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On 3-D Point Set Matching With
MAE and SAE Cost Criteria

Giuseppe C. Calafiore

Abstract—This paper deals with the problem of optimally
matching two ordered sets of 3-D points by means of a rigid
displacement. Contrary to the standard approach, where a sum-
of-squared-errors criterion is minimized in order to obtain the
optimal displacement, we here analyze the use of �∞ [maximum
absolute error (MAE)] and �1 [sum of absolute errors (SAE)] cost
criteria for determining the optimal matching. Two numerically
efficient (polynomial time) algorithms are developed in this paper
to compute an approximately optimal solution for the MAE and
SAE matching problems.

Index Terms—Least squares fitting, maximum absolute error
(MAE), point set matching, sum of absolute error (SAE).

I. INTRODUCTION

THE PROBLEM of superimposing two ordered groups of
3-D points by means of a rigid displacement (rotation and

translation) is a classical one in the robotics, manufacturing,
and computer vision literature, where it is encountered under
various names such as the absolute orientation, pose estimation,
point-based registration, or matching problem. In the standard
approach, a least squares [or sum of squared errors (SSE)]
fitting criterion is employed, and the optimal displacement is
determined either by using a rotation matrix and translation
vector parameterization (see, e.g., [1] and [20]) or by using
quaternions [6], [10].

However, while the least squares matching problem is main-
stream and relatively simple to solve [for instance, by using
singular value decomposition (SVD)], it also has its drawbacks.
First, it is well known that a least squares cost criterion is
optimal from a statistical point of view only when the mismatch
errors can be modeled as normal (Gaussian) random variables
and can therefore be improper and nonrobust in the presence
of nonstandard errors or outliers (see [15]). Second, the min-
imization of a least squares criterion does not permit one to
control the matching errors on the individual points and does
not guarantee satisfaction of a priori fixed bounds on these
errors. This issue is of particular relevance in manufacturing
when it is necessary to ascertain, for instance, if a machined
part can match a design template within a priori assigned
tolerances; see [3] for a discussion of the matching problem
in the constrained case.

A similar issue also arises in guidance systems for surgery
based on medical imaging. In this setting, image registration
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is accomplished by intraoperatively matching marker points on
the patient to tomographic images that were obtained preop-
eratively (see, e.g., [7]). The control over the maximum error
instead of the least squares error is, in this case, clearly of
paramount importance for an accurate surgical intervention.

In this paper, we propose the use of two alternative cost cri-
teria for point matching and present two efficient polynomial-
time algorithms for computing suboptimal solutions of the
corresponding problems. Specifically, we consider a cost cri-
terion based on the maximum Euclidean distance among cor-
responding point pairs (the �∞ or maximum-absolute-error
(MAE) criterion) and a criterion based on the average of the
Euclidean distances of the matching point pairs (the �1 or sum
of absolute error (SAE) criterion).

The �1 criterion is suitable in the presence of nonnormal
noise or possible outliers in the data. The motivation for this
comes from the fact that the least squares criterion tends to
be sensitive to large residuals, while this effect is reduced if
a criterion with linear, instead of quadratic, residual terms is
used. This point is extensively accounted for in the literature
on robust statistics (see, e.g., [12]), and the SAE criterion is
commonly used in image analysis and shape matching [16],
[17], [21].

The �∞ criterion, instead, is unsuitable in applications that
involve noise-corrupted data (such as image analysis) since
its performance is entirely driven by the worst-case matching
points, i.e., no error averaging occurs. On the other hand, this
criterion is advisable in applications such as tolerance inspec-
tion, manufacturing, or robotic surgery, where the registration
noise can be controlled and rendered small a priori and where
a minimal worst-case matching error between point pairs needs
to be guaranteed.

To the best of the author’s knowledge, no efficient
polynomial-time algorithm is currently available for solving
either the �1 or the �∞ matching problem, even when point
correspondence is given, as it is assumed in this paper. In
regard to this latter matter and to further clarify the scope
of this contribution, we remark that several generalizations
exist in the literature dealing with the SSE matching problem
in cases where no ordering (point correspondence) is given
or the number of points in the two sets is unequal (see, for
instance, [8] and [19] and the variations on the iterative closest
point algorithm in [5] and the references therein). However,
since the matching problem without point ordering is highly
nonlinear and intrinsically of a combinatorial nature, all the
cited methods rely on optimization heuristics that may be prone
to convergence problems and/or convergence to local extrema.
In this paper, we shall not consider the problem of determining
point correspondences. Instead, we focus on the development of
efficient polynomial-time algorithms that approximately solve
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the MAE and SAE matching problems under a preassigned
point ordering. Once these “kernel” problems are efficiently
solved, however, one may develop some “outer” heuristic (such
as random sample consensus or iterative closest point) in order
to address the more complicated situation when point ordering
is unknown. This is left for future work.

This paper is organized as follows. In Section II, the SSE,
MAE, and SAE matching problems are formally stated.
Section III reviews the solution of the standard SSE problem,
whereas our proposed algorithms for the solution of the MAE
and SAE problems are reported in Sections IV and V, respec-
tively. Some numerical examples are presented in Section VI,
and conclusions are drawn in Section VII.

II. PROBLEM STATEMENT

Let A .= {a(i) ∈ R
3, i = 1, . . . , n} and B .= {b(i) ∈ R

3,
i = 1, . . . , n} be the two ordered sets of points, and let

A
.= [a(1), . . . , a(n)] B

.= [b(1), . . . , b(n)]

be matrices containing by columns the points in sets A and
B, respectively. We define a displacement operator Γ(·) that
acts on a point set by performing a rigid roto-translation
(displacement) on it. The displacement operator is described
by a rotation, which is expressed by means of a rotation matrix
R ∈ so(3), where so(3) is the special orthogonal group of real
3 × 3 rotation matrices, and a translation, expressed by a
vector t ∈ R

3. Thus, if a displacement Γ is applied to the point
matrix B, a displaced matrix Bd is obtained

Bd
.= Γ(B) = RB + tu�

where u ∈ R
n is a vector of ones. The columns of Bd are the

displaced points

b
(i)
d = Rb(i) + t, i = 1, . . . , n.

The objective of this paper is to present computational tech-
niques that permit the determination of an optimal displacement
(i.e., R and t) that “superimposes” the point set B to the
“template” point set A by minimizing some suitable error
measure.

Let us first recall three standard norms on vectors: The �1, �2,
and �∞ norms of vector x ∈ R

m are defined, respectively, as

‖x‖1
.=

m∑
i=1

|xi| ‖x‖2
.=

√√√√ m∑
i=1

x2
i ‖x‖∞ .= max

i=1,...,m
|xi|.

The Euclidean distances between the template points a(i) and
the corresponding displaced points b

(i)
d are

di
.=

∥∥∥a(i) − b
(i)
d

∥∥∥
2

=
∥∥∥a(i) − Rb(i) − t

∥∥∥
2
, i = 1, . . . , n.

Let d
.= [d1, . . . , dn]� be the vector of distances between the

corresponding point pairs: The overall matching error between

A and Bd can be measured by a metric based on a norm of d.
Depending on the norm employed, this error is written as

e1(R, t) .=
1
n
‖d‖1

=
1
n

n∑
i=1

∥∥∥a(i) − Rb(i) − t
∥∥∥

2
(SAE)

e2(R, t) .=
1√
n
‖d‖

=

(
1
n

n∑
i=1

∥∥∥a(i) − Rb(i) − t
∥∥∥2

2

)1/2

(SSE)

e∞(R, t) .= ‖d‖∞

= max
i=1,...,n

∥∥∥a(i) − Rb(i) − t
∥∥∥

2
(MAE).

Based on these error criteria, we introduce the following three
optimal matching problems:

P1 : min
R∈so(3),t∈R3

e1(R, t)

P2 : min
R∈so(3),t∈R3

e2(R, t)

P∞ : min
R∈so(3),t∈R3

e∞(R, t). (1)

Notice that problem P1 amounts to determining the displace-
ment that minimizes the average distance between the template
points a(i) and the corresponding roto-translated points b

(i)
d .

With P2, we aim at minimizing the average squared distance
between the matching points, whereas with P∞, we aim at
minimizing the maximum distance between these points.

Problem P2 is well known in the literature, and an exact
closed-form solution for it is available. In Section III, we briefly
recall this solution, which also serves as a starting point for the
solution algorithms for problems P1 and P∞. To the best of
this author’s knowledge, no exact and efficient solution method
currently exists for these two latter problems. In Sections IV
and V, we discuss two ad-hoc iterative algorithms for the
approximate solution of P1 and P∞.

III. SSE DISPLACEMENT PROBLEM

We here briefly review the solution of the classical SSE
optimal displacement problem P2 (see [1] and [20]). The main
result is reported in the next theorem, whose proof is sketched
for completeness in the Appendix.
Theorem 1 (Optimal Solution of P2): Let

W
.= In − 1

n
uu� Ã = AW B̃ = AW (2)

where In denotes the n × n identity matrix, and let UΣV �

be the singular value factorization of B̃Ã�, where Σ =
diag(σ1, σ2, σ3) is a diagonal matrix of the ordered singular
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values σ1 ≥ σ2 ≥ σ3 ≥ 0. An optimal solution to problem (1)
is given by

R2,opt =
{

V U�, if det B̃Ã� ≥ 0
V diag(1, 1,−1)U�, if det B̃Ã� < 0

t2,opt =
1
n

(A − R2,optB)u.

IV. MAE DISPLACEMENT PROBLEM

In this section, we present a sequential method for determin-
ing a suboptimal solution to problem P∞. The key idea is to
first determine an initial optimal SSE displacement (using the
result in Theorem 1) and then to iteratively perform additional
corrective displacements in order to adjust the solution by
moving in the direction of minimizing the �∞ norm of the
distance vector d.

If (R1, t1) is the initial displacement, the initial displaced
matrix Bd1 is given by

Bd1 = R1B + t1u
�.

Applying a second corrective displacement (R2, t2) (we shall
discuss later in Section IV-A how such a corrective displace-
ment is computed) to Bd1 yields

Bd2 = R2Bd1 + t2u
� = R2R1B + R2t1u

� + t2u
�.

Proceeding in this way, at the kth iteration, the overall displaced
matrix would be

Bdk = (Rk · · ·R1)B + ((Rk · · ·R2)t1

+ (Rk · · ·R3)t2+· · ·+Rktk−1+tk)u�

corresponding to a total rotation matrix (Rk · · ·R1) and
translation vector (Rk · · ·R2)t1 + (Rk · · ·R3)t2 + · · · +
Rktk−1 + tk.

The logical scheme of the algorithm is as follows. The key
step 5) in the algorithm is explained in detail in Section IV-A.

Algorithm 1 (MAE Point Matching): Set exit relative level
η ∈ (0, 1). Given matrices A, B, compute the optimal SSE
displacement and initialize

k = 1, Rk = R2,opt, tk = t2,opt, R = Rk,

t = tk, e = some large number.

repeat
1) build the displaced matrix

Bdk = RB + tu�

2) evaluate the cost function

e+
.= max

i=1,...,n

∥∥∥a(i) − b
(i)
dk

∥∥∥
2

3) exit condition: if (e − e+)/e < η, stop and return R, t
4) set k = k + 1
5) compute (Rk, tk) by solving the corrective �∞ displace-

ment subproblem (see Algorithm 2 in Section IV-A)

6) update the overall displacement parameters: R = RkR,
t = Rkt + tk

7) set e = e+.

Algorithm 1 iteratively computes adjustment displacements
until no further significant improvement is observed in the
objective cost. Clearly, the central phase in the algorithm is
the computation of the corrective displacement in step 5). This
subproblem is analyzed in detail in the next section.

A. Computing �∞ Adjustment Displacements

Suppose that we are given the template matrix A and the dis-
placed matrix Bdk−1 at the (k − 1)th iteration of Algorithm 1.
The corrective displacement subproblem amounts to determin-
ing a rotation matrix Rk of “small” angle θk ≤ γ and translation
tk such that

max
i=1,...,n

∥∥∥a(i) − Rkb
(i)
dk−1 − tk

∥∥∥
2

(3)

is approximately minimized. To this purpose, we introduce an
approximate parameterization of small rotations in the next
section.
1) Exponential Mapping, Approximation, and Reconstruc-

tion: A classical result from a group theory (see, e.g., [9])
states that any rotation matrix R ∈ so(3) can be parameterized
in terms of a matrix S ∈ sk(3), where sk(3) denotes the space
of 3 × 3 skew-symmetric matrices. Specifically, if h ∈ R

3 is a
unit vector (i.e., such that ‖h‖ = 1) denoting the rotation axis,
and θ is the angle of rotation around h, then the rotation matrix
representing this rotation is given by the exponential mapping1

eS .= I + S +
1
2!

S2 +
1
3!

S3 + · · · (4)

where

S
.= Hθ H = skew(h) .=


 0 −h3 h2

h3 0 −h1

−h2 h1 0




with ‖H‖F =
√

2 being the Frobenius norm of H (the
Frobenius norm of a matrix is the square root of the sum of
the squares of all the elements of the matrix).

Unfortunately, due to its nonlinearity, the exponential param-
eterization (4) is not very useful for our subsequent develop-
ments. We shall hence introduce a working scheme that consists
in two steps.

First, for small angles of rotation, rotation matrices are
approximately parameterized by a first-order truncation of (4)

R̃
.= I + S (5)

where S
.= skew(s), with s = θh. The quality of the approx-

imation is controlled by the norm of the matrix parameter
S ∈ sk(3), ‖S‖F =

√
2‖s‖2.

Second, since matrix R̃ is not a rotation, we introduce a
reconstruction step in order to retrieve an actual rotation matrix
from (5). To this end, we pose and solve the following problem:

1An explicit expression for eS is provided by the Rodrigues formula: eS =
I + H sin θ + H2(1 − cos θ).
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Determine a matrix R ∈ so(3) so that ‖R − R̃‖F is minimized.
This problem can actually be solved by the SVD of R̃ (see, e.g.,
[11]). Let Ũ Σ̃Ṽ � be the SVD of R̃, then the rotation matrix
closest to R̃ in the Frobenius norm is

R = Ũ Ṽ �.

Letting ∆R
.= R̃ − R, the (squared) reconstruction error can be

quantified as

‖∆R‖2
F =

3∑
i=1

(σ̃i − 1)2

where σ̃i’s are the singular values of R̃, which are explicitly
given by

σ̃1 = σ̃2 =
√

1 + ‖s‖2
2

σ̃3 = 1

and therefore, the reconstruction error is

‖∆R‖F =
√

2
(√

1 + ‖s‖2
2 − 1

)

=
1√
2
‖s‖2

2 + O
(
‖s‖4

2

)
� 1√

2
‖s‖2

2, for small ‖s‖2. (6)

2) Approximate �∞ Adjustment Displacement Problem: We
are now in a position to state and solve the approximate
adjustment displacement problem. Let γ > 0 be a bound on
the correction angle, and let R̃k = I + Sk be the approximate
adjustment rotation. The set of possible adjustments over which
we search for the optimum is the convex set

R(γ) .=
{

R̃k : R̃k = I + Sk, Sk ∈ sk(3), ‖Sk‖F ≤ γ
√

2
}

where the constraint ‖Sk‖F ≤ γ
√

2 imposes that the adjust-
ment rotation angle be no larger than γ. The approximate
adjustment problem is then written as

min
R̃k∈R(γ),tk∈R3

max
i=1,...,n

∥∥∥a(i) − R̃kb
(i)
dk−1 − tk

∥∥∥
2
.

Since maxi=1,...,n xi ≤ ẽ+ if and only if xi ≤ ẽ+ for all i =
1, . . . , n, introducing a slack variable ẽ+, the aforementioned
problem can be expressed in the equivalent form as

min
R̃k∈R(γ),tk∈R3,ẽ+

ẽ+ subject to:

∥∥∥a(i) − R̃kb
(i)
dk−1 − tk

∥∥∥
2
≤ ẽ+, i = 1, . . . , n.

Making all constraints explicit, we finally obtain

min
Sk∈sk(3),tk∈R3,ẽ+

ẽ+, subject to:

∥∥∥a(i)−b
(i)
dk−1−Skb

(i)
dk−1 − tk

∥∥∥
2
≤ ẽ+, i = 1, . . . , n (7)

‖Sk‖F ≤ γ
√

2. (8)

A key observation at this point is that problem (7) is a convex
optimization program, and in particular, it is a convex second-
order cone program (SOCP). The global optimum of (7) can
therefore be computed with great computational efficiency via
specialized interior-point methods for SOCP optimization (see,
e.g., [2] and the references therein). An assessment of the nu-
merical effort required for solving (7) using a general-purpose
algorithm for SOCP is provided in Section IV-A3.

Once (7) is solved, we let ẽ∗+ denote the objective value at
the optimum, and reconstruct a rotation matrix Rk from R̃k =
I + Sk, using the technique described in Section IV-A1. That
is, we compute the SVD ŨkΣ̃kṼ �

k of R̃k, and set Rk = ŨkṼ �
k .

Notice that when the reconstructed Rk is plugged into the
objective (3), an objective value that is different from the com-
puted ẽ∗+ is obtained due to the reconstruction error. However,
this error can be bounded a priori as follows. Letting ∆Rk

.=
R̃k − Rk, we have that∥∥∥a(i) − Rkb

(i)
dk−1 − tk

∥∥∥
2

=
∥∥∥a(i) − R̃kb

(i)
dk−1 − tk + ∆Rkb

(i)
dk−1

∥∥∥
2

≤
∥∥∥a(i) − R̃kb

(i)
dk−1 − tk

∥∥∥
2

+
∥∥∥∆Rkb

(i)
dk−1

∥∥∥
2

≤
∥∥∥a(i) − R̃kb

(i)
dk−1 − tk

∥∥∥
2

+ ‖∆Rk‖F

∥∥∥b
(i)
dk−1

∥∥∥
2
.

Now, since R̃k is an optimal solution of (7), and since
‖∆Rk‖F ≤

√
2(

√
1 + γ2 − 1) [this follows from (6) and the

bound (8)], we conclude the previous chain of inequalities with∥∥∥a(i)−Rkb
(i)
dk−1−tk

∥∥∥
2
≤ ẽ∗+ +

√
2

(√
1 + γ2 − 1

) ∥∥∥b
(i)
dk−1

∥∥∥
2

from which we derive the following global a priori bound
on the discrepancy between ẽ∗+ and e+

.= maxi=1,...,n ‖a(i) −
Rkb

(i)
dk−1 − tk‖2:

e+ − ẽ∗+ ≤
√

2
(√

1 + γ2 − 1
)

max
i=1,...,n

∥∥∥b
(i)
dk−1

∥∥∥
2

=
(

1√
2
γ2 + O(γ4)

)
max

i=1,...,n

∥∥∥b
(i)
dk−1

∥∥∥
2
.

Thus, e+ − ẽ∗+ can be controlled a priori to be small by
choosing a sufficiently small γ.

We can now outline the algorithm to be used for the correc-
tion displacement step.

Algorithm 2 (�∞ Corrective Displacement Subproblem): Fix
a suitably small γ > 0. Given matrices A, Bdk−1 do:

1) compute R̃k = I + Sk, tk, by solving SOCP
problem (7)

2) compute SVD: R̃k = ŨkΣ̃kṼ �
k

3) reconstruct a rotation matrix Rk = ŨkṼ �
k

5) return Rk and tk and finish.

3) Numerical Complexity of the �∞ Adjustment Displace-
ment Problem: The numerical effort required by Algorithm 2 is
mainly concentrated in steps 1) and 2). Step 2) simply requires
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the singular value factorization of a 3 × 3 real matrix, which
can be performed in O(1) operations.

Step 1) requires, instead, the numerical solution of an SOCP
with a fixed number of variables (namely, seven variables:
the three free entries of the skew-symmetric matrix Sk, the
three elements of tk, and the scalar ẽ+) and n + 1 second-
order cone constraints. The effort required for this step depends
on the specific type of numerical optimization algorithm that
one employs. For instance, by using a general-purpose primal-
dual interior-point solution method, the numerical effort for
solving (7) grows essentially as O(

√
n), which is according

to the analysis developed in [13] (Section IV). This shows
that the proposed approach is numerically efficient and actually
subpolynomial in the number n of data points.

V. SAE DISPLACEMENT PROBLEM

This section discusses a suboptimal sequential method for
approximating the solution of problem P1. We employ the same
framework developed in Section IV for the P∞ problem. The
overall scheme of the algorithm is given next. The key step 5)
in the algorithm is detailed in Section V-A.

Algorithm 3 (SAE Point Matching): Set exit relative level
η ∈ (0, 1). Given matrices A, B, compute the optimal SSE
displacement and initialize

k = 1, Rk = R2,opt, tk = t2,opt,

R =Rk, t = tk, e = some large number.

repeat
1) build the displaced matrix

Bdk = RB + tu�

2) evaluate the cost function

e+
.=

n∑
i=1

∥∥∥a(i) − b
(i)
dk

∥∥∥
2

3) exit condition: if (e − e+)/e < η, stop and return R, t
4) set k = k + 1
5) compute (Rk, tk) by solving the corrective �1 displace-

ment subproblem (see Algorithm 4 in Section V-A)
6) update the overall displacement parameters: R = RkR,

t = Rkt + tk
7) set e = e+.

A. Computing �1 Adjustment Displacements

Suppose that we are given the template matrix A and the dis-
placed matrix Bdk−1 at the (k − 1)th iteration of Algorithm 3.
The �1 corrective displacement subproblem amounts to de-
termining a rotation matrix Rk of “small” angle θk ≤ γ and
translation tk such that

n∑
i=1

∥∥∥a(i) − Rkb
(i)
dk−1 − tk

∥∥∥
2

is approximately minimized.

By using the approximation and reconstruction approach
discussed in Section IV-A1, we let γ > 0 be a bound on the
correction angle, and let R̃k = I + Sk be the approximate
adjustment rotation. The approximate �1 adjustment problem
is then written as

min
R̃k∈R(γ),tk∈R3

n∑
i=1

∥∥∥a(i) − R̃kb
(i)
dk−1 − tk

∥∥∥
2
.

Introducing a slack variable vector ξ = [ ξ1 ξ2 . . . , ξn ]�, this
problem can be expressed explicitly in the form of a convex
SOCP

min
Sk∈sk(3),tk∈R3,ξ∈Rn

n∑
i=1

ξi subject to :∥∥∥a(i) − b
(i)
dk−1 − Skb

(i)
dk−1 − tk

∥∥∥
2
≤ ξi, i = 1, . . . , n

‖Sk‖F ≤ γ
√

2. (9)

We observe again that the global optimum of problem (9) can
be computed with great computational efficiency using standard
algorithms for SOCP optimization. Once problem (9) is solved,
we reconstruct a rotation matrix Rk from R̃k = I + Sk by
computing the SVD ŨkΣ̃kṼ �

k of R̃k and setting Rk = ŨkṼ �
k .

The error in the objective, which is induced by the recon-
struction, can be analyzed in a way analogous to that illustrated
in Section IV-A2. The result is the following: Let ẽ∗+ denote
the objective value at the optimum of problem (9), and let
e+

.=
∑n

i=1 ‖a(i) − Rkb
(i)
dk−1 − tk‖2. Then, it holds that

e+ − ẽ∗+ ≤
√

2(
√

1 + γ2 − 1)
n∑

i=1

∥∥∥b
(i)
dk−1

∥∥∥
2

=
(

1√
2
γ2 + O(γ4)

) n∑
i=1

∥∥∥b
(i)
dk−1

∥∥∥
2
.

We next outline the algorithm to be used for the �1 correction
displacement step.

Algorithm 4 (�1 Corrective Displacement Subproblem): Fix
a suitably small γ > 0. Given matrices A, Bdk−1 do:

1) compute R̃k = I + Sk, tk, by solving SOCP
problem (9)

2) compute SVD: R̃k = ŨkΣ̃kṼ �
k

3) reconstruct a rotation matrix Rk = ŨkṼ �
k

4) return Rk and tk and finish.

1) Numerical Complexity of the �1 Adjustment Displacement
Problem: Following the reasoning that is similar to the one
reported in Section IV-A3, we see that the numerical effort
required by Algorithm 4 is mainly due to the solution of the
SOCP (9). In this case, the SOCP has n + 6 variables and n + 1
second-order cone constraints. A general-purpose primal-dual
interior-point solution algorithm, such as the one described and
analyzed in [13], would then require O(

√
n)O(n3) operations

to numerically solve (9).

VI. NUMERICAL EXAMPLES

The examples in this section have been coded in Matlab
ver. 7.2 and run on a Windows XP platform with an AMD Dual
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Fig. 1. Point sets A and B for Example 1.

Opteron 280 CPU equipped with 3 G-B of RAM. For the solu-
tion of SOCP, we used the freely available YALMIP interface,
with SeDuMi solver (see [14]). The purpose of these examples
is not to demonstrate which error measure is more suitable than
another, since this issue is dependent on the application at hand.
Such kind of discussion is, however, available in several papers
(see, e.g., [18] and the references therein). Instead, the examples
here are aimed at highlighting the functioning and numerical
efficiency of the proposed algorithms.

A. Example 1

We start with a simple example consisting of n = 4 points,
as shown in Fig. 1, with

A =


 1 1 −1 −1

1 −1 −1 1
0 0 0 0




B =


 3.0000 4.4142 3.0000 1.6858

2.5142 0.9000 −0.5142 1.0000
0 0 0 0


 .

We would like to determine a displacement that superim-
poses B on A, minimizing the �∞ matching error. Notice that
the �2 optimal displacement gives in this case

R2,opt =


 0.7193 0.6947 0
−0.6947 0.7193 0

0 0 1.0000




t2,opt =


−2.8532

1.4002
0




corresponding to an �∞ matching error that is equal to 0.1347.
This error can, indeed, be reduced using Algorithm 1. Setting
γ = 0.0175 and exit tolerance η = 10−6, Algorithm 1 con-
verged in three iterations to the optimal solution

R∞,opt =


 0.7071 0.7071 0
−0.7071 0.7071 0

0 0 1.0000




t∞,opt =


−2.8284

1.4142
0




Fig. 2. Graphical representation of the set {x ∈ R
3 : ‖x‖1 = 100} used in

Example 2.

yielding an �∞ matching error that is equal to 0.1. By using the
proposed algorithm based on the MAE criterion, we were hence
able to reduce the maximum matching distance across all point
pairs by a 25.7% factor.

B. Example 2

In this second example, points in the template set A are
generated uniformly at random on the surface of the set {x ∈
R

3 : ‖x‖1 = 100} shown in Fig. 2 (see [4] for a description of
techniques for uniform generation in norm-bounded sets).

The point set B is constructed by adding a random pertur-
bation to each entry of A. To simulate the presence of outliers,
this perturbation is selected with a probability of 0.9 from a
uniform distribution on [−1, 1] and with a probability of 0.1
from a uniform distribution on [−10, 10]. Then, the perturbed
points are rotated by 45◦ around the x-axis and translated by
vector [10 10 10]�.

The SSE, MAE, and SAE optimal displacement problems are
then solved for the pairs (A,B), with algorithm parameters set
to γ = 0.0524 (corresponding to approximately 3◦ for correc-
tive rotations), η = 10−5.

The results obtained for various values of n (the number
of points) are summarized in Table I, which also reports the
number of iterations required to reach convergence, the running
times, and the actual number noutl of outliers present in each
data instance. The figures in the table, which are marked with
“no outl.,” refer to cost values obtained on the cleaned point set,
that is, on the point set with outliers removed.

Notice that, on average, over the five test cases, the e∞
matching error obtained by the solution of the P2 problem
is 28% higher than the minimum achieved by solving the
specialized P∞ problem. From the point of view of outlier
resilience, looking at the e1 criterion values on the cleaned
point sets and comparing the figures obtained from the P2 and
P1 problems, we remark a significant improvement in the fitting
error. Notice also that solutions in the iterative algorithms are
always obtained in less than five iterations, with running times
that grow gracefully with the problem dimension.
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TABLE I
MATCHING ERRORS ATTAINED ON FIVE RANDOMLY GENERATED SETS OF POINTS OF INCREASING CARDINALITY

BY THE OPTIMAL SOLUTIONS OF PROBLEMS P2, P∞, P1 (DATA AS IN EXAMPLE 2)

Fig. 3. “Stanford bunny” 3-D model.

C. Example 3

In the final example, we considered as template points n =
453 vertices of a 3-D model known as the “Stanford bunny,”
available at http://graphics.stanford.edu/software/scanview/
models/bunny.html (see Fig. 3).

The point set B is constructed by adding to each point of
A a random perturbation which, with a probability of 0.9, is
extracted from a zero-mean normal with covariance 10−6I3,
and with a probability of 0.1 from a zero-mean normal with
covariance 10−4I3. Then, the perturbed points are rotated by
45◦ around the [1 1 1]� axis and translated by [1 1 1]�.

The SSE, MAE, and SAE optimal displacement problems are
then solved for the (A,B) pair, setting the algorithm parameters
to γ = 0.0524, η = 10−5. The results are reported in Table II.
We notice that both P2 and P1 yield an �∞ error about 23%
higher than the one achieved by the P∞ problem. We also
remark that the cost values attained by the P2 and the P1

problems tend to become numerically similar, as the number n
of data point increases. This effect is mainly due to the fact that
variations in the residuals in the e2 or e1 costs are weighted by

TABLE II
MATCHING ERRORS ATTAINED BY THE OPTIMAL SOLUTIONS OF

PROBLEMS P2, P∞, P1 ON THE “STANFORD BUNNY” EXAMPLE

a 1/
√

n or 1/n factor, respectively. Therefore, changes in the
optimal displacement parameters may result in small variations
of the cost when n is large.

VII. CONCLUSION

The classical cost criterion based on the sum of squared
distances between matching points might be unsuitable in
problems where the data are affected by outliers or nonnormal
noise or where the actual maximum matching error across all
the points needs to be kept under control. The SAE and MAE
criteria, respectively, are preferable matching measures in these
cases.

In this paper, we showed that suboptimal solutions for the
point matching problems under the MAE and the SAE cost
criteria can be obtained by exploiting an iterative “convexifi-
cation” technique that requires a solution at each iteration of an
SOCP. Such problems can be solved efficiently in polynomial
time by means of interior-point methods for convex program-
ming. The overall numerical cost, although admittedly higher
than that of an SVD factorization (which is required in the
classical approach based on the sum-of-squared-distances cost
criterion), appears to be acceptable for those applications that
can tolerate computation times on the order of a few seconds.

The technique discussed in this paper is currently limited
to the case where point correspondences are given a priori.
An important open problem that we leave for future research
involves a generalization of the method to tackle the problem
of simultaneous point labeling and displacement optimization
under the considered nonstandard cost criteria.
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APPENDIX

Proof of Theorem 1: Notice first that the optimal argu-
ments of problem (1) remain the same if we minimize the
squared objective e2

2(R, t), instead of e2(R, t). Thus, we solve
minR∈so(3),t∈R3 e2

2(R, t), which is rewritten in matrix form as

e2
2,opt =

1
n

min
R∈so(3),t∈R3

‖A − RB − tu�‖2
F

=
1
n

min
R∈so(3)

min
t∈R3

‖A − RB − tu�‖2
F . (10)

For any fixed R, the inner minimization problem in (10) is
written as

min
t∈R3

‖A − RB − tu�‖2
F

= min
t∈R3

{
‖A − RB‖2

F − 2Tr(A − RB)ut� + nt�t
}

.

This minimum is easily computed by setting the gradient with
respect to t to zero

∇t = −2u�(A − RB)� + 2nt� = 0

which yields the optimal translation vector as a function of R

t =
1
n

(A − RB)u.

Substituting t back into (10), with the notation in (2), we obtain

ne2
2,opt = min

R∈so(3)
‖Ã − RB̃‖2

F . (11)

An optimal solution to (11) can be determined as follows.
Recall that for orthogonal R, it holds that ‖RB̃‖F = ‖B̃‖F ,
and let UΣV � be the singular value factorization of B̃Ã�.
Then, we write

‖Ã − RB̃‖2
F = ‖Ã‖2

F + ‖RB̃‖2
F − 2Tr RB̃Ã�

= ‖Ã‖2
F + ‖B̃‖2

F − 2Tr TΣ

= ‖Ã‖2
F + ‖B̃‖2

F − 2
3∑

i=1

Tiiσi (12)

where T
.= V �RU is an orthogonal matrix. Clearly, (12) is

minimized if
∑3

i=1 Tiiσi is maximized. Suppose first that
det B̃Ã� ≥ 0 (or that det U detV = +1), then—since orthog-
onality of T imposes |Tii| ≤ 1—the maximum is achieved by
choosing T11 = T22 = T33 = 1, i.e., T = I3, which results in a
rotation matrix R = V U�.

Notice that, in the “degenerate” case when detU det
V = −1, the previous choice would make R a reflection, in-
stead of a rotation matrix. To correct this issue, we choose in
this case T11 = 1, T22 = 1, T33 = −1, which yields the optimal
rotation R = V diag(1, 1,−1)U� (see [20] for further details
on the degenerate case). �
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