GEOMETRIA

Prova Straordinaria del 20 Settembre 2017 – 60 minuti

Istruzioni:

- Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi.
- Per ogni quiz nella prima parte, indicare l'affermazione giudicata corretta nella tabella in questa pagina.
- Trascrivere la risposta alle singole domande degli esercizi della seconda parte nelle pagine bianche alla fine di ogni esercizio.

CENTE:				GAT	TO				
Q1	a	b	С	d	Q5	а	b	С	d
Q2	a	b	С	d	Q6	a	b	С	d
Q3	a	b	С	d	Q7	a	b	С	d
Q4	a	b	С	d	Q8	a	b	С	d

Quiz

Q1. Sino dati il piano π e la sfera S di equazioni:

$$\begin{cases} \pi : 3x - y + 2z - 5 = 0 \\ S : x^2 + y^2 + z^2 - 1 = 0 \end{cases}$$

Quale delle seguenti affermazioni è vera?.

- (a) La proiezione ortogonale di S sul piano ortogonale alla direzione ${\bf v}:=(3,-1.2)$ è una circonferenza;
- (b) r è contenuta in un piano parallelo al piano xy;
- (c) r è parallela alla retta $\mathbf{r}(t) = (1 + 3t, 1 5t, t);$
- (d) r è contenuta nel piano 2x + z = 0.

Q2. Sia data la superficie dello spazio

$$x^2 + y^2 - z^2 = 0.$$

Quale delle seguenti affermazioni è vera?

- (a) La superficie non contiene circonferenze;
- (b) Il piano tangente nei punti della retta $(t, t, \sqrt{2}t)$ è costante;
- (c) La superficie non contiene coniche degeneri;
- (d) La superficie contiene infinite rette passanti per P = (1, 0, 1).

Q3. Sia $\mathbb{R}_{<2}[X]$ lo spazio dei polinomi di grado minore o uguale a 2 e sia data l'applicazione lineare

$$f: \mathbb{R}^3 \to \mathbb{R}_{\leq 2}[X]$$

definita da

$$f\begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = (a_0 - a_1) + (a_1 + a_2)X + (a_0 + a_1 + a_2)X^2$$

- (a) Esistono basi per cui la matrice associata all'applicazione lineare ha determinate nullo;
- (b) Il determinante della matrice associata all'applicazione lineare non dipende dalla scelta delle basi per rappresentarla;
- (c) Esiste una base B_1 di \mathbb{R}^3 ed una base B_2 di $\mathbb{R}_{\leq 2}[X]$ tale che la matrice associata M^{B_2,B_1} coincide con la matrice identica;
- (d) L'applicazione lineare f è un endomorfismo.

Q4. Siano A(2,3,1), B(1,1,4), C(2,2,2), D(1,0,5) punti dello spazio:

- (a) Esiste una sola sfera passante per A, B, C, D;
- (b) Esiste una sola circonferenza sul piano x + y + z + 6 = 0 passante per A, B, C, D;
- (c) Non esiste nessuna circonferenza per A, B, C, D;
- (d) Esistono infinite sfere che tagliano una stessa circonferenza sul piano x + y + z 6 = 0.

Q5. Sia dato il vettore $\mathbf{v} = \begin{pmatrix} 3 \\ -5 \end{pmatrix} \in \mathbb{R}^2$. Quale delle seguenti affermazioni è necessariamente vera?

- (a) Le componenti di ${\bf v}$ sono gli autovalori della matrice $\begin{pmatrix} -2 & 3 \\ -3 & 4 \end{pmatrix}$;
- (b) Sono le componenti di ${\bf v}=\left({5\atop 3}\right)$ nella base $({\bf e}_2,{\bf e}_1)$;

(c)
$$\begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 6 \\ -1 \end{pmatrix} = \mathbf{v}.$$

(d)
$$\mathbf{v}$$
 è il vettore delle componenti del vettore $\begin{pmatrix} 1 \\ -12 \end{pmatrix}$ nella base $\mathcal{B} := \left\{ \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \end{pmatrix} \right\}$;

Q6. Sia data la matrice

$$M := \left(\begin{array}{ccc} 0 & 5 & -7 \\ -5 & 0 & 4 \\ 7 & -1 & 0 \end{array} \right)$$

- (a) E' diagonalizzabile;
- (b) E' invertibile;
- (c) Possiede almeno due autovalori di segno opposto;
- (d) Il polinomio caratteristico di $M
 i p_M(t) = t^3 5t^2 + 7t 4$.

Q7. Sia data la matrice

$$A := \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{e} \qquad \mathbf{1}_{3\times 3} := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- (a) La matrice A possiede l'autovalore 3;
- (b) $(A \mathbf{1}_{3\times 3})^4$ è uguale alla matrice nulla.
- (c) La matrice è diagonalizzabile anche se non ha tutti autovalori distinti;
- (d) La matrice *A* non è invertibile;

Q8. Sia $A \in \mathbb{R}^{n \times n}$ una matrice quadrata di rango minore o uguale a 1. Quale delle seguenti affermazioni è necessariamente vera?

- (a) La matrice A è il prodotto di una colonna per una riga.
- (b) Il sistema lineare $AX = \mathbf{b}$ possiede soluzioni per qualsiasi scelta di $\mathbf{b} \in \mathbb{R}^n$;
- (c) Le soluzioni del sistema lineare omogeneo $AX = \mathbf{0}$ formano un sottospazio di dimensione 1;
- (d) La matrice A è il prodotto di una riga per una colonna;

ESERCIZI

Esercizio 1. Sia data la matrice

$$A := \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} : \mathbb{R}^3 \to \mathbb{R}^3$$

- **Q1.** Mostrare che A è diagonalizzabile;
- **Q2.** Decomporre \mathbb{R}^3 come somma diretta ortogonale di autospazi di A;
- **Q3.** Trovare la proiezione ortogonale del vettore $\begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$ su ciascun autospazio di A.

Esercizio 2. Sia data la funzione

$$f(u,v) = (-\sin u \cdot (2 + \cos v), \cos u \cdot (2 + \cos v), \sin v)$$

In \mathbb{R}^3 si consideri la superficie parametrizzata $\mathcal S$ definita dalla funzione f , cioè $\mathcal S=\mathrm{Im}(f)$

- (i) Mostrare che il differenziale di f ha rango 2 per ogni $(u,v)\in\mathbb{R}^2.$
- (ii) Determinare la retta normale al piano tangente a $\mathcal S$ nel punto $P(-\sqrt{2},\sqrt{2},1).$
- (iii) Determinare un'equazione cartesiana per il piano tangente a ${\cal S}$ nel punto $P(-\sqrt{2},\sqrt{2},1).$

GEOMETRIA

Prova Straordinaria del 20 Settembre 2017 – 60 minuti

Istruzioni:

- Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi.
- Per ogni quiz nella prima parte, indicare l'affermazione giudicata corretta nella tabella in questa pagina.
- Trascrivere la risposta alle singole domande degli esercizi della seconda parte nelle pagine bianche alla fine di ogni esercizio.

CENTE:				GAT	TO				
Q1	a	b	С	d	Q5	а	b	С	d
Q2	a	b	С	d	Q6	a	b	С	d
Q3	a	b	С	d	Q7	a	b	С	d
Q4	a	b	С	d	Q8	a	b	С	d

Quiz

Q1. Nello spazio tridimensionale sia data la quadrica $\mathcal Q$ e il piano π rispettivamente di equazioni

$$2x^2 - y^2 + z^2 - 4x = 0, \quad x = 0$$

- Quale delle seguenti affermazioni è vera?
 - (a) La conica $Q \cap \pi$ è degenere;
- (b) L'iperbole $Q \cap \pi$ ha centro sul piano y 1 = 0;
- (c) Il piano z = 0 è tangente a Q;
- (d) La quadrica è un ellissoide.
- **Q2.** Sia data la retta r: 2x y z = 0; 2x + y + 2z 1 = 0. Quale delle seguenti affermazioni è vera?.
 - (a) r passa per l'origine;
 - (b) r è contenuta nel piano 4x + z 2 = 0;
 - (c) r è parallela alla retta $\mathbf{r}(t) = (10 t, 1 6t, 4t);$
 - (d) r è contenuta nel piano yz.
- **Q3.** Siano $A \in \mathbb{R}^{2 \times 4}$ e $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4)$ la base canonica di \mathbb{R}^4 . Si supponga A di rango 2. Quale delle seguenti affermazioni è necessariamente vera?
 - (a) esiste $\mathbf{b} \in \mathbb{R}^2$ tale che il sistema lineare $AX = \mathbf{b}$ non possiede soluzioni;
 - (b) il sistema lineare omogeneo AX = 0 possiede una sola soluzione;
 - (c) il sistema lineare $AX = A\mathbf{e}_3$ possiede ∞^2 soluzioni;
 - (d) il sistema lineare AX = B ha ∞^1 soluzioni, qualunque sia B.
- Q4. Sia data la matrice

$$A := \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{e} \qquad \mathbf{1}_{3\times3} := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- (a) La matrice A possiede l'autovalore 3;
- (b) $(A \mathbf{1}_{3\times 3})^4$ è uguale alla matrice nulla.
- (c) La matrice è diagonalizzabile anche se non ha tutti autovalori distinti;
- (d) La matrice *A* non è invertibile;

Q5. Sia data la curva $\gamma(t) = (t + e^t + t^2, -t - e^t - t^2, 3e^t - 1), \ t \in \mathbb{R}.$

Quale delle seguenti affermazioni è vera?

- (a) esistono punti di γ in cui il vettore tangente è nullo;
- (b) la curva γ è contenuta in un piano;
- (c) La curva possiede punti non regolari;
- (d) La curva è contenuta nel piano y = 0;
- **Q6.** Data la funzione $f(x,y) = e^{y^2 \cos x x \sin y + 2}$, si indichi l'affermazione corretta.
 - (a) *f* non possiede punti critici;
 - (b) Il gradiente di *f* nell'origine non è nullo;
 - (c) Il differenziale di f nell'origine è nullo;
 - (d) f(0,0) = 2.
- **Q7.** Sia data la forma quadratica $q(x,y) = 4x^2 8xy + 5y^2$. Quale delle seguenti affermazioni è vera?
 - (a) q(1,-3) < 0;
 - (b) $q(x,y) \leq 0$ per tutti gli $(x,y) \in \mathbb{R}^2$;
 - (c) q(x,y) è definita positiva;
 - (d) esiste una coppia di numeri reali $(a, b) \neq (0, 0)$ tale che q(a, b) = 0.
- **Q8.** Sia data la funzione $f(x,y) = 3x^2 + 2y^2$.

Quale delle seguenti affermazioni è vera?

- (a) il punto (1,1,1) appartiene al grafico di f(x,y);
- (b) il grafico di f(x, y) è un paraboloide;
- (c) f(x,y) non è differenziabile nel punto (0,0);
- (d) Nessun piano tangente al grafico è parallelo al piano xy.

ESERCIZI

Esercizio 1. Sia data la matrice
$$A = \begin{pmatrix} 3 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{pmatrix}$$
.

- (i) Provare che 2 è un autovalore di A e trovare gli autovettori;
- (ii) Verificare che il vettore $\begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix}$ appartiene all'immagine di A e trovare l'insieme delle sue controimmagini;
- (iii) Dire se esiste una matrice $P \in \mathbb{R}^{3 \times 3}$ tale che P^TAP sia diagonale; dove P^T indica la trasposta di P.

Esercizio 2. Sia data la funzione

$$f(u,v) = (\cos u \cdot (2 + \cos v), -\sin u \cdot (2 + \cos v), \sin v)$$

In \mathbb{R}^3 si consideri la superficie parametrizzata $\mathcal S$ definita dalla funzione f , cioè $\mathcal S=\mathrm{Im}(f)$

- (i) Mostrare che il differenziale di f ha rango 2 per ogni $(u, v) \in \mathbb{R}^2$.
- (ii) Determinare la retta normale al piano tangente a $\mathcal S$ nel punto $P(\sqrt{2},-\sqrt{2},1).$
- (iii) Determinare un'equazione cartesiana per il piano tangente a f nel punto $P(\sqrt{2},-\sqrt{2},1).$

GEOMETRIA

Prova Straordinaria del 20 Settembre 2017 – 60 minuti

Istruzioni:

- Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi.
- Per ogni quiz nella prima parte, indicare l'affermazione giudicata corretta nella tabella in questa pagina.
- Trascrivere la risposta alle singole domande degli esercizi della seconda parte nelle pagine bianche alla fine di ogni esercizio.

COGNOME,	Nom	E:								
MATRICOLA	A :									
DOCENTE:				GAT	ТО					
Q1	a	b	С	d	Q5	a	b	С	d	
Q2	a	b	С	d	Q6	a	b	С	d	
Q3	a	b	С	d	Q7	a	b	С	d	
Q4	a	b	С	d	Q8	3 a	b	С	d	
on scrivere in q	juesto s	spazio								
QUIZ]	ESERCI	ZIO		TC	TALE			

Quiz

Q1. Sia data la curva $\gamma(t)=(t+e^t+t^2,t-e^t-t^2,3e^t-1),\ t\in\mathbb{R}.$

Quale delle seguenti affermazioni è vera?

- (a) Il vettore tangente a γ nel punto t=0 è $(2\vec{i}+3\vec{k})$;
- (b) la curva γ è piana;
- (c) La curva possiede punti non regolari;
- (d) La curva è contenuta nel piano x + y + z = 0;
- **Q2.** Sia $A \in \mathbb{R}^{3,3}$ una arbitraria matrice quadrata simmetrica reale con polinomio caratteristico $t(t^2 9)$. Quale delle seguenti affermazioni è necessariamente vera?
 - (a) A è diagonalizzabile;
 - (b) A è ortogonale;
 - (c) A è invertibile;
 - (d) $det(A) \neq 0$.
- **Q3.** Sia dato un endomorfismo f di \mathbb{R}^4 tale che

$$f\begin{pmatrix}1\\2\\3\\4\end{pmatrix} = f\begin{pmatrix}1\\0\\0\\0\end{pmatrix}$$

Si indichi l'affermazione corretta.

- (a) f è iniettivo;
- (b) il vettore $\begin{pmatrix} 0 \\ 2 \\ 3 \\ 4 \end{pmatrix}$ appartiene al nucleo di f;
- (c) Il nucleo di *f* contiene il solo vettore nullo;
- (d) *f* non ha autovettori.
- $\textbf{Q4.} \; \mbox{Sia} \; (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ la base canonica di \mathbb{R}^3 e si considerino i seguenti sottospazi:

$$U = [\mathbf{e}_1, \mathbf{e}_1 + \mathbf{e}_2]$$
 e $V = [\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3]$

Quale delle seguenti affermazioni è corretta?

- (a) $V \subseteq U$ è l'insieme vuoto;
- (b) $\dim(U \cap V) = 0$;
- (c) $\dim(U+V) < 3$;
- (d) La somma di U e V non è diretta.

Q5. Nello spazio tridimensionale sia data la quadrica $\mathcal Q$ e il piano π rispettivamente di equazioni

$$2x^2 - y^2 + z^2 - 4x - y = 0, \quad x = 0$$

Quale delle seguenti affermazioni è vera?

- (a) La conica $Q \cap \pi$ è una iperbole;
- (b) L'iperbole $Q \cap \pi$ è degenere;
- (c) Il piano y = 0 è tangente a Q;
- (d) La quadrica è un ellissoide.
- **Q6.** Sia data la funzione $f(x,y) = 3x^2 + 2y^2$.

Quale delle seguenti affermazioni è vera?

- (a) il punto (1,1,1) appartiene al grafico di f(x,y);
- (b) Il grafico di f(x, y) è un cono con vertice l'origine;
- (c) f(x,y) non è differenziabile nel punto (0,0);
- (d) Esiste un piano tangente al grafico parallelo al piano xy.

Q7. Sia data la forma quadratica $q(x,y) = 3x^2 - 10xy + 8y^2$. Quale delle seguenti affermazioni è vera?

- (a) q(1,-3) < 0;
- (b) $q(x,y) \ge 0$ per tutti gli $(x,y) \in \mathbb{R}^2$;
- (c) q(x, y) è definita positiva;
- (d) esiste una coppia di numeri reali $(a, b) \neq (0, 0)$ tale che q(a, b) = 0.

Q8. Data la funzione $f(x,y) = e^{y^2 \cos x - x \sin y + 2}$, si indichi l'affermazione corretta.

- (a) *f* non possiede punti critici;
- (b) Il gradiente di *f* nell'origine è nullo;
- (c) Il differenziale di *f* nell'origine non è nullo;
- (d) f(0,0) = 3.

ESERCIZI

Esercizio 1. Data la matrice
$$A = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & -2 \end{pmatrix}$$
.

- (i) Trovare autovalori e autospazi di *A*;
- (ii) Verificare che il vettore $\begin{pmatrix} -1\\1\\-2 \end{pmatrix}$ appartiene all'immagine di A e trovare l'insieme delle sue controimmagini;
- (iii) Dire se esiste una matrice $Q \in \mathbb{R}^{3 \times 3}$ tale che Q^TAQ sia diagonale.

Esercizio 2. Sia data la funzione

$$f(u,v) = (-\sin u \cdot (2 + \cos v), \cos u \cdot (2 + \cos v), \sin v)$$

In \mathbb{R}^3 si consideri la superficie parametrizzata $\mathcal S$ definita dalla funzione f , cioè $\mathcal S=\mathrm{Im}(f)$

- (i) Mostrare che il differenziale di f ha rango 2 per ogni $(u, v) \in \mathbb{R}^2$.
- (ii) Determinare la retta normale al piano tangente a $\mathcal S$ nel punto $P(-\sqrt{2},\sqrt{2},1).$
- (iii) Determinare un'equazione cartesiana per il piano tangente a ${\cal S}$ nel punto $P(-\sqrt{2},\sqrt{2},1).$

GEOMETRIA

Prova Straordinaria del 20 Settembre 2017 – 60 minuti

Istruzioni:

- Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi.
- Per ogni quiz nella prima parte, indicare l'affermazione giudicata corretta nella tabella in questa pagina.
- Trascrivere la risposta alle singole domande degli esercizi della seconda parte nelle pagine bianche alla fine di ogni esercizio.

COGNOME	, Nom	E:								
Matricol	A:									
DOCENTE:				GAT	ТО					
Q1	a	b	С	d	Q5	a	b	С	d	
Q2	a	b	С	d	Q6	a	b	С	d	
Q3	a	b	С	d	Q7	a	b	С	d	
Q4	a	b	С	d	Q8	a	b	С	d	
on scrivere in	questo s	pazio								
QUIZ		I	ESERCI	ZIO		TO	ΓALE			

Quiz

- **Q1.** Sia $A \in \mathbb{R}^{3 \times 3}$ una arbitraria matrice reale quadrata con polinomio caratteristico $t(t^2 + 1)$. Quale delle seguenti affermazioni è necessariamente vera?
 - (a) A è simmetrica;
 - (b) A ha rango 3;
 - (c) A non è diagonalizzabile sui reali;
 - (d) Ogni autospazio di A ha dimensione almeno 2.
- **Q2.** Sia data la curva $\gamma(t)=(t+e^t+t^2,2t-e^t-t^2,3e^t-1),\ t\in\mathbb{R}.$

Quale delle seguenti affermazioni è vera?

- (a) Il vettore tangente a γ nel punto t=0 è $(2\vec{i}+\vec{j}+3\vec{k})$;
- (b) la curva γ è piana;
- (c) La curva possiede punti non regolari;
- (d) La curva è contenuta nel piano x y + z = 0;
- **Q3.** Data la funzione $f(x,y) = e^{y^2 \cos x x \sin y + 2}$, si indichi l'affermazione corretta.
 - (a) f non possiede punti critici;
 - (b) Il gradiente di *f* nell'origine è nullo;
 - (c) Il differenziale di f nell'origine non è nullo;
 - (d) f(0,0) = 3.
- **Q4.** Sia data la forma quadratica $q(x,y) = 3x^2 10xy + 8y^2$. Quale delle seguenti affermazioni è vera?
 - (a) q(1,1) < 0;
 - (b) $q(x,y) \ge 0$ per tutti gli $(x,y) \in \mathbb{R}^2$;
 - (c) q(x, y) è definita positiva;
 - (d) esiste una coppia di numeri reali $(a, b) \neq (0, 0)$ tale che q(a, b) = 0.

Q5. Sia data la retta r: 2x - y - z = 0; 2x + y + 2z - 1 = 0. Quale delle seguenti affermazioni è vera?.

- (a) r passa per l'origine;
- (b) r è contenuta nel piano 4x + z 1 = 0;
- (c) r è parallela alla retta $\mathbf{r}(t) = (10 t, 1 3t, 4t)$;
- (d) r è contenuta nel piano yz.

Q6. Siano $A \in \mathbb{R}^{5,3}$ e $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ la base canonica di \mathbb{R}^3 . Si supponga A di rango 2. Quale delle seguenti affermazioni è necessariamente vera?

- (a) Il sistema lineare $AX = \mathbf{b}$ possiede soluzioni per tutti i $\mathbf{b} \in \mathbb{R}^5$;
- (b) il sistema lineare omogeneo AX = 0 non possiede soluzioni;
- (c) il sistema lineare $AX = Ae_3$ possiede ∞^1 soluzioni;
- (d) il sistema lineare $AX = \mathbf{b}$ ha infinite soluzioni, qualunque sia \mathbf{b} .

Q7. Sia (e_1, e_2, e_3) la base canonica di \mathbb{R}^3 e si considerino i seguenti sottospazi:

$$U = [\mathbf{e}_1, \mathbf{e}_2 + \mathbf{e}_3]$$
 $V = [\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3]$

Quale delle seguenti affermazioni è corretta?

- (a) $U \subseteq V$;
- (b) $\dim(U \cap V) = 1$;
- (c) $\dim(U+V) = 3$;
- (d) La somma di U e V è diretta.

Q8. Sia dato un endomorfismo f di \mathbb{R}^4 tale che

$$f \begin{pmatrix} 3 \\ 1 \\ 2 \\ 4 \end{pmatrix} = f \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Si indichi l'affermazione corretta.

- (a) f è iniettivo;
- (b) il vettore $\begin{pmatrix} 2\\1\\2\\4 \end{pmatrix}$ non appartiene al nucleo di f;
- (c) Il nucleo di *f* contiene vettori non nulli;
- (d) f non ha autovettori.

ESERCIZI

Esercizio 1. Data la matrice
$$A = \begin{pmatrix} -1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & -1 \end{pmatrix}$$
.

- (i) Trovare autovalori e autospazi di *A*;
- (ii) Verificare che il vettore $\begin{pmatrix} -1\\1\\2 \end{pmatrix}$ appartiene all'immagine di A e trovare l'insieme delle sue controimmagini;
- (iii) Dire se esiste una matrice $Q \in \mathbb{R}^{3 \times 3}$ tale che Q^TAQ sia diagonale.

Esercizio 2. Sia data la funzione

$$f(u,v) = (\cos u \cdot (2 + \cos v), -\sin u \cdot (2 + \cos v), \sin v)$$

In \mathbb{R}^3 si consideri la superficie parametrizzata $\mathcal S$ definita dalla funzione f , cioè $\mathcal S=\mathrm{Im}(f)$

- (i) Mostrare che il differenziale di f ha rango 2 per ogni $(u, v) \in \mathbb{R}^2$.
- (ii) Determinare la retta normale al piano tangente a $\mathcal S$ nel punto $P(\sqrt{2},-\sqrt{2},1).$
- (iii) Determinare un'equazione cartesiana per il piano tangente a f nel punto $P(\sqrt{2},-\sqrt{2},1).$