0)(t))} bt gp{

(8, u@ () (P () + =5t ul? (1) (1)

Bgf)@,w (B)ul?) (1)
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+ O (8, u© 1), u D (1), - - ,u<p—1>(t))} +oo, (26.10)

with £ are known functions depending only on (t,u(®, v ... uP=1).
Step 2. Consider from Step 1, that

o0

F(tu(t,e),e) ~ FO(t,u®(t) Ze@{ 2t @) ()

+ OO 1), D (8, - - ,u(””(t))} : (2.6.11)

then substituting (2.6.11), (2.6.9) and (2.6.8) into the corresponding terms
of problem (2.6.1), and equating the same powers of €, the following systems
are obtained

du©
_ O (4O
g~ G, (2.6.12)

u(®) (to) = uoo,

and

du'”) af(o) i F(i— i—
= =W(t,u(°>)u“+f( D(t,u®, W . =Dy

U(i)(to) = UQ; ,

(2.6.13)

fori=1,2,....

Step 3. Applying to problem (2.6.12) the existence and uniqueness
Theorems 2.1-2.2, we get the existence of a unique solution u(?)(t) of
(2.6.12), for t € [tg, T]. Recalling that f()(¢,u) is infinitely differentiable,
the solution u(?) is C'*°. Moreover, referring to subsection 2.4.2, we can get
the solutions of the linear differential systems (2.6.13), in the same interval
[to, T.

Step 4. The procedure has to be completed showing that the formal
expansion (2.6.9) for u(t,e), where the terms u(¥(t) are the solutions of
systems (2.6.12) and (2.6.13) obtained in Step 3, is an asymptotic expansion
for u(t,e). This means that, writing YN > 0

Zu“ )e' + Rn(t,e), (2.6.14)

it has to be proved that

Ry (t,e) = 0N+, (2.6.15)
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uniformly in ¢ € [tg,T]. The reader is addressed to [OM] or [DF] for the
details of this proof.

Remark 2.6.1. The precedure described in Step 1 - Step 4 refers to the
scalar problem (2.6.1). In the general case of a system of equations, the
method of looking for an asymptotic expansion for the solution of the sys-
tem can also be applied, as it is shown in the following example [HM].

Example 2.6.1

Consider the system
du

T —2u + v +ev?,
d
CT: —u—20+¢eu?, (2.6.16)
u(0) = v(0) =1,
and the perturbation expansions for u and v
u(te) ~ > uD (@), ote) ~ > vD(t)el (2.6.17)
i=0 i=0

Appling the perturbation method outlined above, we obtain at order
1 =0 and ¢ = 1, respectively

du©
";t MO ON
WO _ 0o (2.6.18)
dt ’
uw9(0) =@ (0) =1,
and
1
dl;i ) = —2uM oM 4 ()2
1
dq:i(t ) _ D 9y n (u(o))2 ’ (2.6.19)

uM(0) = vM(0)=0.

We may observe that (2.6.16) is symmetric in u, v, as well as (2.6.18)
and (2.6.19) are symmetric in u(9,v(®) and u™, v respectively. Solving
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the linear systems (2.6.18) and (2.6.19) yields
uO) =0 @) =et, uWD@E)=0vW@)=et -2  (2.6.20)
that gives as solution of (2.6.16)

u(t,e) = v(t,e) =e ' +ele” —e ) + 0O(e?). (2.6.21)

FExample 2.6.2
Duffing’s Equation - Part 1

Let consider the following system related to the motion of a mass attached
to a nonlinear spring (hard spring)

d2
i +u4eu=0 ,
dt?
i (2.6.22)
u(0) =a, @ =0,
dt |,—g

where € € (0,1), which can be considered as a regular perturbation of

d*u
az =

. (2.6.23)
u(0) =a, & =0.

dt |,_q

Problem (2.6.22) is equivalent to the following two-dimensional first
order system

da

d
v _ s, (2.6.24)
dt

u(0) =a, v(0) =0.
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The power series expansion method gives at order ¢ = 0 and ¢ = 1 the
following systems:

d24(0)

T u® =0,
) (2.6.25)
u©(0) =a, =0,
dt |,—o
and
d24 L
dl; M) = ()3,
(2.6.26)
du(
uM(0) =0, =0,
L P

where (2.6.25) is solved by u(” (t) = a cost, so that System (2.6.26) for u(")
can be written as follows:

2,,(1) 1 3
ddlzz +uM) = —¢? (4 cos 3t + 7 °08 t> )
(2.6.27)
du)
uM(0) =0, =0.
dt |,_,
Its solution is
(1) 3| 1 31
u(t)=a 35\ €08 3t —cost ) — gt sint|, (2.6.28)

so that the solution of (2.6.22) can be written as follows

1 3
u(t,e) = acost + ea® [32 <cos 3t — cos t> - gt sin t] +0(e%), (2.6.29)

uniformly in any bounded interval 0 < ¢ < T.

Remark 2.6.2. It is interesting to remark that we do not get any answer
to the question of how big can be the deviation of the solution of problem
(2.6.1) from the solution of problem (2.6.6) on a large time interval. The
following simple examples show that this deviation may be not small.
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Example 2.6.3

Let consider the scalar system ([MRb]),

du

— = (u+e¢)?,
ai ) (2.6.30)
u(0) =0,
that for ¢ = 0 becomes
v _ o
dt (2.6.31)
u(0) =0.

The solution of (2.6.31) is u(t) = 0, V¢ € [0, 00), while the solution of

(2.6.30) is u(t,e) = 1%@ — ¢ and it is defined only for t € [0,1/¢)

FExample 2.6.4
Duffing’s Equation -Part IT

Coming back to Example 2.6.2, we see that expression (2.6.29) is a rea-
sonable approximation of the solution for bounded time intervals but not
for t € [0,00). In fact due to the term —(3/8)¢ sint in (2.6.29), when
t = O(1/e) the second term of the expansion is no longer O(¢) and when
t = O(1/¢?) the second term blows up.

Let us notice here that the term —(3/8)¢ sint in (2.6.29) is due to the
presence of the term —(3/4)a®cost in (2.6.27) (the so-—called resonance
effect). On the other hand, (2.6.22) has only bounded (and periodic) solu-
tions, as it describes a conservative system with the energy integral

du\ 2
<dltt> +u? + §u4 =a®+ %a4, (2.6.32)

which implies u and du/dt are bounded for ¢ € [0, c0).

The last example suggests to use a different expansion of the solution
in which unbounded terms do not appear. A possible approach is the
Lindstedt-Poincaré algorithm, which will be described in the following ex-
ample, where the method is applied to the Duffing equation.
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Example 2.6.5
Lindstedt-Poincaré Algorithms

Let s be a new variable defined as

t=sw(e), (2.6.33)

where

we) =1+¢ew + 2wy +---. (2.6.34)

System (2.6.22) can now be written in the unknown wu(s) = wu(t(s)) as

d*u 2 2 3
@—F(l—kew;{%—s wo + ) (u+eu’) =0,
(2.6.35)
u(0) =a du =0
7 ds s=0 ’

and we apply to Problem (2.6.35) the above procedure, e.g. we look for an
asymptotic power series expansions for the solution of the type

[ee]

u(s,e) ~ Zu(i)(s)ai , (2.6.36)

=0

but now we have more freedom in choosing the coefficients w;. In fact the
power series expansion method gives, respectively to the order ¢ = 0,1, 2,
the following systems

d?u(©) 0
o ® O (2.6.37)
u ( ) =a, dS o - ’
A2y
dl:’Q +u® = —(u®)? — 20,u
N (2.6.38)
! ( ) - ds s=0 -
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Pu® o) (0)y2,, (1) M 4 (O3
a2 +u' = =3(u™)ut = 2wy (ut + (u)?)
— (w1? + 2wr)u(®) | (2.6.39)
du?@
) (0) =0 =
u ( ) ? dS a—0

The solution of (2.6.37) is u(®)(s) = a cos s, so that system (2.6.38) for
uY) can be rewritten as follows

d?u®) 1 3
du2 +u) = —la?’ cos(3s) — (ZGQ + le)acoss,
S
Ju® (2.6.40)
M (0) = Y -
uH(0) =0, s |, 0,
so that, we can choose w; such that
3 9
—a“+2w; =0, (2.6.41)

4

in order to avoid the resonance effect. Therefore, the following bounded
solution of (2.6.37) is obtained

1
uV(s) = 3—2a3 (cos3s — cos s) . (2.6.42)

Consequently,

1
u(s,e) = a coss + §a3 (cos 3s — cos s)e + O(g?), (2.6.43)

that is uniformly valid in any finite s interval, with the coordinate s given
by

3 —1
s=tw(e) ! =t (1 - S+ ) . (2.6.44)

Finally the solution of (2.6.22) can be written as follows

u(t,e) = acos(t) + 3%a3(cos(3§2t) — cos(Q)) + O(e?), (2.6.45)
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where

-1
Q=w(eE) "= (1 - %aze + - ) =1+ ga2€ +0(e?). (2.6.46)

2.6.2 Singularly perturbed problems

As we have seen in the preceding subsection, in the case of regularly per-
turbed problem (2.6.1), the solution depends on the parameter € in such a
way that the solution u(t,e) converges, as € — 0, to the solution u(®) (¢) of
the limiting problem (2.6.6), uniformly with respect to t € [to,T]. On the
other hand, in the case of the singularly perturbed problem (2.6.2), the
convergence u(t,e) — u(®(t) generally fails. Let us introduce some basic
notions and definitions through the following examples.

Example 2.6.6
Initial Layer Ejffect - First Order Problem

Let us consider the problem

du

e—+u=1,
dt (2.6.47)
u(0) = ug ,
which has the unique solution
u(t,e) =1+ (up—1)e"=, Vi>0. (2.6.48)

Assuming € > 0 and ug # 1, we have

lim u(t,e) =1 for ¢>0, wu(0,e)=uop, (2.6.49)

e—0t

and this proves that the convergence of u(t,e) to 1, for ¢ — 0T, is not
uniform in any right-neighbourhood of ¢ = 0.

Remark 2.6.3. The solution (2.6.48) of system (2.6.47) is the sum of two
terms: the first one, the outer or bulk solution, is an asymptotic solution



86 Lectures Notes on Mathematical Modelling in Applied Sciences

of the differential equation for t > 0, and the second one, the initial layer
solution, is a function of what is called stretched time variable

r=-- (2.6.50)

As T — +00, the initial layer solution is decreasing to zero. The stretched
time can be considered as a rescaling parameter which magnifies the region
of non-uniform convergence.

Example 2.6.7
Initial Layer Effect - Second Order Problem

Let us now consider the following nonlinear second order boundary value
problem

d?u du\ 2
“arr T (E) ’
u(0)=1, wu(l)=0,

(2.6.51)

which is solved by

u(t,e) = —¢ log (t + e*é(l - t)) , for te€[0,1] and e>0. (2.6.52)
As in the preceding example, we have

lim u(t,e) =0, u(0,e)=1, (2.6.53)

e—0t

which shows that the convergence u(t,e) — 0 for ¢ — 0 is uniform to
respect to ¢t on each closed subinterval of (0, 1], but not in [0, 1].

Different solution techniques can be applied to solve and to overcome the
problem of non-uniform convergence both for singularly perturbed initial
value problems and for singularly perturbed boundary value problems. Here
we limit ourselves to show in the following example of singularly perturbed
boundary value problem how an asymptotic expansion technique can be
applied.
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FExample 2.6.8
Friedrichs’ Problem

Consider the following second order linear boundary value problem

5d2—u + du +u=0
dt2  dt ’ (2.6.54)

u(0)=a, u(l)=0,
for ¢t € [0,1] and ¢ € (0,1), whose exact solution is

(ae®2 — b)estt + (b — ae®t)e*2!

es2 — est

u(t,s) = , (2.6.55)

—1++1—4e
2 '
Assume now that we don’t know the exact solution and we want to try
to determine an asymptotic form of the solution of (2.6.54) writing

with 81,2 =

ult,e) = Ult,e) +a(r,e) (2.6.56)

t
where 7 = —.
€

Referring to the definitions stated in Remark 2.6.3, U(t,e) represents
the outer solution and 4(7,¢) the initial layer solution. Let us assume that
the following power series expansion holds

Ult,e) ~ i UDt)et,  a(r,e) ~ iﬂ(“ (1)’ (2.6.57)
i=0 i=0

and assume that @) and its derivatives tend to zero as 7 — +00, providing
the desidered result that the correction term @ has only a significant value
in a neighbourhood of ¢ = 0. The outer solution U has to solve

d*U  dU
e~ +——+U=0,

a2 " dt (2.6.58)
U(l,e) =b.

The expansion gives the following first order linear problems defined
inductively

dU )

-+ U9 =0, U91)=ns, (2.6.59)
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Ud1)y=0 i=1,2,.... (2.6.60)

Solving the related problems gives

Ul(t,e) =be' "t +eb(1 —t)e' ™t + 0O(?), (2.6.61)

which is asymptotically valid for ¢ € (0, 1]. For ¢ = 0 we have

U(0,e) = be + ebe + O(?) # a, (2.6.62)

which shows that for taking into account the initial condition, the initial
layer correction @ must be considered. The problem for @ is the following
linear homogeneous one

d?u  di
ﬁ + di’%l'b +eu = 07 ’11(0,6) =a— U(O,é‘) . (2663)

The expansion for @ gives at order i =0

du® 7(0) — 70 (0) = 0)(0) =
7 +a =0, aV0)=a—-U"(0)=a—be. (2.6.64)
T
which is solved by
u (1) = (a—be)e . (2.6.65)

So we have shown that Problem (2.6.54) has the following unique asymp-
totic solution

u(t,e) = UO () +a® (é) +O(e) = bel ™t 4 (a—be) et +O(c). (2.6.66)

It is worth stressing that u(0,e) = a, and for ¢ > 0 we have u(1l,¢e) =
b+ (a—be)e = and u(l,e) — b as € — OF.

The algorithm shown in Example 2.6.8 can also be applied to the initial
value problem for an autonomous system of differential equations in the
form

5% = f(u,v),
dv (2.6.67)
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where u and v can be scalar or vector functions of ¢, and the dimensions of
u and v can be different.

Implementing such an algorithm from a numerical point of view, as
reported in [MP], means to solve a number of equations equal to the order
of approximation plus one. In this paper, the authors propose a different
algorithm which involves only one differential equation for a single function.
This algorithm is here briefly illustrated in the following example, while the
reader is addressed to the original paper for the details.

Example 2.6.9
Mika and Palczewski’s Algorithm

Consider the boundary value problem

dt?  dt

u(0) =n,

+u2:0,

2.6.68
du ( )

% =M,

t=0

which corresponds to the system

cdm

dt
duy (2.6.69)
ar

2
= —Uu3 —u2,

ur(0) =p, u2(0)=n.

The algorithm leads, as first order approximation, to solve the following
system

Ed—w = —w? — 2ew?,
dt (2.6.70)
w(0) =n+e(p+n?),

and it is possible to prove that the accuracy obtained in this new algorithm
is similar to that for the first order standard algorithm and much better
than the zero order standard algorithm.
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2.7 Bifurcation and Chaotic Motions

This section focus on how the equilibrium configurations of a dynamical
system usually depend on the parameters which characterize the model.
In particular, it may occur that as one of the parameters crosses a critical
value, the solution will tend toward another equilibrium configuration. The
aim of this Section is to give some hints for the study of the bifurcation of
a dynamical system without claiming any completeness on the treatment
of the subject. For a detailed treatment of the subject, refer for instance
to the book [BPR].

Consider a mathematical model described by a scalar autonomous or-
dinary differential equation depending on a parameter «

d
dit‘ = f(w;a). (2.7.1)
The equilibrium configurations are determined by solving the algebraic
equation

flu;a) =0. (2.7.2)

This equation is usually nonlinear and for each value of « it can be solved
by a certain number of values of u, or possibly by no value at all. The
number of solutions of (2.7.2) cannot be determined a priori and generally
changes with . As will be shown later in this section, the values of « for
which the number of solutions of (2.7.2) changes are particularly important
in the stability analysis.

Then, one can represent by dots in the (u,«)-plane, the solutions of
(2.7.2) obtained for each fixed value of a. If « varies continuously, the
solution of (2.7.2) defines a certain number of curves, each of which can be
locally described by an equation u = wu.(«), implicitly defined by (2.7.2),
i.e., such that f(ue(a);a) =0.

If one is able to determine the stability property of each equilibrium
configuration, then this piece of information can also be reported on the
diagrams using the following classical convention:

e Stable equilibrium configurations are identified by a heavy solid line;
e Unstable equilibrium configurations are identified by a dashed line.

The figures obtained by drawing these curves are called stability dia-
grams, (or bifurcation diagrams, branching diagrams, response diagrams),
and each of the curves appearing in the diagram is called a branch.

The generalization of the above considerations, given for the scalar case,
to systems of equations is technical.
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The following definitions are recalled:

Branch points

The values (a, ue(a)) where the number of equilibrium solu-
tions changes are called branch points.

Bifurcation points

An equilibrium solution bifurcates from another at a = ay
if there are two distinct branches G.(«) and u.(«) continu-
ous in «, such that G.(ap) = (o). The common value
(o, Ge(ap)) = (o, 0e(ap)) in the (a,u)-space is called a bi-
furcation point.

Not all branch points are, however, bifurcation points. That is, not all
changes in the number of equilibrium solutions are due to the intersection
of curves in the stability diagram. Bifurcation points can be further clas-
sified, e.g. pitchfork bifurcation, supercritical, subcritical and transcritical
bifurcations and Hopf bifurcations, referring again to the book [BPR] for
details. The following definitions can be reported:

Pitchfork bifurcation

If one of the two branches intersecting at the bifurcation point
(ap, up) is one sided (i.e., defined only for a > oy, or for a <
ap), then the bifurcation is of the pitchfork type.

Supercritical and subcritical bifurcations

A pitchfork bifurcation is defined as being supercritical if
the one-sided branch is stable and is otherwise subcritical.

Transcritical bifurcations

A bifurcation is transcritical if on both sides of the bifurca-
tion point there are locally two equilibrium solutions.

In many applications it may happen that, still departing from an unsta-
ble configuration, the system will neither go to another stationary config-
uration nor wander away, but will start oscillating approaching a periodic
orbit. The oscillations described here are also referred to in mechanics as
self-sustained oscillations, to distinguish them from those which are due
to oscillatory forcing terms. One can then state the following definition:
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I Limit cycle
An orbit u(t) tends to a closed curve I' called the limit cy-
cle if there exists a period T > 0 such that the sequence of
points u(t + nT) tends to a point of T' as the integer n goes
to infinity.
A cycle I' is asymptotically stable if there exists a neighbor-
hood Ur of T such that if u(0) € Ur, then u(t) tends to I'.

The relevance of limit cycles is basically related to the problem of how
time-periodic behaviors may arise from the bifurcation of a steady state.
This is an interesting problem in the case of systems of equations, i.e. in
the case of dimension more than one. In fact, for a scalar problem (2.7.1),
it is impossible to have a nonconstant periodic solution,

The behavior of a dynamical system may change, according to the value
assumed by a parameter o and the solution will tend to a time periodic
orbit, as a critical value a4 is crossed. In this case, the bifurcation is called
the Hopf bifurcation.

The identification of self-sustained oscillations is far more difficult than
that of equilibrium points. As a consequence, recognizing the existence of a
Hopf bifurcation can be a hard task. In this respect, the following theorem,
known as the Hopf Theorem, is often very helpful.

Theorem 2.11 Hopf Theorem

Focussing on the dependence of the equilibrium configuration u. on a
parameter «, let us assume that there is a critical value oy, such that
u.(«) is asymptotically stable for o < oy, and unstable for o > a,. If
for a = ap, the Jacobian J of £ has a simple pair of purely imaginary
eigenvalues

Aoy) = +4€2, (2.7.30)

and all the other eigenvalues have a negative real part and, further-
more, for o close to ay

AMa) = pla) +iw(a), with —(a=awp) > 0. (2.7.3b)

Therefore for « sufficiently near the critical value «y, there exists a
limit cycle with initial period

2
T = g : (2.7.3¢)

If, in addition, the equilibrium configuration u(a = «y) is locally
asymptotically stable, then the limit cycle is stable.
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Figure 2.7.1 — Behavior of the critical eigenvalues as « increases from
stable values to unstable ones in the case of (a) stationary bifurcation and
(b) Hopf bifurcation.

The theorem above uses again the eigenvalues of the Jacobian and the
knowledge of the stability properties which are not too hard to verify. In
particular, it pays attention to what happens to the first eigenvalue which
will have positive real part as the bifurcation value is crossed.

We already know that at criticality. i.e. for « equal to the critical value
ayp, the real part of an eigenvalue or of a pair of eigenvalues vanishes and
becomes positive as the bifurcation value is passed by, while that of the
others is negative. The theorem states that if also the imaginary part van-
ishes, i.e., the eigenvalue is zero, then the bifurcation involves stationary
configurations. If, instead, there is a pair of purely imaginary eigenvalues,
then the bifurcation involves self-sustained oscillations. This situation is
represented in Figure 2.7.1. In particular, in Figure 2.7.1b a pair of eigen-
values of J crosses the imaginary axis from left to right away from the origin
as «, increasing from stable values to unstable ones, crosses criticality.

Generally, the Hopf theorem does not tell whether a stable (supercrit-
ical) limit cycle exists for o > ay or an unstable (subcritical) limit cycle
exists for a < ay, inside of which all orbits spiral toward u. and outside
of which the orbits diverge. In order to know whether the limit cycle is
stable or unstable, it must be proved that u. is locally asymptotically sta-
ble at criticality. This information can be achieved by using the Liapunov
method. In fact, linear stability criteria are useless because at criticality
the eigenvalues are purely imaginary. This precludes any conclusion on the
character of the nonlinear system. This second part is, however, certainly
not simple.

These concepts are now applied to the following example.
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Ezxample 2.7.1
Limit Cycle for the van der Pol Model

Consider the van der Pol equation already encountered in Example 2.5.1

d*u

d
ez (a—ﬁuQ)—u—Fu:O, (2.7.4)

dt
with 8 > 0 and, without loss of generality, v = 1.

The only equilibrium configuration is v = 0, which is asymptotically
stable for @ < 0 and unstable for « > 0. In fact, the eigenvalues of the
Jacobian are

at+va? -4

2
Therefore, near the origin u = Re(\) = a/2. Furthermore, at criticality,

A\ =

di,u 1

Ma=0)==+i#0 and da(a:0)25>0.

From Hopf theorem, then, there exists a limit cycle. To establish if the limit
cycle is subcritical (unstable) or supercritical (stable), one has to verify that
u = 0 is locally asymptotically stable for o = 0.

du\”
By using V = u? + () as a Liapunov function, one can compute

dt
fora =0
av o (du?
— = —Bu (dt) , (2.7.5)

which is always negative for non-trivial solutions.

2.8 Critical Analysis

An introduction to mathematical modelling at the microscopic scale has
been given in this chapter focussed on models stated in terms of ordinary
differential equations.

It has been shown that the analysis of nonlinear systems needs to be ap-
proached using both analytic and computational schemes. Analytic meth-
ods can provide existence results and some information on the qualitative
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behavior of the solution, for instance stability properties, asymptotic be-
havior, bifurcations, while computational schemes integrate the information
by visualizing and completing what found by analytic methods.

Generally, none of the two approaches, namely analytic and computa-
tional, is sufficient to deliver a complete information, while a sinergetic use
can be successful in providing a picture, as complete as possible of the so-
lution patterns. Simulations, based on computational schemes, have to be
focussed on completing, and possible enlarging, what is delivered (and not
delivered) by the analytic qualitative analysis.

Let us analyze some modeling and complexity issues related to the con-
tents of this chapter. Finite models, i.e. at the microscopic scale, deal
with real systems considering each system as a whole. It is worth reason-
ing about some implications of the above approximation of physical reality.
In fact, this approximation can be, in some cases, not acceptable when the
number of elements constituting the overall system under consideration can
be too large. Or the number of ordinary differential equations to be dealt
with is too high for the qualitative analysis, and even for computational
treatment. The contents of the two chapters which follow are motivated
also by the attempt to reduce the complexity problems, that have been
outlined above.

Finally, let us critically consider that all models we have seen in this
chapter need parameters related to the material behavior of the system
under consideration. For instance, elasticity characteristics of spring, co-
efficients of competitive and/or cooperative models, and so on. Generally,
these parameters are measured by empirical data obtained near equilib-
rium, while their values are needed to describe the evolution of the system
far from equilibrium.

The above criticism refers to a general, definitely unsolved, problem of
mathematical modelling. In some cases, the modelling approach can be
refined by including a model, at the lower scale, to describe the evolution
of the components which the parameters are referred to. Although this ap-
proach can be developed only in some very special case, it is worth bearing
in mind the above matter as it can be a source of errors in the predictions
of models.
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3

Macroscopic Scale Models

and Partial Differential Equations

3.1 Introduction

This chapter deals with the derivation and analysis of mathematical
models derived at the macroscopic scale. These models, according to the
definitions given in Chapter 1, provide a description of real systems by suit-
able evolution equations for locally averaged quantities which may be called
macroscopic observable quantities. Of course, all physical systems are
constituted by several interacting elements. However, the local averaging
is an acceptable approximation when a small volume, in terms to be still
defined, contains a sufficiently large number of elements.

The above approximation can be called continuous matter assump-
tion, which states that given two points belonging to the system, however
close each other, some matter is included between these points. A typi-
cal example is the flow of fluid particles regarded as a continuum system.
Rather than modelling the dynamics of each single particle and then aver-
aging to obtain gross quantities such as mass density and linear momentum,
the macroscopic approach provides directly, as we shall see, the evolution
in time and space of the above macroscopic quantities. This approach was
already analyzed in Chapter 1, where a few introductory examples have
also been proposed. Therefore we simply recall that the derivation of equa-
tions in continuum physics has been a fundamental chapter in the history
of mathematical physics and, in general, in the history of sciences.

Models of continuum physics, e.g. fluid dynamics, elasticity, electro-
magnetism fields, have been derived at the macroscopic scale under the
continuum matter approximation, and are nowadays the fundamental back-
ground of the mathematical models of natural, applied, and technological

97
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sciences. Moreover, the derivation of several models in technology takes
advantage of the above fundamental models of mathematical physics.

As we have already seen in Chapter 1, macroscopic models are char-
acterized by a state variable u which depends on time and space. In general
this dependence is continuous and one can write

u=u(t,x): [0,7] xD+— R", (3.1.1)

where D C R? is the domain of the space variable and u is an n-dimensional
vector. Mathematical models are generally stated in terms of a system of
partial differential equations for the variable u.

If the state variable is a scalar and the space variable is in dimension
one, then one simply has

u=u(t,x) : [0,7] X [a,b] — R. (3.1.2)

In this case the model is a scalar partial differential equation.
Static continuous models are such that the dependence on time drops
and the state variable is

u=u(x): D+—R". (3.1.3)

The organization of this chapter is somehow analogous to the one of the
previous one. After the above introduction, the contents are organized as
follows:

— Section 3.2 deals first with the description of some general modelling
methods; then, these methods are will be applied to the derivation of some
specific elementary models of mathematical physics related to simple phe-
nomena, e.g. wave propagation, thermal diffusion.

— Section 3.3 analyzes the contents of the preceding section and deals with
a classification of models and equations. This means looking at the mathe-
matical structure of the models to provide a classification based on common
properties of the said equations. As we shall see, the classification, based
on mathematical properties, can be related to different classes of physical
phenomena described by the model.

— Section 3.4 deals, on the basis of the above classification, with the state-
ment of mathematical problems. The above classification is finalized to
the correct statement of mathematical problems technically related to the
development of mathematical methods. The mathematical formulation of
problems is, as we shall see, preliminary to their solution and to the devel-
opment of simulations.

— Section 3.5 deals with an introduction to analytic methods for linear
problems. It is only a brief introduction considering that these Lecture
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Notes are mainly devoted to nonlinear models and problems, a relatively
deeper insight can be obtained by the pertinent literature which will be
given in what follows.

— Section 3.6 deals with the discretization of continuous models into a dis-
crete number of finite models. Using this method, one obtains a set of
models which approximate the continuous one by a system of ordinary dif-
ferential equations related to the evolution of each finite element.

— Section 3.7 proposes a critical analysis mainly focused on the selection of
the macroscopic scale to represent the system.

It is worth mentioning that this chapter does not aim to provide a com-
plete presentation of the large variety of models of mathematical physics.
The aim is to deal with methodological aspects which may contribute to
address the reader to mathematical modelling as a science. The examples
of models proposed in this chapter have to be regarded as relatively simple
ones proposed as a mathematical description of simple phenomena.

3.2 Modelling Methods and Applications

This section deals with the analysis of the methodological aspects of the
mathematical modelling of continuous systems, which will be then applied
to the study of a number of physical systems chosen as suitable examples.

As usual, the derivation of a mathematical model suitable to describe
a certain physical system requires a preliminary phenomenological obser-
vation both of the physical system and of its connection with the outer
environment. Then, the modelling procedure can be developed along the
following steps:

1: Selection of the state variable which describes, by the model, the real
system: this variable may be called state variable;

2: Modelling of the interactions between the inner system, which has to
be modelled, and the outer environment;

3: Assessment of the equilibrium, conservation, and/or balance equations,
related to the above defined state variable, including the action of the outer
environment to the inner system.

4: Modelling the material behavior of the system by means of phenomeno-
logical models, which will be called constitutive or material models;

5: Derivation, using the equations dealt with in Steps 3 and 4, of a mathe-
matical model that consists of a suitable set of equations describing in time
and space the evolution of the state variable.
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Although the above scheme does not covers all conceivable types of mod-
elling procedures, various examples are proposed to the reader to achieve a
general understanding of the above methodology and of its generalization.

Then, once the mathematical model has been designed, the usual pro-
cedure for its analysis can be organized: formulation of mathematical prob-
lems by a proper statement of initial and boundary conditions, qualitative
analysis, solution of mathematical problems, and validation of the model.

As mentioned in Step 3, several methodological approaches can be fol-
lowed toward the derivation of a certain model, while a common feature
of the analysis developed in what follows is that we consider a real system
represented with reference to a certain fixed, generally inertial, frame.

Moreover, models are derived under the assumption that the matter
is continuous. This is certainly an approximation, since intermolecular
distances are always positive quantities. On the other hand, when these
distances are sufficiently small with respect to the characteristic dimensions
of the body, the continuum hypothesis becomes reasonable and can be
regarded as an acceptable simplification. If this hypothesis is no longer
applicable, e.g., for a rarefied gas, then mathematical models have to be
derived at a molecular scale, as we shall see in the next chapter.

Some examples of models and of the related modelling techniques will
be now given in what follows.

Example 3.2.1
Modelling the Vibration of an Elastic String

Let us consider, with reference to Fig. 3.2.1, an elastic string fixed at both
its extrema. The modelling procedure for the dynamics of the system can
be based upon the following assumptions:

e The string is held in A and B by a strong tension directed along the
string. This implies that gravity can be neglected, and that consequently
the string takes at equilibrium a straight configuration, identified by the
unit vector i.

e The string is subjected to small displacements from the equilibrium
configuration.

e The motion of the string is localized on a plane, identified by the unit
vectors i and j and every point of the string moves along j, i.e., perpen-
dicularly to the equilibrium state.

e The state variable is the perpendicular displacement
u=u(t,z) : [0,T]x[0,¢] — R, (3.2.1)

where the independent variables are time ¢ and location z along the
string.
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e A fluid-dynamic drag is exerted on the string by the outer environment.
A phenomenological model of the force acting upon the string element
Az is as follows

n
ou

ou
gul TNy 2.2
at| ot (32.2)

where h and c are suitable constant quantities, and n > 0.

F=-h

e A constant internal tension 7'(x) = Tj can be assumed in the framework
of linear elasticity, related to the initial stretching of the string, while
small deformations do not modify the internal tension.

u(t,x) /\ "
0 \\/ ]

Figure 3.2.1 — Representation of a vibrating string.

Referring then to Fig. 3.2.1, if 8 is the slope of the string, then the
component of the tension along j acting over the element Ax of the string
is

AT = Tysin0(z + Azx) — T sin0(x) . (3.2.3)

Considering that for small deformations one has:

Au ~ Bu  Ou (3.2.4)
VAUZ + A2 Ax " oz o

sin 6 =

then the approximation

ou ou 0*u
AT =Ty | —(x + Azx) — 8—:6(30) = ToAx@(m)

o (3.2.5)

is obtained.
Therefore, the element Ax is subject to the following actions:

2

0“u
.Toa

—ZAQU is the action of the internal tension;
x
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2

° —pﬁAm is the inertial force;
P
e —h Eg; ?;:Agu is the fluid-dynamic drag.

In the material reference frame, these forces set the system in equilib-
rium (Newton’s mechanical model or, more properly, d’Alembert’s prin-
ciple). The application of the equilibrium equation yields the following
continuous dynamic model

" ou
ot

Ou
ot

2 2
0%u c2au_ 2

o2~ " 922

where ¢ = \/Ty/p, and k = \/h/p.

(3.2.6)

m)

Remark 3.2.1. The model is derived under the assumption of small de-
formations of the string. Hence its validity is limited to the case of small
vibrations. If the model is used to describe large deformations, then unre-
liable descriptions would follow.

Remark 3.2.2. The above model is nonlinear. Neglecting the fluid dy-
namic drag leads to the following linear model:

Pu 0%

The model is linear also if p =0

Pu 2@ B k28u

= o (3.2.8)

Example 3.2.2
Linear Temperature Diffusion Model

Consider a linear diffusion model homogeneous in the space. The assump-
tions which generate the model are the following:
e The physical quantity which defines the state of the system is the tem-
perature in the body: v = u(t,z,y,2) : [0,7] x R* — R.
e The mass per unit volume of the medium is assumed to be constant, as
well as the heat capacity of the medium.
e The diffusion of temperature in a certain direction is described by a
phenomenological model which states that the said velocity is directly
proportional to the directional derivative of u in the above direction.
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The evolution model, i.e. the evolution equation for u, can be obtained
equating the net heat flux in a control volume to the increase of heat ca-
pacity:
ou i < 0? 0? 0?

which is linear and where k is the diffusion coefficient.

Example 3.2.3
Equilibrium Temperature Profiles Model
Consider a linear diffusion phenomena homogeneous in the space according
to Example 3.2.2. The temperature profiles can be obtained by Model

3.2.2 simply assuming that the temperature does not change in time. The
following model is obtained:

< 0 9* 9

i?a:2+8342+3,2’2>uz Vou =20, (3.2.10)

which is also known as Laplace equation.

Remark 3.2.3. Nonlinear models are obtained if the diffusion coefficient
depends on the temperature. This applies to both Models 3.2.2 and 3.2.3.

Ezxample 3.2.4
Hydrodynamic Models

Consider a description of the fluid such that the state variable u is simply
defined by density p, and velocity v, regarded as functions of time and space.
The derivation of the model is based on mass and momentum conservation
equations. The velocity v is a three dimensional vector:

v=uvit+v,j+v.k. (3.2.11)

Therefore, the model needs four scalar components related to the variable:

u={p,v;,vy,0.}. (3.2.12)
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Referring to mass conservation, we consider an arbitrary volume 2 in
the space occupied by the fluid and let 3 be the regular surface containing
Q). By definition, the mass contained in 2 is

M = /p(t,x,y,z) drdydz, (3.2.13)
Q

while the mass flow through €2 is given by

G = —/p(t,x,y,z)v(t,x,y, 2)nd), (3.2.14)
Q

where df2 is the elementary surface and n is the unit vector orthogonal to
the surface conventionally directed towards the outer region.

Gauss Theorem allows to transform the surface integral into a volume
integral by replacing the function to be integrated by its divergence

G = —/Vx(pv)(t,:x,y, z)dxdydz, (3.2.15)
Q

where

vngi+gj+ﬁk (3.2.16)

Ox Oy 0z

The time evolution of the mass in the control volume {2 equals the mass
flux given by (3.2.14) through Q. Due to the arbitrary choice of €2, the
conservation equation can be written in differential terms as follows:

% + Vx(pv) =0, (3.2.17)

which, in the one dimensional case, p = p(t, x), writes

op 0
— + — z) =0. 2.1
5t + ax(pfu )=0 (3.2.18)

Mass conservation equation (3.2.17) also writes as follows:

op 0 P o

where p = p(t,z,y,2), and v = v(t,z,y, 2).
Similarly one can deal with conservation of momentum:

Q = Q(taxaya Z)? Q = pVv, (3220)
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for a system subject to an external field which may depend on the density
and velocity of the flow: F = F(t,z,v, 2, p,v), referred to the unit mass at
the time ¢ in the point (z,y, 2).

The integral conservation relation writes

8/pvdxdydz+/vx((pv) -v) drdydz

= /pF(t,‘)dwdydz. (3.2.21)
Q

Again, the application of Gauss theorem yields the differential model

%(pv) + Vi ((pv)-v)=pF(t,z,y,2,p,V), (3.2.22)

which, in the one dimensional case, writes

& (u) - ((pue) ) = p Eult 2, p,v). (3.2.23)

Model (3.2.22) generates three scalar evolution equation which can be
explicitly written as follows:

;

7 (PU2) + P Vv + 0oV (pv) = p Eu(t, 2y, 2,0, V)

0
a (va) + pvvav + vax (pV) = pr(tv x,Y,z,p, V) ’ (3224)

0
ot (pv2) + pvVxv + 0.V (pv) = p F.(t, 2,9, 2,p,V) .

System (3.2.24) coupled with (3.2.18) gives the evolution model. How-
ever additional microscopic modelling is needed to define the term F gen-
erated by the external applied field and by the internal viscous forces. A
simple example of model is given in what follows.

Ezxample 3.2.5
A One-dimensional Hydrodynamic Model
Consider, with reference to Model 3.2.4, the one-dimensional flow of a

fluid in a duct, and let = be the coordinate of the axis of the duct. Moreover,
assume that the variation of density and velocity in the direction orthogonal



106 Lectures Notes on Mathematical Modelling in Applied Sciences

to the axis can be neglected. In this case the expressions of mass and linear
momentum conservation equations simplify as follows:

dp

o7 T 7(pv) = 07

gt axa (3.2.25)
(Y v

a + 22}87 F(p,’U) )

The above equation can generate a self-consistent model if the action F',
namely the force acting on the volume element, can be properly modelled.
One can distinguish two kind of forces: those acting on the entire volume
from outside, e.g. gravity, and those generated by the pressure of the liquid
present in the near volume elements pushing our volume element through
the sections separating them. The former are generally called body forces
and can be written as F, = Afdz, where f is the force per unit volume.
The latter are generally called contact forces and give rise to a net force

F.=A[-P(t,x +dx) + P(t,x)] = fg—P(tjx)Ad:v. (3.2.26)
x
Therefore, momentum balance writes
ov v oP

Equation (3.2.27) needs a phenomenological description of the depen-
dence of the body and contact forces on the state variables p and v. For
instance, if the duct is vertical and only gravity acts on the fluid, one can
show that f = pg. On the other hand, the phenomenological law for the
pressure P involves the identification of a constitutive relation which states
how the fluid responds to deformations (in this case compression). It is
found, for instance, that certain gases, called polytropic gases, satisfy the
following constitutive law: P = «ap?, vy > 1, which yields the following
self-consistent hydrodynamic model

dp

gt Oz 5 (3.2.28)
v OV _ 2P

ot + 2U8 ayp o7 +g
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Remark 3.2.4. In some cases of unsteady flow conditions, it is used a con-
stitutive law which holds true at equilibrium. This is certainly an approxi-
mation of physical reality and the example gives an idea of the difficulty of
mathematical modelling.

Wave phenomena can be described by higher order equations to include
the modelling of solitary waves. This is the case of the celebrated Korteweg-
deVries model.

Example 3.2.6
Korteweg-de Vries - Solitary wave models

Solitary wave phenomena can be described by a model derived in 1895
by Korteweg and de Vries. This model describes the evolution of the long
water waves in a channel of rectangular cross-section and is characterized
by an appropriate balance between nonlinearity and dispersion. The model
arises in several fields of fluid mechanics, such as water waves, internal
gravity waves in stratified fluids, and waves in rotating atmosphere and
can be regarded as one of the relevant paradigms of the nonlinear waves
and soliton solutions.

In details consider the following evolution equation mixing transport
and third order backward diffusion:

ou ou 0u
— +u"— — =0 3.2.29
o T ar Mo (3.2.29)
where u defines the wave depth.
It is useful stressing, in view of development of simulation methods,
reporting some analytic solutions which may be compared with computa-
tional ones. Specifically, the solution for a single soliton is

u(z,t) = [Asech®(kz — wt — x¢)] tm , (3.2.30)
where k and w are free parameters and
2 1 2 4pk?
A= i (m + )§m+ ) - HA
m m

The model has an infinite number of conserved densities that, integrated
over the whole range of the space domain, are independent of time. The
first five invariant quantities are

+o00 +o0o 1 +o0 1
I = / udr Iy = / —uldr I3 = / <u3 + ui) dz ,
—00 —o0 2 —00 2

(3.2.31)
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“+o0
I = / (5u* 4 10uu? + u?,)dx (3.2.32)
—00
and
“+oo
Iy = / (21u° + 105uu2 + 21luu?, + u2,,)dz, (3.2.33)

where the first three conservation equations correspond to mass, momen-
tum, and energy, respectively, of the wave. These equations can be used to
test the application of computational schemes.

3.3 Classification of Models and Equations

Once a mathematical model has been derived, its application can be
developed in view of the qualitative and computational analysis of math-
ematical problems generated by its application to real world analysis. As
we have seen in the examples given in Section 3.2, the governing equations
appears to be relatively more complex than those encountered for discrete
systems. Dealing with the statement of mathematical problems requires,
actually it is even necessary, dealing with a detailed analysis of the quali-
tative properties of the models.

Indeed the statement of the problems and the qualitative behavior of the
solutions depends on the properties of the models which can be classified ac-
cording to their mathematical structure. The application of computational
schemes also needs to be related to the above properties. This topic is dealt
with in this section devoted to the classification of mathematical equations
on the basis of some structural properties of the equations themselves.

As we have seen, a large variety of macroscopic models can be written
in terms of partial differential equations. This section deals with the qual-
itative analysis of a large class of first and second order equations, related
to the models we have seen in Section 3.2. Considering that the variety of
this type of equations is extremely broad, completeness is not claimed.

Bearing all above in mind, consider the following class of second-order
partial differential equation in two dependent variables:

. 0?u ou ou

i,j=1

where x includes time and space variables.



Macroscopic Scale Models and Partial Differential Equations 109

Consider the eigenvalues of the matrix A that appear as coefficients of
the second-order derivatives (A is symmetric and therefore its eigenvalues
are real). Then, the following classification can be proposed:

Vi XN #£A0 3N >0 )
Vé )\ii() <0 } = hyperbolic,

det A =0

(or equivalently 3I\; = 0) } = parabolic,

zz ﬁ’zg } == elliptic .

Analogous classification can be developed for first order models, such
as those we have seen with reference to hydrodynamic models. Specifically,
consider quasi-linear systems of n first-order partial differential equations
in two independent variables:

= ouj ou; _
ZAU(X, u)a—tj + ZBM(X, u)a—xj = filx,u), i=1,...,n, (3.3.2)
j=1

j=1
which can be written also in vector form

Alx,u) e 4 B(x, u)—;l = f(x,u). (3.3.3)

If the dependence on u drops in A;; and B;;, then the system is said

to be almost linear. If it drops also in f;, then the system of partial
differential equations is linear.

Under the assumption that A is nonsingular, the classification is based
on the calculations of the roots of the eigenvalue problem

P,(A\) =det(B—)XA) =0, (3.3.4)
and on the number of independent eigenvectors satisfying
(BT - AT)v=0. (3.3.5)

It reads as follows:

e If P,(\) has n real distinct zeros = hyperbolic;
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e If P,()) has n real zeros at least one of which is

repeated and n independent eigenvectors = hyperbolic;
e If P,(\) has n real zeros at least one of which is
repeated and fewer than n independent = parabolic;
eigenvectors
e If P,(A) has no real zeros = elliptic.

This classification, which does not cover all possibilities due to the as-
sumptions on the Matrices A and B, is however useful to deal with a large
variety of models. For instance, it can be verified that the equation

ou ou
a%—c% = f(t,x;u)> c>0, (3.3.6)
is hyperbolic.
As a particular case of Eq. (3.3.1), consider the following class of equa-
tions:

0%u 0%u 0%u

ou Ou

Applying the above rules yields:

B? - AC >0 = hyperbolic,
B? - AC=0 = parabolic, (3.3.8)
B? - AC <0 = elliptic.

Considering that A, B, and C are functions of ¢ and x, then the type
of equation depends upon the local values of the coefficients. In this case
the model may change of type. For instance, the abstract model

0%u 0%u

o (3.3.9)

:F<t,x;u, Ou 8u> )

ot dx

which is such that A =1 and B = 0. Therefore B> — AC = —C(t, ), then
the equation is elliptic, parabolic, or hyperbolic according to the sign of C'.
In particular, it is elliptic, hyperbolic, or parabolic when, respectively, C' is
positive, negative, or equal to zero.

The above classification can be applied to the following specific exam-
ples:
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Ezxample 3.3.1
Hyperbolic, parabolic, and elliptic

Referring to the models presented in Section 3.2, the following properties
holds true:

e Model 3.2.1 (vibrating string) is hyperbolic.
e Model 3.2.2 (diffusion phenomena) is parabolic.
e Model 3.2.3 Laplace’s equation is elliptic.

FExample 3.3.2
Ferrart and Tricomt: Model

A model, which changes of type, was proposed by Ferrari and Tricomi,
to describe the space evolution of the velocity potential, in the velocity
space, for inviscid flow around the sonic line for transonic flow around thin
airfoils. The model is as follows:

0%u 0%u
- — =0, 3.3.13
502 TV 052 ( )
which is elliptic for y > 0, which corresponds to subsonic flow, parabolic
for y = 0, which corresponds to the sonic line, and hyperbolic for y < 0,
which corresponds to supersonic flow.

[m}

It can be shown that the qualitative behavior of the solutions de-
pends on the above qualitative properties of the model related to the above
classification. Referring to the specialized literature, e.g. [DL], the follow-
ing examples are given:

e Parabolic equations are evolution equations that describe diffusion-
like phenomena. In general, the solution of a parabolic problem is smooth
with respect to both space and time even if the initial data are not con-
tinuous. In other words, parabolic systems have a smoothing action so
that singularities do not develop, nor can be maintained. Moreover, even if
the initial data have compact support, at any ¢ > 0 the initial condition is
felt everywhere. This is usually indicated by saying that parabolic systems
have an infinite speed of propagation.

e Elliptic equations describe systems in the equilibrium or steady state.
They can be seen as equations describing, for instance, the final state
reached by a physical system described by a parabolic equation after the
transient term has died out.
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e Hyperbolic equations are evolution equations that describe wave-like
phenomena. The solution of an hyperbolic initial-value problem cannot be
smoother than the initial data. On the other hand, it can actually develop,
as time goes by, singularities even from smooth initial data, which then
characterize the whole evolution and are propagated along special curves
called characteristics. In particular, if the solution has initially a compact
support, then such a support expands with a finite speed of propagation
of the effect modelled by the hyperbolic equation.

The above qualitative properties will be analyzed with reference to the
examples which follow:

Example 3.3.3

Initial Value Problem for the Linear Transport Model

Consider the linear transport model:

0 0
Lu = <8t + CB:L") > c>0, (3.3.14)

linked to the initial condition: u(t = 0,z) = e=*". Then the solution is
u(t,x) = e_(g”_Ct)Q, which travels unchanged to the right with speed equal

to c.

Example 3.3.4

Initial Value Problem for the Linear Diffusion Model

Consider the linear diffusion model:

0 0?

linked to the initial condition given in Example 3.3.3. Then the solution is

V1+4ht

which shows how the bell shape of the initial condition is preserved, but it
broadens out; the maximum is always at x = 0, but it decreases with time.
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FExample 3.3.5

Initial Value Problem for the Linear Wave Model

Consider the linear wave model:
0? 0?
Lu = < - 02> u, (3.3.16)
T

linked to the same above initial condition in Example 3.3.3 and to an ad-
ditional condition stating that the initial speed is equal to zero

ou

Then, the solution is as follows:

u(t, ) = %[e’(“d)2 e @re’]

which shows that the initial the bell shaped condition is split in two and
both parts travel with speed ¢, one to the left and the other to the right.

[m}

Remark 3.3.1. If the solution to the initial value problem related to the
above models is developed for initial conditions with compact support:
u(t = 0,2) = 0 for x ¢ [a,b], and u(t = 0,x) = w;n(x) > 0 for z € [a,b],
then the support at time t is:

o [a+ ct,b+ ct] for the transport model;

e [a—ct,b—ct]U]a+ ct,b+ ct] for the wave propagation problem;

e IR for the diffusion problem;

Remark 3.3.2. It can be observed that the solution to the transport model
remains constant on the lines x = x¢ + ct. Similarly, the solution to the
wave equation is made up of two terms: the first remains constant on the
lines x = xq+ ct, the second on the lines © = xq— ct. From this observation
it should be clear that these are peculiar curves in the (t,x)-plane which
deserve to be named. They are, in fact, called characteristics and, as we
shall see, are very important both from the physical and the mathematical
point of view.

To understand the concept of characteristic, consider the three-dimen-
sional transport equation

gltb—l—c(t,x)-Vu:f(t,x;u), x€DCR’. (3.3.17)
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This equation is called a transport equation, since the state variable is
sort of transported by the convection current c(¢,x). In fact, if we consider
the curves x(t) defined by

dx
— =c(t,%x),

5 = c(tx)

and evaluate u on them we have that its temporal evolution is given by

d ou dx
&u(t, x(t)) = = +Vu- i

== (3.3.18)

Recalling Eq. (3.3.17), yields

Dot x(t)) = (. x(t)zu(ex(0) ). (3.3.19)

dt
The line
d
@ _ c(t,x),
dt (3.3.20)
x(f) =X,

is the so-called characteristic through (f,%).
The evolution of the solution on it is then given by

d
u(tx(t) = f<t’x(t)v“(t’x(t)>) (3.3.21)

~

u(t’ﬁ) = aa

where 4 is the value of u in (¢,%).

Thus we have reduced the solution of a first-order partial differential
equation to the solution of two coupled first-order ordinary differential
equations.

Example 3.3.6
Characteristic lines

The characteristics of the equation

ou ou
o Flaw+Bt+9)7— =0 (3.3.22)
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can be found by solving the ordinary differential equation

d
d—f =ax + Bt +7, (3.3.23)

the solution of which is

C’eat—w—ét, ifa#0
x(t) = ;‘2 @ (3.3.24)
C+7t+§t2, ifa=0,

where C' is an integration constant. Hence the characteristic through the
point (¢, ) is

w(t) = e t=0 4 a’%ﬂ (2D —1) + g(t}aa(t*f) —1),  (3.3.25)
if « 40, and
a(t) =T+t —1) + g(tz — %), (3.3.26)

if « = 0. Then the state variable remains constant along the characteristics.

[m}

3.4 Mathematical Formulation of Problems

This section deals with the mathematical formulation of problems re-
lated to models stated in terms of partial differential equations. A line
similar to that of Chapter 2 will be followed: after having verified the con-
sistency of a mathematical model, the formulation of mathematical prob-
lems is stated adding to the evolution equation the conditions necessary
to find quantitative solutions. Possibly, before dealing with the search of
solutions, the well position of the mathematical problem should be verified.

The analysis developed in two steps: first we refer to scalar models in
one space dimension and then various generalizations are dealt with. Let
us consider the class of models involving dimensionless scaled independent
and dependent variables:

u=wu(t,z) : [0,1] x[0,1] — [0,1], (3.4.1)



116 Lectures Notes on Mathematical Modelling in Applied Sciences

stated in terms of partial differential equations which can be written, in
normal form, as follows:

ou ou 0%u

Relatively more general cases can be technically developed starting from
the indications given for the above class of models. For instance higher order
problems as well as problems in unbounded domain, and so on.

Remark 3.4.1. Actually the range of the dependent variable cannot be
stated precisely without solving the equation. Therefore, only the physics
can contribute to identify the smallest and largest value of the dependent
variable. Therefore, (3.4.1) can be interpreted by saying that wu is of the
order of unity.

Remark 3.4.2. (Statement of problems) If both time and space deriva-
tives appear in the mathematical model, then both initial and boundary
conditions usually have to be assigned. The relative mathematical prob-
lem is then called an initial-boundary-value problem. If, instead, the
mathematical model is static, i.e., time independent, then initial conditions
are not needed. In this case, the mathematical problem is defined as a
boundary-value problem.

Bearing all above in mind, some mathematical problems, in one space
dimension, will be stated in what follows.

Problem (Dirichlet) 3.4.1. The Dirichlet initial-boundary value prob-
lem for Eq. (3.4.2) is stated with initial condition

u(0,z) = p(x), Vzel0,1], (3.4.3)

and Dirichlet boundary conditions

u(t,0) = a(t), and wu(t,1)=p(t), Vtelo,1], (3.4.4)

where ¢ is a given function of space, while o and 3 are given continuous
functions of time.

Problem (Neumann) 3.4.2. The Neumann initial-boundary value pro-
blem for Eq. (3.4.2) is stated with initial condition (3.4.3) and Neumann
boundary conditions

gz(t,O)zv(t) and gZ(t,l)zé(t), Vte[o,1],  (3.4.5)
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where «v and § are given continuous functions of time.

Problem (Mixed) 3.4.3. The mized initial-boundary value problem for
Eq. (3.4.2) is stated with initial condition (3.4.3), to Dirichlet boundary
conditions on one side, and Neumann boundary conditions on the other
one:

ou

ut,0)=a(t)  and  —-(t1)=6(t), Vte[0,1],  (3.46)
g;t(tvo):v(t) and  w(t,1)=p6(t), Vte[0,1].  (3.4.7)

Problem (Robin) 3.4.4. The Robin initial-boundary value problem for
Eq. (3.4.2) is stated with initial condition (3.4.3), to the boundary condi-
tions defined as a linear combination of Dirichlet and Neumann boundary
conditions, say

c(t)a(t) +ca(t)y(t) = ua(t) and c3(t)B(t) + ca(t)o(t) = up(t), (3.4.8)

where ¢1 2,34 and ug,, are given functions of time Vt € [0,1].
In general one may have problems with nonlinear boundary conditions:

Problem (Nonlinear boundary value) 3.4.5. The initial-boundary
value problem for Eq. (3.4.2) with nonlinear boundary conditions is stated
with initial condition (3.4.3), to the boundary conditions defined as a non-
linear combination of Dirichlet and Neumann boundary conditions, say

g1(a(t), (1)) =ba(t)  and  g2(B(t),6(t)) = bu(t), (3.4.9)

vVt € [0,1], where b, are given functions of time, and ¢, are suitable
functions of their arguments.

Remark 3.4.3. (Sufficient initial and boundary conditions) The
above statement of problems has been obtained linking to the evolution
equations a number of information on the behavior of the state variable on
the boundary of the independent variable equal to the highest order of the
partial derivative with respect to the said variable.

Remark 3.4.4. (Problems in unbounded domains) Some problems
refer to systems in a half-space x € [0,00), or in the whole space x € R. In
this case boundary conditions have to be stated as above, at the boundaries
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x=0and x — oo, or for t — —oo and x — oo. Asymptotic behavior can
be stated letting the time variable to infinity.

Example 3.4.1

Mathematical Problems for the Linear Wave Model

Consider the linear wave model

92, 8

which can be written as a system of two first order equations:

gz . (3.4.11)
ot 0x%

Then, according to Remark 3.4.3, the first equation needs only an initial
condition for the variable u, while the second one an initial condition for
the variable v and two boundary conditions for the variable w.

Bearing in mind the above definition of statement of problems, the
following general definition can be given:

I Well-formulated problems

If the model is implemented with enough initial and boundary
conditions to find a solution, then the relative mathematical
problem is said to be well-formulated.

Well-posedness is not an immediate consequence of the statement of
problems. It has to be proven by a specific qualitative analysis. The above
analysis needs a deep knowledge of the theory of partial differential equa-
tions, which is not object of the aims of these Lecture Notes mainly ad-
dressed to modelling aspects.

The interested reader is addressed to the specialized literature, e.g [LM]
and [DL], to recover the above knowledge. On the other hand, a few exam-
ples are given in this section simply with the aim of show how the above
reasonings can be properly developed. Before dealing with this topic we
will show how the statement of problems can be generalized to model in
several space variables.
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Consider first scalar models involving the whole set of space variables,
say x = {1, z2,z3}. Specifically, consider the case of models which can be
written as follows:

ou ou 0%*u 0%*u 0%u
— = b X, i s, ey ey h s 3.4.12
ot / ( % Ozry’ "7 023 0237 OOz’ ) ’ ( )
where u is the dependent variable
u=u(t,x): [0,1]xD—>TR, (3.4.13)

where the boundary of the domain of D C R?® of the space variables is
denoted by 0D. The statement of some related mathematical problems is
as follows:

Problem (Dirichlet) 3.4.6. The initial-boundary value problem for the
scalar Eq. (3.4.12) with Dirichlet boundary conditions, is stated with initial
condition

u(0,x) = p(x), VxeD, (3.4.14)

and boundary conditions

Vte[0,1], Vxe€dD: u=a*(t;xe€dD), (3.4.15)

given as functions consistent, for t = 0, with the initial condition (3.4.14).

Problem (Neumann) 3.4.7. The initial-boundary value problem for the
scalar Eq. (3.4.12) with Dirichlet boundary conditions, is stated with initial
condition (3.4.14) and Neumann boundary conditions

Vtel0,1), ¥xeaD : gﬁzy*(t;xeaD), (3.4.16)

given as functions of time and where n denotes the normal to 0D directed
inside D.

Remark 3.4.5. If the model is defined by a system of equations, then
initial and boundary conditions have to be assigned for each equation ac-
cording to the rules stated above. For problems in unbounded domain
the same reasoning developed for problems in one space dimension can be
technically generalized to problems in more than one space domain.
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Example 3.4.2

Mathematical problems for the heat diffusion model

Consider the heat conduction problem

?;; = kV2u + f(t,x;u), xeD (3.4.17)

which is well formulated if joined, for instance, to the initial condition

u(t =0,%) = uin(x), x €D (3.4.18)
and to the boundary conditions

u(t,x) =up(t,x) , if xedDp,

(3.4.19)
n(t,x) - Vu(t,x) = un(t,x) , it xe€ 0Dy,
where 0Dp and 0Dy are a partition of the boundary 9D and n is the
normal to 0Dy.

It is worth stressing again that the above statements of problems do not
imply good position. This matter is dealt in the pertinent literature, e.g.
[LM] and [DL], with reference to well defined mathematical problems. The
above problems have been stated for bounded time intervals. If time is let
to go to infinity, the statement is valid globally in time. In this case it is
useful looking for the trend of the solutions asymptotically in time.

3.5 An Introduction to Analytic Methods for Linear Pro-
blems

The preceding sections have shown various examples of linear and non-
linear models. Similarly to the case of models stated in terms of ordinary
differential equations, linearity has to be considered a very special case con-
sidering that all systems of real world are, at least in principle, nonlinear.
In case, however special, of linear models and problems one can attempt to
deal with analytic solutions. A brief account of mathematical methods to
obtain analytic solutions is given in this section.

Consider first the relatively simple case of scalar linear models in one
space dimension. Moreover, suppose that the solution u = u(t, z) of some
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initial-boundary value problem is known, then the starting point of the
search for analytic solutions is the representation of the solution in a Hilbert
space. Specifically, consider a representation of a function u = u(t, z) given
by an expansion of the type

u(t,z) = ci(t)i(), (3.5.1)

1=0

where the functions v; belong to a complete space of orthonormal functions
defined in a suitable Hilbert space with weighted (the weight function is
denoted by w = w(x)) inner product

(. 9)ul®) = [ Fit.2)glt,ayu(o) de. (35.2)
Consequently, the coefficients ¢; are given by

ci(t) = (u, ¥idw (3.5.3)

where the calculation of the integrals may need numerical computation. In
this case, one may discretize the space variable and compute the integrals
by weighted sums.

For practical applications u is approximated by u™ corresponding to
the collocation I, then a truncated expansion is used

n
u(t,x) = u(t,x) =Y e(t)i(z), (3.5.4)
i=0
where the coefficients ¢; have to be computed as indicated above.

Various examples of orthonormal functions can be given in addition to
the classical Fourier expansion by sinus and cosinus defined over the interval
[0, 27r] with weight w = 1. Some examples are given in what follows:

Example 3.5.1
Tchebyschev Polynomes

Tchebyschev polynomials are characterized by the following features:
e Range: [—1,1].

e Polynomials:

T() = 1, T1 =, Tm = 2$Tm,1 - Tm,Q . (355)
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o Weight:
2/7 , 1

i=j#0: 127

(3.5.6)

Example 3.5.2
Legendre Polynomials

Legendre polynomials are characterized by the following features:
e Range: [—1,1].

e Polynomials:

om — 1 1
Lo=1, Li=z, Lp=""""aLm1— 2 "L o. (357
m m
o Weight:
Z:]#O:Qmﬁ—l' (3.5.8)

Example 3.5.3
Laguerre Polynomzials

Laguerre polynomials are characterized by the following features:
e Range: [0,00).

e Polynomials:

Lé=1, Li=a+l-2, a>-1, (3.5.9)
and
= Lom-t1ta-ort  — Lmot14are .. (35.10)
m m
o Weight:
i—j A0 ™ jags (3.5.11)

F(a+m+1)$
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Example 3.5.4
Hermite Polynomials

Hermite polynomials are characterized by the following features:
e Range: (—00,00).

e Polynomials:
Hy=1, Hi=z, H,=x2H, 1—(m—1)H, . (3.5.12)

o Weight:

|
i=j#0: \%re*w/?. (3.5.13)

The solution of mathematical problems consists in solving suitable evo-
lution equations for the coefficients ¢; which are obtained replacing the
expression (3.5.4) into the partial differential equation and in implement-
ing, still into the same expression, initial and boundary conditions. In the
case of relatively simpler problems (e.g. linear differential equations with
constant coefficients) the solution can be recovered analytically, while in
the general cases computational methods have to be used. Generally, the
method leads to systems of ordinary differential equations of the type we
have seen in Chapter 2.

Consider, in order to understand the application of the method, the
following class of linear equations:

2
éu:a()gu—l-b 0

St b(t) 55 (3.5.14)

and initial value problems without constraint at the boundaries.
Replacing the expression (3.5.4) in the evolution equation Eq. (3.5.14),
yields a system of linear ordinary differential equations. In fact:

8,2@ s (0) = alt) 5 D e (00

Z (3.5.15)
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By taking the inner product, an evolution equation for the coefficients
can be obtained as follows:

Cizcti = alt) io ¢;(O)hyi(t) + b(t) Zn(:) cj(t)kjilt) (3.5.16)
i= i
where
hji = <d;ij, ¢> (3.5.17)
and
kji = <C§;éj , ¢i>- (3.5.18)

The above linear equation can be treated with methods of linear ordi-
nary differential equations. Initial c;y conditions have to be implemented
for t = 0. Then using the same approximation, one has:

u(0,2) = uo(z) = ug (x) =Y _ (1) (x) . (3.5.19)
3=0

A similar reasoning can be applied to boundary conditions. Consider
specifically the case of Dirichlet boundary conditions. Then one has:

u(t,0) = aft) = u"(t,0) = ch (t)y;(z = 0), (3.5.20)
and
w(t,1) = B(t) = u™t,1) =Y ¢;(t);j(x=1). (3.5.21)
j=0

The solution of the above algebraic system allows computing the first
and last coefficient in terms of the others, thus reducing the dimension of
System (3.5.16). Convergence for n — oo is related to the application of
classical convergence theorems for orthogonal functions in Hilbert spaces.
Dealing with systems of equations simply means applying the above proce-
dure to all equations.

In principle, the same method can be implemented for equations in
several space dimension. Formally the procedure is the same, however the
method generates technical computational complexity related to the large
dimension of the system.
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3.6 Discretization of Nonlinear Mathematical Models

Continuum models may be viewed as systems with infinite number of
degrees of freedom. The analysis proposed in Section 3.5 has shown how one
may look for analytic solutions in terms of an infinite expansion of functions
in a suitable Hilbert space. This method can be unlikely applied to the
solution of nonlinear problems and models, although, at least in principles,
one may attempt to apply the same procedure. On the other hand, the
technical application of the method immediately shows that the system of
ordinary differential equations becomes nonlinear, and the computational
complexity is to heavy to be technically tackled.

Then methods of computational mathematics need to be developed to
approximate the continuous system, say:

Lu=Nu,

by a system with finite number of degrees of freedom:
Lu” = Nu",

where n is such a number. In other words, the problem consists in ap-
proximating the continuous model (or problem) by a discrete model (or
problem). Then the solution of the finite model can be obtained by meth-
ods reviewed in Chapter 2, while a technical analysis can possibly provide
informations on the distance between the solution of the continuous model
and the finite one.

Although these Lecture Notes deal with modelling rather than with
computational methods, this section will however show how the above ap-
proximation can be developed for some simple cases. As we shall see, the
analysis is rather simple in the case of problems in one space dimension
only, while computational complexity problems arise when models, and re-
lated mathematical problems are in more than one space dimensions. So
far this sections should be regarded as a brief introduction to the above
problems to be properly dealt with referring to the specialized literature.

Discrete models can be obtained by continuous ones by decomposing
the domain D of the space variable into a certain number of finite volumes
Dii

D=U"\D;, i=1,...,n, (3.6.1)

1

and by taking averaged value of the state variable within each volume.
It follows that in each finite volume the dependent variable is u; = u;(t),
and that the mathematical model is a finite one consisting in a set of n
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equations providing the evolution of the u;. The model is obtained by the
same conservation and/or equilibrium equations of the continuous model.
The variables u; can be localized in the center of mass of each volume, while
each finite element is assumed to be subject to the action of the continuous
ones as well as from the boundaries for those elements which are localized
on the boundary containing the system which is modelled.

The above procedure generates a finite model and mathematical prob-
lems stated in terms of a system of ordinary differential equations. The
discretization method can be easily applied in the case of one space dimen-
sion. The examples which follow refer to the discretization of a model of an
elastic string subject to Dirichlet boundary conditions, and to a model of
diffusion phenomena with Neumann boundary conditions. Namely we refer
to models already presented in Examples 3.2.1 and 3.2.2. Generalizations
- and difficulties - to problems in more than one space dimension will be
subsequently described.

Example 3.6.1
Discrete Models for a Vibrating String

Consider a discrete model corresponding to the vibrating string model de-
scribed in Example 3.2.1 where, in this case, gravitation is not neglected
and the vibration plane is supposed to be vertical.

Following the above listed modelling procedure, the space variable is
discretized by the collocation

i=0,...,n+1: IL={x0=0,...,24...,Zp41 = 1}. (3.6.2)

The extrema are fixed; hence two degrees of freedom, corresponding to
the movement of the points on the boundary, are suppressed. A mass
m = M/(n + 2) is placed in each collocation point. It is constrained to
move along the vertical direction and is connected to the contiguous masses
by linear springs with elastic constant k, as shown in Figure 3.6.1

The procedure provides a mechanical model with n degrees of freedom
identified by the Lagrangian variable

q:(Q177q177QH)7 QzZQz(t)7 (363)

where ¢; is the vertical displacement of the mass located in z;. The math-
ematical model corresponding to the above mechanical model can be ob-
tained by the following methods of classical mechanics. In detail, the kinetic
energy is

1 — .o
E.= 2m;qi , (3.6.4)
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Figure 3.6.1 — Discrete model of a vibrating string.

while the potential is

n

S k
U= mgai—5 Y [(@is1 =) + (@i —2)] (3.6.5)
i=1 i=0

with g9 = ¢n+1 = 0. The evolution model is as follows:

. k
4% =9+ m (gi+1 —2¢i +qi—1) - (3.6.6)

It is worth remarking on a few connections between the above finite
model and the original continuous model:

i) The derivation of the discrete model required the preliminary construc-
tion of a mechanical model approximating the continuous phe-
nomenological model. Subsequently, modelling methods for models at
the microscopic scale are applied to obtain the finite mathematical
model.

ii) The system of ordinary differential equations is linear as it was the orig-
inal continuous model. On the other hand, nonlinear models are needed
for large deviations when the elastic term cannot be anymore assumed
to be constant. The material behavior can be simulated assuming that
c depends on the lengths of the stretched elements.

iii) Increasing the number of finite elements may increase accuracy. How-
ever, it also increases the dimension of the system of differential equa-
tions.
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iv) The model with finite degrees of freedom satisfies the same linearity (or
nonlinearity) properties of the continuous model.

v) The model has been derived assuming that each element moves in a
vertical plane. On the other hand, the same procedure can be technically
applied to the case of elements moving in the plane. This is a simple
technical problem, while the continuous model implies severe technical
difficulties.

The above model was derived following a finite element scheme. One

can technically generalize them also to finite models derived in finite volume
schemes as in the example which follow:

FExample 3.6.2
Discrete Models for Diffusion Phenomena

Consider the discrete model corresponding to the one-dimensional case of
the heat diffusion model dealt with in Example 3.2.2. Obtained discretizing
the space variable by the collocation (3.6.2).

A finite element corresponds to each point. Moreover, the heat flux at
the extrema are prescribed, say ¢ = ¢1(t) and g, = g, ().

A mechanical model is obtained, which has n degrees of freedom and
identified by the variable

U= (Ul ey UjyenyUy), u; = u;(t), (3.6.7)

where u; is the local temperature in the finite volume localized in x;. The
mathematical model is obtained applying to each finite volume the balance
equation:
ou 0u
ot~ Pox?’
where the flux is modelled by applying Fourier’s phenomenological model:

(3.6.8)

ou
a=—hog (3.6.9)

The evolution model for an inner element is as follows:

dui ]{70
at = E[(uiﬂ —2u; + ui_l)] , (3610)

where space derivatives have been replaced by finite differences, and where
H is the size of the volume. This crude approximation can be properly re-
fined. The flux for the boundary elements is directly given by the boundary
conditions.
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In the nonlinear case the constant ky has to be replaced by a function
of the local variable w.

m]

The above method is based on the idea of decomposing the continuous
system into finite elements. Then the evolution equation for each element
is derived using the same method used to derive the continuous model. A
system of coupled equations is obtained where the coupling is related to the
interactions between elements, in other words, ¢ — 1 and 7 4+ 1-elements act
on the i-element. Boundary conditions act on the first and last element.

The application of the method is quite immediate in one space dimen-
sion, on the other hand, various technical complexities occur in more than
one space dimension, although the guiding lines for the application of the
method is precisely the same. The evolution in each sub-domain D; is
derived by local application of the above mentioned equilibrium and/or
conservation equations, while the actions of the elements on the boundaries
of D; acts as boundary conditions.

An analogous result can be obtained by analytic interpolation methods
of the variable v = u(t,z) for z € [0,1]. In this case we shall talk about
discretization methods by collocation-interpolation. The description of
the method refers both to interpolation of functions and to calculations of
local derivatives. Moreover, let us define the collocation

i=1,...,n: IL,={z1=0,...,24...,2, =1}, (3.6.11)

which may be equally spaced

.%‘Z:(Z—l)k, k=

(3.6.12)

or Tchebyschev type collocation with decreasing values of the measure |z; —
x| towards the borders.

In general, u = u(t, x) can be interpolated and approximated by means
of by Lagrange polynomials as follows

n

u(t,r) = u(tx) =Y Li(z)u(t), (3.6.13)

=1

where u;(t) = wu(t,z;) and where Lagrange polinomials are given by the
following expressions

(x—21). .. (z—mi—1) (@ —x491) ... (T — p)

Litz) = (@i —x1) . (2 — wim1) (@i — @ig1) - (i — @)

(3.6.14)
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The above defined interpolations can be used to approximate the partial
derivatives of the variable u in the nodal points of the discretization

8T r T d" Lh
(t; ;) Za( ) agn) == (), (3.6.15)

forr=1,2,....

The value of the coefficients depends on the number of collocation points
and on the type of collocation. Technical calculations provide, in the case
of Lagrange polynomials, the following result

O b (C2) =3 (3.6.16)

i = (rn — xz) H(wh) ’ " ! T; — T

where
) =]]@i—x),  [J@n) =@ -2 (3.6.17)
pFi p#h

Higher order coefficients may be computed exploiting the following re-
currence formula

ay;t =r (am o i ) coa ==Yt (36.8)
Th = Zi hti
The same method can be used for time dependent functions in two
space variables: u = u(t,z,y) : [0,1] x [0,1] x [0,¢] — [—1, 1], such that
u(t; x,y) is a one to one map from [0, 1]x[0, ¢] into [—1, 1], for every ¢ € [0, 1].
Consider, in addition to the collocation I, the following

j=1....m: L,={y1=0,...,95,...,ym = 1}. (3.6.19)

It follows that

u=u(t,x,y) Zu""(t,z,y) ZZL (y)uij(t). (3.6.20)

=1 j=1

The approximation of the space derivatives in the collocation points is
obtained by calculations analogous to the ones of the one-dimensional case:

87‘
I —(t24,95) Z:ahZ up;(t (3.6.21)
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and

ou u
gy B v) Z (3.6.22)
k=

while mixed type derivatives are given by

0*u -
910y e GEZN)) Zzahzakguhk (3.6.23)
h=1k=1

where the coefficients a are given by the expressions reported above and de-
pend, as we have seen, on the type of interpolation and number collocation
points.

Both in one and two space dimension the interpolation is, by definition,
exactly satisfied in the nodal points

wi(t) = u"(t, x;), wi;(t) = u""(t, x5, y5) (3.6.24)

while partial derivatives are only approximated.

When problems in two space dimensions are not defined on non rect-
angular domains, then the interpolation method needs to be technically
modified. When the domain is convex with respect to both axes and regu-
lar, then the following interpolation can be used

3
3

w=u(t,zy) = ™ () = Li@)L(uy (1), (3.6.25)

i=1 1

<.
Il

where the number of collocation points along the y-axis depends on the
collocation on the z-axis.

The above collocation interpolation methods can be applied to obtain
finite models approximating the continuous ones, and to solve the related
initial-boundary value problems by approximating them by suitable ini-
tial value problems for ordinary differential equations. This method is ex-
plained, at a practical level, in the examples which follow:

Example 3.6.3
From Continuous to Finite Diffusion Models

Consider continuous model for diffusion phenomena corresponding to the
following class of second order partial differential equations

ou 0%u ou\?
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where p and € are assumed to be given functions of the space variable.
The discretization of the model goes through the following steps:

1. The space variables are discretized into a suitable collocation I,;

2. The dependent variable v = u(t,z) is interpolated and approximated
by the values u;(t) = u(t, z;) as indicated in Eq. (3.6.13), and the space
dependence is approximated using the same interpolation;

3. The finite model is obtained replacing the above interpolations into
the continuous models and using the properties of the interpolating
polynomials.

The result of above calculations yield a system of ordinary differential
equations which defines the time evolution of the values of the variable u in
the nodal points, that is the finite model. The above system can be written
as follows:

2
du; ~ e
o= w(z;) Za uj +e(z )<j1 PRIV I (3.6.27)

Remark 3.6.1. The above finite model can be used to solve the Dirichlet
initial-boundary value problem simply by substituting the first and last
equation by uy = u(t,0) and u, = u(t,1). The differential system can
then be solved by means of standard techniques for ordinary differential
equations we have seen in Chapter 2.

Remark 3.6.2. The solution of Neumann problem can be developed anal-
ogously. The difference consists in dealing with the first and last equation.
Imposing Neumann boundary conditions yields:

0
8u( —an uy + E a(l)uy (1)
(3.6.28)
du (1) (1)
6:):( _am u1 + E a; ) + a,,

Then solving the above linear algebraic system with respect to u; and us
and substituting these terms into the first and last equation of the finite
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model yields the system of ordinary differential equations approximating
the mathematical problem.

Remark 3.6.3. Mixed type problems with Dirichlet boundary conditions
on one side and Neumann boundary conditions on the other side can be
dealt with following the same method we have seen above, using for the
first or last equations one of the expression given by Egs. (3.6.28) related
to Neumann boundary conditions, while Dirichlet’s condition is inserted by
direct substitution.

3.7 Critical Analysis

As we have seen, mathematical models derived at the macroscopic scale
are generally stated in terms of partial differential equations. Moreover,
models should be written in a suitable dimensionless form so that the in-
dependent variables are scaled in the interval [0,1], while the dependent
variable is also scaled to be of the order of unity.

Discretization schemes toward computational solutions exploit directly
the above formalization which refers both to the models and to the math-
ematical problems. Often, such a formalization is almost necessary to deal
with the qualitative and quantitative analysis of models and problems.
Therefore, the class of models, dealt with in this chapter, need a struc-
ture different from that one of discrete models which have been derived in
terms of ordinary differential equations.

Looking at modelling aspects, one may observe that the various exam-
ples we have seen above have to be regarded as an approximation of physical
reality. In fact, the reader can, for instance, recognize the following:

e All systems seen in this chapter are discrete: continuity assumptions are
always an approximation of physical reality;

e Random features often occur either in the mathematical model or in the
statement of the problem;

e Systems may be constituted by different interconnected systems. In this
case one needs different models for each sub-system and the overall system
should be viewed as a system of systems. Therefore the mathematical
statement of problems requires the statement of compatibility conditions
between contiguous systems that may involve both initial and boundary
conditions.

e Mathematical models are generally derived by equilibrium and/or conser-
vation equations properly closed using phenomenological models describing
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the material behaviour of the system. Generally, these models are valid
at equilibrium, while are used to describe dynamical behaviour far from
equilibrium. Any attempt to improve modeling generates various types of
nonlinearities.

Looking at computational aspects, the contents have been devoted sim-
ply to the approximation of continuous models by a suitable set of inter-
connected discrete models. The discretization has been obtained in two
different ways:

i) Discretization of the volume occupied by the system into several con-
tiguous volumes. Subsequently a finite model is derived in each volume
supposing that the material is uniform in each volume. The model is ob-
tained using the same equilibrium and/or conservation equations used
for the derivation of the continuous model.

ii) Identification of a certain number of collocation points in the physical
volume occupied by the system followed by a Lagrange type interpola-
tion of the dependent variable corresponding to the collocation points.
Subsequently partial derivatives, with respect to the space variable, are
approximated by finite sums of the values of the dependent variables in
the collocation points. Finally a system of ordinary differential equa-
tions, corresponding to a system of finite models, approximates the con-
tinuous model.

It may be argue that the first method discretizes the continuous model,
with an infinite number of degrees of freedom, by a model with a finite
number of degrees of freedom. On the other hand, the second method
obtains an analogous result acting directly on the mathematical problem
generated by the application of the model.

The above approach has been developed in the relatively simpler case
of models and problems in one space dimension. Generalizations to more
than one space dimension involve technical difficulties that are not dealt
with in these Lecture Notes. A deeper insight into the application of collo-
cation methods can be obtained by the book [BLRR], while finite elements
methods for engineering applications are accurately dealt with in the book
[KB].

The reader is addressed to the pertinent literature [BP] for alternative
computational methods, f.i. finite differences and spectral methods, and
related convergence methods.
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Mathematical Modelling
by Methods of Kinetic Theory

4.1 Introduction

Systems of real world are constituted by a large number of interacting
elements. An example, which we have already examinated in the preceding
chapters, is a fluid of several interacting particles. In principle, one may
model this system by microscopic type models related to the dynamics of
each element in interaction with the others. However, Chapter 2 has shown
that modelling systems with a large number of interacting elements gene-
rates complexity problems, due to an excessively large number of equations,
which cannot be properly dealt with. This approach leads to a large num-
ber of equations with a computational time which exponentially increases
with the number of equations, so that it may become too computationally
complex or even impossible to deal with.

The macroscopic description, we have seen in Chapter 3, reduces the
above complexity by dealing with quantities which are averaged, at each
time, locally in space. The application of this modelling approach is pos-
sible when the number of elements is very large in a way that, given a
small volume (in terms to be mathematically specified), it still contains a
sufficiently large number of elements.

Intuitively one can realize that this approach cannot always be applied.
For instance, this is the case of a diluted fluid, when the mean distance
between particles is large with respect to their dimension and may even
become of the same order of the container of the fluid. Therefore different
methods need to be developed.

Methods of kinetic theory represent an alternative to the approach typi-
cal of continuum mechanics. Kinetic theory looks for evolution equations

135
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for the statistical distribution over the variable which describes the micro-
scopic state of each element. Gross quantities (which are those delivered
by macroscopic models) are obtained by suitable moments of the above
statistical distribution.

This chapter gives an account to some classical models of the kinetic
theory with special attention to the Boltzmann and Vlasov equations, which
model the evolution of large systems of classical particles. Moreover, an
introduction is given to models where the microscopic state of the interac-
ting entities is given by a variable related to a state different from those of
classical mechanics. Therefore models refers to active particles.

After the above introduction a description of the contents of this chapter

is given:
— Section 4.2 shows how the modelling of large systems of classical parti-
cles undergoing by short range interactions (collisions) can be described by
the Boltzmann equation, the celebrated mathematical model of the (non-
equilibrium) kinetic theory of diluted gases.

— Section 4.3 deals with the same type of modelling for particles interacting
by long range forces. A mean field description leads to Vlasov type models.

— Section 4.4 deals with the mathematical statement of problems related to
the application of the above models to real flow description: typically the
initial and the initial-boundary value problem.

The second part consists in Sections 4.5-4.7:

— Section 4.5 deals with the representation systems of active particles, that
are particles such that their microscopic state is not simply identified by
geometrical and mechanical variables, but by an additional state related
to their somehow organized behavior. This section shows how the overall
state of the system can be described by a suitable generalized distribution
function.

— Section 4.6 deals with the derivation of a large class of evolution equations
derived, as for the classical models, starting from short and long range
interaction models.

— Section 4.7 deals with some discretization schemes of the class of models
reviewed in the preceding sections.

— Section 4.8 proposes, in the same style of the preceding chapters, a critical
analysis focussed on complexity and scaling problems

This chapter has to be regarded as a concise introduction to models
of the mathematical kinetic theory. The reader interested to additional
information is addressed to the book [CIP] for an introduction to founda-
tions of kinetic theory and applications, while analytic aspects, such as the
well posedness of mathematical problems and asymptotic theory to obtain
the macroscopic description from the microscopic one, are reported in the
books [Ba] and [Gl].
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4.2 The Boltzmann Equation

A physical fluid is an assembly of disordered interacting particles free to
move in all directions, inside a space domain Q C IR? possibly equal to the
whole space R®. Assuming that the position of each particle is correctly
identified by the coordinates of its center of mass

xpz, k=1,...,N, (4.2.1)

the system may be reduced to a set of point masses in a fixed frame of refer-
ence. This is the case, for instance, if the shape of the particles is spherically
symmetric, and hence rotational degrees of freedom can be ignored.

When the domain €2 is bounded, the particles interact with its walls
Q. If Q contains obstacles, say subdomains 2* C €2 which restrict the free
motion, then the particles interact also with the walls of Q*. In some in-
stance, e.g. for flows around space ships, the obstacles are objects scattered
throughout the surrounding space.

It is generally believed in physics, and in statistical mechanics in partic-
ular, that understanding the properties of a fluid follows from the detailed
knowledge of the state of each of its atoms or molecules. In most fluids of
practical interest, such states evolve according to the laws of classical me-
chanics which, for a system of N particles give the following set of ordinary
differential equations

ka

Tk
dt k

d N (4.2.2)
Vi

Mk =F, =f; + Z fr
k=1
with initial conditions
Xk(O) = Xk0 Vk(O) = VLo, k= 1, ceey N, (423)

where Fy, is the force referred to the mass my acting on each particle. Fy
may be expressed as the superposition of an external field f; and of the
force i/, acting on the k-particle due to the action of all other particles.
In general these forces are regular functions in the phase space, and fi/g
may be allowed to exhibit pole-discontinuities when the distance between
particles is zero.

This approach prescribes that Eqs.(4.2.2) can be solved, and that the
macroscopic properties of the fluid can be obtained as averages involving
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the microscopic information contained in such solution. However, it is very
hard, if even possible, to implement such a program, unless suitable simpli-
fications are introduced. Indeed, unavoidable inaccuracies in our knowledge
of the initial conditions, the large value of N (about 10?" for a gas in normal
conditions), and the mathematical complexity, result in the impossibility
of retrieving and manipulating all the microscopic information provided by
(4.2.2-4.2.3) and contained in {xx, vy} for £ = 1,...,N. It is true that
what is of interest is to extract from (4.2.2-4.2.3) the information sufficient
to compute the time and space evolution of a restricted number of macro-
scopic observable such as the number density, mass velocity, temperature,
and stress tensor. However, computing the macroscopic observable quan-
tities using the solutions to Eq. (4.2.2) is an almost impossible task. This
is not only because of the initial difficulty in dealing with a large system
of ordinary differential equations, but also because afterwards one has to
compute the averages which correctly define the macroscopic quantities.
For instance, the mean mass density E(p) should be obtained, for a system
of identical particles, by examining the ratio

E(p) =m

et (4.2.4)

when the volume Ax tends to zero and the number of particles remains
sufficiently large. Fluctuations cannot be avoided. Additional difficulties
are related to the computation of the other macroscopic variables. Thus,
constitutive relations are needed.

As we have seen, a different possible approach is that of fluid dynamics,
see [TR]. It consists in deriving the evolution equations, related to the
above macroscopic observable quantities, under several strong assumptions,
including the hypothesis of continuity of matter (continuum assumption).
This constitutes a good approximation of a real system only if the mean
distance between pairs of particles is small with respect to the characteristic
lengths of the system, e.g. the typical length of 2 or of Q*. Conversely,
if the intermolecular distances are of the same order of such lengths, the
continuum assumption is no longer valid, and a discrepancy is expected
between the description of continuum fluid dynamics and that furnished by
Egs. (4.2.2).

Therefore, considering that it is neither possible to deal with the equa-
tions of continuum fluid dynamics, nor with particle dynamics (4.2.3), a
different model is needed. An alternative to the above descriptions is pro-
vided by the Boltzmann equation, the fundamental mathematical model of
kinetic theory, which describes the evolution of a dilute monoatomic gas of
a large number of identical particles undergoing elastic binary collisions.

Following [ABDL], we limit to recall the main features of the model,
and we refer to the classical literature, e.g., [CIP], for its derivation and its
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fundamental properties.

Let us consider a dilute monoatomic gas of particles modeled as mass
points identified by unit mass, position x and velocity v. The Boltzmann
equation refers to the time evolution of the one-particle distribution func-
tion

f:f(tvxav)v f:R—FXQXIR'B_)R—Fa
with the meaning that

/B /A F(t,x,v) dx dv (4.2.5)

gives the number of particles in a measurable set A x B C Q x R®, at time
t>0.

If f is known and integrable in the velocity space, the macroscopic
observable quantities can be computed as expectation values of the corre-
sponding microscopic functions. In particular,

o(t,x) = /]RS flt,x,v)dv, (4.2.6)

and
1

ult,x) = o(t,x)

/3vf(t,x,v) dv, (4.2.7)

are, respectively, the mass density and the macroscopic velocity.
The internal energy is given by

1
20(t,x)

e(t,x) = / v —u(tx) 12f(t,x,v)dv. (4.2.8)

In equilibrium conditions, the energy can be related (according to Boltz-
mann’s principle) to the temperature by the relation

e(t, x) = gT(t,x) ,

where T'(t,x) is the temperature and, for simplicity of notation, we are
assuming that the Boltzmann constant £ = 1. This relation has to be
handled carefully in nonequilibrium conditions, where the above principle
cannot be straightforwardly applied.

The time dependence in the Boltzmann equation allows that, as time
goes, the number of particles inside an infinitesimal volume dx dv centered
at the point (x,v) of the phase space may change if the system is away
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from equilibrium. Obviously, such a change is computed by balancing the
incoming and outgoing particles in dx dv.

The idea behind this balance of losses and gains in dx dv is that particles
are lost or gained in dx by free streaming, while they leave or enter dv as
the result of collisions with other particles.

This leads to the basic assumptions behind the phenomenological deriva-
tion of the Boltzmann equation, that in the case of absence of an external
force field are:

e (as particles move freely in the space. The collisions have instant in
time and local in space character. During the collisions the conserva-
tion of momentum and energy holds according to the laws of classical
mechanics.

e Collisions involving more than two particles are negligible.

e Collisions between pairs of particles are uncorrelated (molecular chaos
hypothesis).

It should be remarked that, according to the first hypothesis, variations
of the distribution function, inside dx, are neglected. Therefore, the distri-
bution function of the field particles which enter into the action domain of
the test particles is actually approximated by the value of f in the position
of the field particle.

Let us here recall that the momentum and energy conservation relations
for a collision process (v, w) — (v/,w’) of two particles of simple gas are

v+w=v +w,
o (4.2.9)
v

+ Wl = V[P + w2

The celebrated Boltzmann equation, which defines the evolution of the
distribution function f = f(¢,x,v) reads:

of

E—l—v-vxf:t][f,f], (4.2.10)

where the collision operator J is given by
Aexw) = [ [ Bow =)
+
X (f(t,x,v')f(t,x,w') — f(t,x,v)f(t,x,w)) dndw, (4.2.11)

the post-collision velocities are given by

{V =vH{w=v)-mn, (4.2.12)

w=w-—((w—-v)-n)n,
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where we denote by a dot the scalar product, n is the unit vector in the
direction of the apse-line bisecting the angle between v — w and w' — v/,

and
Si={neR’: |n=1, (n-(w-v)) >0} (4.2.13)

is the domain of integration of the variable n. Let us notice that Eq.(4.2.12)
are reversible to respect pre and post collision velocities.

The form of the collision kernel B depends upon the particle interaction
potential and we assume that B satisfies the following condition

B >0, B=DB(n,v) isafunctionof n-vand|v| only. (4.2.14)

Moreover, as usual in the subject, we will assume that B satisfies the Grad’s
angular cut-off potential condition, [Gr].

An important example of such a collision kernel B is the one correspon-
ding to the hard sphere potential

. fn-v>0
B(n, :{n Vo1 =0, 4.2.15
(n,v) 0 otherwise. ( )

The above picture on the variation of f, as a result of competition between
free streaming and balance of losses and gains in dx dv, requires the size
of the volume element dx dv be large enough that the number of particles
contained in it justifies the use of statistical methods. On the other hand,
this number must be small enough that information contained in it should
have local character. Clearly, these two features are not compatible in
general, hence problems are expected in justifying the whole procedure.
Hopefully, in the cases of practical interest, the molecule size does fall in
a range of values which are small when compared to those of the volume
elements dx which, in turn, can be considered as microscopic with respect
to the observations scale.

With reference to the specialized literature, see for example [CIP] and
[Gl], we are now interested in reporting some fundamental properties of the
Boltzmann model. We get

/ I fldv =0, (4.2.16)

/IR3 vJ[f, fldv =0, (4.2.17)
and

/R3 [V[2JI[f, fldv =0, (4.2.18)
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for each f such that the integrals make sense.

Moreover formal computations show that, if Q is either R® or the 3-
dimensional torus 72, any solution to the Boltzmann equation should sat-
isfy the following conditions

/B/Qf(t,x,v)dde:/RB/Qf(O,x,V)dxdv, (4.2.19)

/3/QVf(t7X’V)dXdV=/R?)/Qvf(o,x,v)dxdv, (4.2.20)
nd

a.

/]RS/Q|V|2f(t,X,V)dxdv:/R3/9|v|2f(0,x,v)dxdv. (4.2.21)

Now let us consider the equilibrium solutions of Eq. (4.2.10), i.e. the
solutions of the equation

JIf.f1=0, (4.2.22)

we recall that the only solutions of Eq. (4.2.23) are the so-called local
Maxwellian distributions given by

o(t,x)

M= G )2

\V—u(t,x)]T 7 (4.2.23)

exp |—
g [ 2T(t, %)
where o, T', and u are the macroscopic observables.

An other interesting feature of the Boltzmann equation is described by
the H functional

H[f](t):/ 3/Qf(t,x,v)logf(t,x,v)dxdv, (4.2.24)

if the term flog f is integrable for all t > 0. Indeed, the H-Theorem asserts
that the H functional is formally decreasing along the solution

d

ﬁH[f](t) = /]RB /Q J[f, fl(t,x,v)log f(t,x,v)dxdv <0, (4.2.25)

where equality holds only at equilibrium, again for Q = R? or Q = T3,
If a positional macroscopic force F(x) is acting on the system, then the
Boltzmann equation reads

AR R NS (4.2.26)



Mathematical Modelling by Methods of Kinetic Theory 143

4.3 Mean Field Models

The Boltzmann equation, we have seen in the preceding section, is such
that the distribution function is modified only by external actions and short
range interactions. On the other hand, various physical systems are such
that also long range interactions may be significant.

To be more specific, consider the vector action P = P(x,V,X,, V) on
the subject with microscopic state x, v due to the subject with microscopic
state x,, v,. The resultant action is

5’-’[f](75,x,v):/]R3 N P(x, v, X, Vi) f(t, X, Vi) dXy dv (4.3.1)

where Dg is the domain around the test particle where the action of the
field particle is effectively felt, in other words the action P decays with
the distance between test and field particles and is equal to zero on the
boundary of Dg. Based on the above assumptions, the mean field equation
writes

of

otV Vf +F Vo f V- (FIf]f) =0, (4.3.2)

where F is the positional macroscopic force is acting on the system

4.4 Mathematical Problems

Mathematical problems related to the Boltzmann equation can be clas-
sified, as usual, into initial, initial-boundary and boundary value problems.
However the statement of the problems is somewhat different from those
models of continuous mechanics.

Consider first the initial value problem for the Boltzmann equation in
absence of an external force field, in the whole space R?, and with given
initial conditions

fOx,v) = f(0,x,v) : R®*xR® - R, , (4.4.1)
which are assumed to decay at infinity in space.

The integral form of the initial value problem for the Boltzmann equa-
tion, when F = 0, reads

f7(t,x,v) = fox,v) + /Ot J#(s,%x,v)ds, (4.4.2)
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where
f#(t,x,v) = ft,x +vt,v), (4.4.3)
and
J#(t,x,v) = Jf, flt,x +vt,v). (4.4.4)

The statement of the initial-boundary value problem requires the mod-
elling of gas surface interaction phenomena. In particular, two specific
problems, amongst several ones, can be stated:

e The interior domain problem which corresponds to a gas contained
in a volume bounded by a solid surface;

e The exterior domain problem, which corresponds to a gas in the
whole space IR® which contains an obstacle.

The surface of the solid wall is defined in both cases by {2,,, the normal
to the surface directed towards the gas is v. Moreover, in order to define the
boundary conditions on a solid wall, we need to define the partial incoming
and outgoing traces f* and f~ on the boundary ,,, which, for continuous
f, can be defined as follows

ffxv)=fxv), x€Q,, v v(x) >0
( ) (4.4.5)
frx,v)=0, x€Q,, v v(x)<O0,
and
fT(x,v)=f(x,v), x€Q,, v vx) <0
( (4.4.6)
fT(x,v)=0, x€Q,, v -vx) >0.
Then the boundary condition may be formally defined as follows
%, v) =R (t,x,v), (4.4.7)

where the operator R, which maps the distribution function of the particles
which collide with the surface into the one of particles leaving the surface
is characterized, for a broad range of physical problems, by the following
properties:

1. R is linear, of local type with respect to x, and is positive:
ffT>0=Rf >0. (4.4.8)

2. R preserves mass, i.e. the flux of the incoming particles equals the one
of the particles which leaves the surface.
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3. R preserves local equilibrium at the boundary: w} = Rw.,, where w,,
is the Maxwellian distribution at the wall temperature.
4. R is dissipative, i.e. satisfies the inequality at the wall
/ (v.n)(fT+Rf7) 1ogf+E dv <0 (4.4.9)
etV T <0. 4.

The formulation of the initial-boundary value problem, in the case of
the interior domain problem, consists in linking the evolution equa-
tion (4.2.26) to the initial condition (4.4.1) and to the boundary condition
(4.4.7) on the wall ,,. In the case of the exterior domain problems, in
addition to the boundary conditions on the wall, suitable Maxwellian equi-
librium conditions are assumed at infinity. If one deals with the boundary
value problem, the statement of the boundary conditions must be linked
to the steady Boltzmann equation, and the definitions of solutions are
analogous to the ones we have seen for the initial value problem.

The mathematical statements we have just seen refer to the Boltzmann
equation in absence of an external field, and hence the trajectories of the
particles are straight lines. When an external field is acting on the particles,
trajectories may be explicitly determined only by solving the equations of
Newtonian dynamics.

Several books, e.g. [Gl], are available, for the interested reader, on the
qualitative analysis of mathematical problems related to the application of
the Boltzmann equation. The above cited book provides a detailed survey
of existence theory for the Boltzmann and Vlasov equations.

4.5 Active Particles

Some interesting complex systems in applied sciences are constituted
by a large number of interacting entities such that their microscopic state
includes, in addition to geometrical and mechanical variable, an additional
microscopic state related to their socio-biological behavior, which will be
called characteristic microscopic variable, or simply: activity. Micro-
scopic interactions do not follow rules of mechanics (classical or quantum),
but are governed by a somehow organized behavior which is able to modify
laws of mechanics. In this case, we may call active particles the above
mentioned microscopic entities.

Some pioneers papers have been proposed suitable generalizations and
developments of the above mathematical approach to model large complex
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systems in different field of applied sciences. Among others, [PH] proposed
a mathematical theory of traffic flow by Boltzmann type equations. The
same approach has been applied to model the social behavior of colonies
of insects by [JS], or cell populations with special attention to the immune
competition, see [BBD]. A systematic presentation of the mathematical
kinetic theory for active particles is proposed in the book [Bc].

The class of models we are dealing with have been called, in the book
[ABDL], generalized kinetic (Boltzmann) models. Their common fea-
ture is that the model, similarly to the classical kinetic theory, is an evolu-
tion equation for the first distribution function over the microscopic state
of the active particles interacting in a large system. Referring to this par-
ticular class of physical systems, some definitions can be stated to define
precisely the microscopic state of each active particle and the statistical
description of the system:

e The physical variable charged to describe the state of each active particle
is called microscopic state, which is denoted by the variable w formally
written as follows:

w={x,v,u} € Dy = Dx X Dy X Dy, (4.5.1)

where x identifies the position, v the velocity, and u is the activity. The
space of the microscopic states is called state space, while the u may have
a different meaning for each particular system.

e The description of the overall state of the system is given by the function

f=ft,w)=f(t,x,v,u), (4.5.2)

which will be called generalized distribution function. Assuming local
integrability, f(t, w) dw denotes the number of active particles whose state,
at time ¢, is in the elementary domain [w, w+dw] of the state of microscopic
states.

e Pair interactions refer, as for classical models, to the test active particle
interacting with a field active particle. The distribution function stated
in the above definition refers to the test active particle.

If the number of active particles is constant in time, then the distribution
function may be normalized with respect to such a number and can be
regarded as a probability density. In general, for all practical cases it may
be convenient normalizing the distributions f with respect to the number
of active particles, called size, at t = 0.

Remark 4.5.1. The above identification of the microscopic state can be
generalized replacing x and v, by z and q, where z is the geometrical
mzicroscopic state, e.g. position, orientation, etc., q is the mechanical
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microscopic state, e.g. linear and angular velocities. However, calcu-
lations developed in what follows refer, for simplicity of notations, to the
above relatively simpler case stated in Eq.(4.5.2). Generalizations are tech-
nical.

If f is known, then macroscopic gross variables can be computed, un-
der suitable integrability properties, as moments weighted by the above
distribution function.

Specifically, marginal densities are obtained by integrating over some of
the components of the variable w. For instance: marginal densities may
refer either to the generalized distribution over the mechanical state

fm(t,x,v)—/D f(t,x,v,u)du, (4.5.3)

or to generalized distribution over the activity:

fb(t,u):/D . ft,x,v,u)dxdv. (4.5.4)

Moments of order zero provide information on the size. For instance,
the local size is given by:

n(t,x):/D . f(t,x,v,u)dvdu
V>< u

= / ™t x,v)dv. (4.5.5)
Dy

n(t,x):/D R f(t,x,v,u) dvdu:/D fr(t,x,v)dv. (4.5.5)

Integration over the volume Dy containing the active particles gives the
total size:

N(t):/D n(t,x) dx, (4.5.6)

which may depend on time due to birth and death processes related to
interactions, as well as to the flux of active particles through the boundaries
of the volume.

First order moments provide either linear mechanical macroscopic
quantities, or linear characteristic macroscopic quantities. For in-
stance, the mass velocity of active particles at the time ¢ in the position x,
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is defined by

U[f}(t,x):n(tlx)/D vf(txvwdvda, (4.5.7)

Focusing on characteristic functions, linear moments related to each j**
component of the state u, related to the i*"* populations, can be called
activation at the time t in the position x, and are computed as follows:

A =Aj[fl(t,x) = / u;f(t,x,v,u)dvdu, (4.5.8)

Dy XDy

while the activation density is given by:

Ay = A (e = B

n(t,x :n(t,x) /DVXDuujf(t,x,V,u)dvdu.
(4.5.9)
Global quantities are obtained integrating over space, while similar cal-
culations can be developed for higher order moments if motivated by some
interest for the applications.

4.6 Evolution Equations for Active Particles

This section deals with derivation of evolution equations for active parti-
cles. First microscopic interactions need to be modelled, then conservation
equations in the space of the microscopic states generates the equation.
The derivation refers to two type of interactions:

e Short range binary interactions which refer to the mutual actions
between the test and the field active particle, when the test individual
enters into the action domain A of the field one. This means that A is
relatively small and that only binary encounters are relevant.

e Mean field interactions which refer to the action over the test active
particles applied by all field active particles which are in the action domain
Q of the field individual. This means that the density is sufficiently large
related to €2 so that more than one field active particles may act over the
test individual. The action is still of the type of binary encounters.

Consider first localized interactions between the test active parti-
cle with state w; and field one with state ws. Modelling of microscopic
interactions can be based on the knowledge of the following two quantities:
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e The encounter rate, which depends, for each pair on the relative ve-
locity

n=1olvi — val, no = C.st, (4.6.1)

and

e the transition density function

(w1, wWo; W) : Dy X Dy X Dy — Ry, (4.6.2)

which is such that ¢(w1, we; w) dw denotes the probability density that
a candidate active particle with state w; falls into the state w after
an interaction with a field active particle with state wo. The function
© has the structure of a probability density function with respect to the
variable w

Ywi,ws : / (Wi, wo; w)dw = 1. (4.6.3)
Dy

The term candidate is used to identify the particle which is not yet in
the state of the test particle, but will get it after interaction.

Remark 4.6.1. Models can be practically designed assuming that ¢ is
given by the product of the transition densities related to the mechanical
variable with that one of the activity:

o(wy, wa; w) = M(vy, ve; v|ug, ug)d(x—x1)d(x—x2)B(uy,uz;u), (4.6.4)

Consider the modelling of mean field interactions between the test
active particle with state w; and field active particle with state wy. The
microscopic modelling of pair interactions can be based on the knowledge
of the following quantity:

e The action P = P(x,X,,u,u,) over the test active particle with mi-
croscopic state w due to the field active particle with state w,, where
P is a vector with the same dimension of the microscopic state {x, u}.

Remark 4.6.2. Models can be practically designed assuming that P can
be split into sum of the terms P™ acting over the velocity variable v, and
Pb acting over the activity u, where P™ = P™(x,x,,u,u,) and P’ =

Pb(u,u,).

The derivation needs to be particularized for each class of microscopic
interactions. Let us first consider the case of models with short range
interactions. The evolution equation is obtained similarly to the case of
the Boltzmann equation by equating the local rate of increase of individuals
with state w in the elementary volume around w due to the net flux of
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individuals who reach such a state due to interactions as well as to the net
proliferation in the same state. The scheme, in absence of external action,
is as follows:
of
ot
Then using the formal expressions given in Eqgs. (4.6.1)-(4.6.4), the fol-
lowing class of evolution equations is obtained:

+v-Vef=CT[fl-C7[f]. (4.6.5)

0
<+v . Vx> ft,x,v,u) = / clvi — vo|M(v1,va, v[ug, us)

ot DxD
xB(u, uz;u) f(t,x, vi,ur) f(¢,x, va, uz) dvi dug dva dup
—f(t,x,v,u) / clv — va|f(t,x,ve,uz) dvy dus (4.6.6)
D

where D = Dy, X D,.

Consider now the derivation of the evolution equation in the case of long
range interactions. The modelling approach is now technically different, but
still correspond to the mass balance used in the previous case. Specifically,
resultant action of all active particles in the action domain €2 of the test
individual is given by:

F = F" £t x,u) + F°[f](t, x, u)
:/ P(x, X, W) F(E Xe, Vi ) d% dv, du,
D

—i—/ Pb(u, W) f(t, X, Vi, Wy ) dXy dv, du, (4.6.7)
D

where D = Q) x Dy, X Dy, and where € is the interaction domain of the test
active particle: x, ¢ Q = P =0.
Technical calculations yield:

%f(t,x,v,u)+V-fo(t,x,v,u)
+VV-<f(t,x,v,u)/’Pm(x,x*,u,u*)
D

X f(t, Xy Vi, Uy) dXy AV du*>

# 9 (fexvow) [ Poxiua
D



Mathematical Modelling by Methods of Kinetic Theory 151

X f(t, X, Vi, Uy) dXy dV du*)) . (4.6.8)

A detailed description of various mathematical structures, to complete the
above concise description, is available in Chapter 2 of the book [Bc].

4.7 Discretization schemes

Classical models of the kinetic theory of gases have been proposed in
the preceding sections. Following the line of Chapter 2 and 3, we shall now
provide an outline of some methods to discretize the above models. The
discretization has also in mind the development of suitable computational
schemes.

The discrete models of the Boltzmann equation can be obtained assum-
ing that particles allowed to move with a finite number of velocities. The
model is an evolution equation for the number densities IV; linked to the
admissible velocities v;, for i € L = {1,...,n}. The set N = {N,;},
corresponds, for certain aspects, to the one-particle distribution function of
the continuous Boltzmann equation.

This model is called discrete Boltzmann equation. The mathemat-
ical theory of the discrete kinetic theory was systematically developed in
the Lecture Notes [Gal], which provides a detailed analysis of the relevant
aspects of the discrete kinetic theory: modeling, analysis of thermody-
namic equilibrium and application to fluid-dynamic problems. The contents
mainly refer to a simple monoatomic gas and to the related thermodynamic
aspects. After such a fundamental contribution, several developments have
been proposed in order to deal with more general physical systems: gas
mixtures, chemically reacting gases, particles undergoing multiple collisions
and so on.

Various mathematical aspects, namely the qualitative analysis of the
initial value and of the initial-boundary value problem, have been object
of continuous interest of applied mathematicians. The existing literature is
reported in the review papers [Pl] and [BG].

The formal expression of the evolution equation is as follows:

(gt Ly, Vx> N; = Ji[N], (4.7.1)

where

N; = Ni(t,x) : (tx)€[0,T]x R =Ry, i=1,...,n, (4.7.2)
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where t and x € R”, for v =1,2,3, are, the time and the space variables,
whereas J;[N] denote the binary collision terms

1 n
MM=§§:4WMM—MM% (4.7.3)
j,h,k=1

The terms A?j’“ are the so-called transition rates referred to the binary
collisions

(Vi, Vi) «— (Vh, Vi), i,7,h,keL, (4.7.4)

and where the collision scheme must be such that momentum and energy
are preserved.

The transition rates are positive constants which, according to the in-
distinguishability property of the gas particles and to the reversibility of
the collisions, satisfy the following relations

A=A = AT = AN (4.7.5)

As for the Boltzmann equation, the qualitative analysis of discrete mod-
els needs the identification of the space of collision invariants and of the
Maxwellian state. Specifically, the following definitions can be used:

I Collision Invariant

A vector ¢ = {¢;}icr, € R™ is defined collision invariant if

(0, JIN]) =0, J[N]={JicL € R"}, (4.7.6)

where the inner product is defined in R™ and m is the cardi-
nality of the set L.

I Space of the collision invariants

The set of the totality of collision invariants is called space
of the collision invariants and is a linear subspace of R™.
Such a space will be denoted, in what follows, by M.

I Maxwellian

Let N; > 0 for any i € L, then the vector N is defined Max-
wellian if J|N] = 0.

Moreover, the following propositions characterize the space of the colli-
sion invariants and the Maxwellian state:
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Proposition 4.7.1. Let ¢ € R™, then the following conditions are equiv-
alent
i) ¢ € M, ie. ¢ is a collision invariant;

ii) (¢, J[N]) =0.

Proposition 4.7.2. Let N; > 0 for any ¢ € L, then the following three
conditions are equivalent
i) N is a Maxwellian;
ii) {log N;i}ier € M;
iii) J[N] = 0.

Consider now the classical H-Boltzmann function defined as

H =Y c¢;NilogN;. (4.7.7)
€L

Then, the evolution equation for the H-Boltzmann equation can be derived
by multiplying the discrete Boltzmann equation by 1 4 log N; and taking
the sum over ¢ € L. It can be technically verified that the time derivative
of above functional is nonpositive and that the equality holds if and only if
N is a Maxwellian.

The above discretization corresponds to discretize the velocity space into

a suitable set of points by linking a number density to each velocity. Several
applied mathematicians have attempted in the last decade to design models
with arbitrarily large number of velocities and hence to analyze convergence
of discretized models toward the full Boltzmann equation. Several technical
difficulties have to be tackled as well documented in the paper [G6], among
others:

i) The discretization schemes for each couples of incoming velocities do
not assure a pair of outgoing velocities such that conservation of mass
and momentum is preserved;

ii) The discretized equation may have a number of spurious collision in-
variants in addition to the classical ones corresponding to conservation
of mass, linear momentum and energy;

iii) The discretized equation may not correspond to the discretization of the
original Boltzmann equation obtained by suitable interpolation polyno-
mials;

iv) The convergence of the solutions of discretized equation to those of the
full Boltzmann equation, when the number of discretization points tends
to infinity, under suitable hypotheses which have to be properly defined.
A technical difficulty in dealing with the above convergence proof con-

sists in obtaining an existence theorem for the Boltzmann equation in a

function space which can be properly exploited for the development of the

computational scheme.
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An alternative to the discretization scheme we have seen above has been
developed mainly to deal with items i)-ii). It consists in discretizing the
velocity space into a suitable set of velocity moduli letting the velocity free
to assume all directions in the space. The formal expression of the evolution
model is as follows:

(gt +vi- vx> Ni(t,x, Q) = L[f)(t,x,Q) (4.7.8)

where

Ny = Ni(t,x,9Q) : (t,x) €[0,T] xR” xR* =Ry ,i=1,...,n, (4.7.9)

and where {2 is the unit vector which identifies the direction of the velocity,
V; = U; Q.

Example 4.1
Six Velocity Discrete Boltzmann Equation

Consider a one-component discrete velocity gas such that the particles
can attain 6 velocities in the xy—plane. The velocity discretization is defined
by

— 7r)i+sin(%7r)j i=1,...,6, (4.7.10)

i
v; = ¢ |cos(

where i and j are the unit vectors of an orthogonal plane frame.
Such a velocity discretization generate the following binary collisions:
e Head-on binary collisions with scattering in all directions

(Vi,VH_g) <—>(Vh,Vh+3), hzl,...,ﬁ,

that are the only nontrivial (generate a flux in the velocity space)

Detailed calculations provide the expression of the collisions operators.
In particular the binary collision operator is simply obtained by joining the
transition rates A?jk to the corresponding transition probability densities

azhjk by A = S|v; — vjla , where o = 1/6. Detailed calculations lead to a
kinetic model which can be written as follows:

Nit+ + 2N;,, = 2aB[N],
Nyt + Ny = —aB[N],
N3; — N3, = —aB[N],
N — 2N4, = 2aB[N],

(4.7.11)
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where a is a constant.

The same reasoning can be applied to the generalized models described
in Section 4.6. A systematic analysis on the discretization of generalized
kinetic models was proposed in [BD], with application to modeling social
competition.

In this case, a discrete model in the spatially homogeneous case means
that the biological variable is discretized into a set of values:

In={{uy, ..., u;, ... u,}, (4.7.12)

while the evolution equation refer to the densities: f; corresponding to the i-
state. The system of n integro-differential equations is replaced by a system
of n ordinary differential equations. The above mentioned discretization is
here reported for the equation for active particles in spacial homogeneity,
namely when the velocity distribution has reached an equilibrium configu-
ration uniform in space. In this case the model, for one population only, is
as follows

O (1w = /D ) B ) () (),

f(t,u)/D n(u,u”) f(t,u”)du”, (4.7.13)

u

The derivation follows the same line we have seen for the continuous
model. The first step is the modelling of microscopic interactions, which
are described by the following quantities:

e The interaction rate: ny related to each pair of interacting states hk;

e The transition probability density: B, which is the probability den-
sity for a test individual with state u; to fall into the state u; after an
interaction with a field individual with state u,. The above defined transi-
tion density function has the structure of a probability density with respect
to the variable u;

Vihk: > Bjy=1. (4.7.14)
=1

Then applying the same balance equation we have seen for the contin-
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uous model yields:

CT]; =2 > B = fi ;nhkfk , (4.7.15)

h=1k=1

fori=1,...,n.

The above modelling, which is here simply outlined, can be technically
generalized to the case of models such that the microscopic state depends
also on space and velocity. All technical calculations are dealt with in
Chapter 3 of [Bc].

4.8 Critical Analysis

A concise introduction to some models of the kinetic theory for classical
particles has been given in this chapter. As we have seen, a brief introduc-
tion has been given, while suitable bibliographical indications have been
provided towards a deeper knowledge.

The substantial difference between models for classical and active parti-
cles refers to microscopic interactions. Classical particles follow determin-
istic laws of Newtonian mechanics, namely if both the input velocities and
the impact parameter are assigned, then the output velocities can be com-
puted. On the other hand, interactions for active particles are stochastic.
Moreover the activity variable can modify the mechanical variables due to
the strategy of the particles to modify their dynamics.

Although this chapter does not report specific applications, some biblio-
graphical indications can be given. Specifically, the Boltzmann equation has
been applied to study a variety of fluid dynamic problems at large Knudsen
number. Various applications are documented in the books by Kogan [Ko]
and Cercignani [Ce]. The Vlasov equation has been applied to study various
problems in plasma physics, see for example [Sc].

Models for active particles have been applied to study various complex
systems in applied and life sciences, among others: immunology, vehicular
traffic flow, social systems. The book [Bc| reports about the pertinent
literature referred to the above applications.

As already mentioned in Chapter 1, mathematical models of the kinetic
theory are used to overcame complexity problems induced by the need of
modelling large systems of interacting individuals, where the number of
equations needed to describe the system is not computationally tractable.
The representation offered by methods of the mathematical kinetic theory
is elegant and efficient. On the other hand the derivation of equations is
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based on heuristic assumptions (for instance the factorization of the joint
probability density), that cannot be rogorously justified.

Therefore, models of the kinetic theory have to be regarded as an ap-
proximation of the physical reality considering that even the structures,
that the models refer to, are based on mathematical approximations. Of
course, various approaches to improve the above mentioned approxima-
tions have been developed. However, we do not discuss this complex topic
in these Lecture Notes.

Finally, let us stress that kinetic models can be discretized with some
analogy to that of the models treated in the preceding chapters. Two types
of discretizations have been briefly described among several conceivable
ones in Section 4.7. In some cases the discretization is developed to reduce
computational complexity. This is the case of the Boltzmann equation,
where the velocity occupies the whole IR®. Therefore, using a finite number
of velocities substantially reduces complexity.

Technically, different are the complexity problems related to models of
active particles. In fact, velocities of elements of living systems are always
bounded, as documented in all applications dealt with in [Bc]. There-
fore, complexity problems are related to modelling microscopic interactions
rather than to the development of computational algorithms. Discretization
can be viewed as an approach to capture the main feature of the activity
variable in view of modelling microscopic interactions.

Finally, let us mention that the various reasonings proposed in this
chapter have to be regarded simply as an introduction to modelling systems
in applied and life sciences by the approach of the classical and generalized
kinetic theory. This brief introduction has the objective to motivate the
reader to a deeper insight, that may possibly start from the bibliography
cited in this chapter.
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