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Abstract

The objective of this paper is twofold. First, the problem of generation of real random matrix samples with uniform distribution in
structured (spectral) norm bounded sets is studied. This includes an analysis of the distribution of the singular values of uniformly
distributed real matrices, and an e4cient (i.e. polynomial-time) algorithm for their generation. Second, it is shown how the developed
techniques may be used to solve in a probabilistic setting several hard problems involving systems subject to real structured uncertainty.
? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In this paper we consider a broad class of problems in-
volving static or dynamic systems subject to structured and
norm bounded real uncertainty. Problems of this kind arise
in many contexts, such as robust analysis and control of LTI
systems (Qiu et al., 1995; Zhou, Doyle & Glover, 1996),
estimation and &ltering (El Ghaoui & Cala&ore, 2001; Xie,
Soh, & de Souza, 1994), robust optimization (Ben-Tal,
El Ghaoui, & Nemirovskii, 2000; El Ghaoui, Oustry, & Le-
bret, 1998), etc. Several results are now available showing
that such problems can be computationally hard to solve
exactly (Blondel & Tsitsiklis, 2000; Nemirovskii, 1993;
Polijak & Rohn, 1993), therefore a variety of methods have
been proposed to solve relaxed versions of the original
problems, at the expense of possible conservatism (Zhou
et al., 1996; Zhu, Huang, & Doyle, 1996).
Recently, a new parallel line of research has emerged,

which proposes to substitute the robust or worst-case
viewpoint with a more tractable probabilistic one (Ray &
Stengel, 1993; Tempo & Dabbene, 1999; Vidyasagar &
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Blondel, 2001; Vidyasagar, 2001). It turns out that prob-
lems that are computationally hard in a deterministic setting
may be e4ciently solved using randomized algorithms, if a
certain probability of performance degradation is accepted
(Khargonekar & Tikku, 1996; Tempo, Bai, & Dabbene,
1997; Vidyasagar, 1997). For these reasons, a now gen-
erally accepted statement is that “randomized algorithms
have polynomial-time complexity”. A crucial remark, how-
ever, is that the previous statement is true provided that the
computational cost required to generate random samples of
the uncertainty according to the required probability distri-
bution is indeed polynomial-time. Unfortunately, no such
algorithm was available for the most common uncertainty
structure, where the uncertainty matrix � is block-diagonal
with blocks �i bounded in the spectral norm. The di4-
culty of this sample generation problem may be easily
overlooked, therefore a brief discussion on the failing of
&rst-attempt techniques is reported in Section 2. The uncer-
tainty sample generation problem for the case of complex
matrix blocks was studied in depth in Cala&ore, Dabbene,
and Tempo (2000a), while the case of vector uncertainty
has been treated in Cala&ore, Dabbene, and Tempo (1999a).
However, the sample generation problem in the case of real
matrix blocks raised further technical di4culties that could
not be overcome within the technical framework introduced
in Cala&ore et al. (2000a), and was therefore left as an open
problem.
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The main objective of this paper is to develop the mathe-
matical techniques required for the solution of the real ma-
trix blocks sample generation problem, and to show how
these techniques may be applied to solve in a probabilistic
setting several hard problems arising in systems and control.
In particular, in this paper we will assume that the uncer-

tainty aMecting the system has the structure described by the
set

� := {� : �= diag(q1Ir1 ; qsIrs ; �1; : : : ; �b)}; (1)

where qi ∈R; i=1; : : : ; s are repeated scalar parameters with
multiplicity r1; : : : ; rs, and �i ∈Rni ;mi ; i = 1; : : : ; b are full
blocks. The structured matrix � is further restricted to the set

��
:= {�∈�:‖�‖6 �}; (2)

where ‖�‖ := O(�), and O(·) denotes the maximum
singular value of a matrix. The set �� is the subset of pertur-
bations in � with size at most �. This uncertainty descrip-
tion is general and it is now widely used in the context of
uncertain systems, see for instance (Zhou et al., 1996) and
references therein. We will make the standing assumption
that the blocks �i are independent random matrices having
uniform distribution on the spectral norm bounded support

B�
:= {�∈Rn;m: O(�)6 �}: (3)

The scalars qi are also considered independent and uniformly
distributed; their generation is trivial and will not be further
discussed.
A justi&cation of the choice of the uniform density may

be found for instance in Bai, Tempo, and Fu (1998) and
Barmish and Lagoa (1997). However, the results in this
paper hold not only for the uniform distribution, but for
the more general class of unitarily invariant distributions
over B�, see (Cala&ore et al., 2000a). The independence
assumption reduces the problem of generating samples of
uncertainty in the set �� to the problem of generating a
single block in the set B�. Therefore, in the sequel of the
paper we focus, without loss of generality, to the problem
of generating uniform samples of �∈B�. This problem has
also its own theoretical interest in the theory of multivariate
statistical analysis, and is thoroughly studied in the paper.
The &rst part of the paper is technical, and discusses a

method for generating uniform samples of �∈B� based on
the generation of the singular value decomposition (SVD)
factors of �. In Section 2, the density function of the singular
values of uniformly distributed matrices is studied, and a
polynomial-time algorithm for their generation is presented
in Section 2.2.
In Section 3, we show how several problems involving

systems subject to real structured uncertainty may be e4-
ciently solved in a probabilistic setting, and discuss some
applications to selected problems. In particular, we consider
the solution of uncertain least-squares problems in Section
3.1, the computation of the structured real stability radius in
Section 3.2, and the assessment of approximate feasibility
in robust semide&nite programming (SDP) in Section 3.3.

An application to robust control design is also studied in
Cala&ore, Dabbene, and Tempo (2000b).

1.1. De)nitions and notation

The space of real skew-symmetric matrices of order n
will be denoted as Sn := {X ∈Rn;n: X + X T = 0}. The
determinant of a real square matrix X is denoted by either
|X | or det X , and AdjX denotes the classical adjoint of X .
When needed by the context, we specify the dimension of
the identity and the zero matrix with In and 0n;m.
A real randommatrix �∈Rn;m is a matrix of random vari-

ables [�]i; k ; i=1; : : : ; n; k =1; : : : ; m. The probability den-
sity function (pdf) f�(�) is de&ned as the joint probability
density of the elements of �. The notation � ∼ f� means
that � is a random matrix with probability density f�. For
a measurable set F ⊂ Rn;m; � ∼ U[F] means that � is a
random matrix with uniform density over the set F.
Given a vector [x1; x2; : : : ; xn]T, its Vandermonde matrix

Vn is de&ned as Vn =Vn(x1; : : : ; xn)
:= [X(x1) X(x2) · · ·

X(xn)]; X(�) := [1 � �2 · · · �n−1]T. Similarly,Vi=Vi(x1;
x2; : : : ; xi) is de&ned as the truncated Vandermonde matrix
composed of the &rst i columns of Vn.

De�nition 1 (Normalized SVD). Given �∈Rn;m; m¿ n;
we de&ne the following normalized form of the SVD
of �: � = U�V T; where U ∈Rn;n and V ∈Rm;n have
orthonormal columns; and � = diag(1; : : : ; n); with
1¿ 2¿ · · ·¿ n¿ 0. The columns of V are normalized
so that the &rst nonvanishing component of each column is
positive.

2. Sample generation in a spectral norm bounded set

The aim of this &rst section is to provide the technical de-
tails for the solution of the problem of generating samples of
a matrix �∈Rn;m uniformly distributed in the spectral norm
ball of radius one, i.e. � ∼ U[B1]. Uniform distribution in
a set of generic radius � may be easily obtained multiplying
by � the samples generated in the unit ball.
Due to dimensionality problems, classical generation

methods based on rejection of samples from an outer
bounding set (Devroye, 1986) are highly ine4cient for the
problem at hand, as already remarked in Cala&ore et al.
(2000a) for the case of complex matrices. Indeed, the re-
jection rate �—de&ned as the expected number of samples
that should be generated in the outer bounding set in order
to &nd one sample in the desired set—increases exponen-
tially with the dimension n. Let for instance �∈Rn;n, and
consider the sets AF

:= {� : ‖�‖F6
√
n}, and AC

:=
{� : maxi=1; :::; n‖�i‖6 1}, where the subscript F stands for
Frobenius norm, and �i, i = 1; : : : ; n, represent the columns
of �. Then, we have the inclusions B1 ⊆ AF, and B1 ⊆
AC. In Table 1, we report the rejection rates for samples
uniformly generated in the above de&ned sets, computed as



G. Cala)ore, F. Dabbene / Automatica 38 (2002) 1265–1276 1267

Table 1
Rejection rates �F from the set AF, and �C from the set AC

n 2 3 4 5 6 8 10 12

�F 3 26.7 640 3.9e4 6.1e6 2.3e12 3.1e19 1.54e28
�C 1.5 4.24 24.6 305 8.3e3 6.9e7 1.5e13 9.7e19

the ratio between the volumes of the outer bounding and the
desired sets. The required formulas for the volumes have
been derived in Cala&ore et al. (1999a, 2000a).
Table 1 shows the ine4ciency of methods based on re-

jection, due to the “curse of dimensionality”, and motivates
the need for more sophisticated techniques for direct gener-
ation of samples in B1. To this end, the key idea is to con-
struct the samples of � from the samples of the SVD factors
U;�; V de&ned in De&nition 1.
The relation among the uniform pdf of � and the pdfs

of U;�; V was studied in Cala&ore et al. (2000a). That key
result is reported below for easier reference of the reader.

Theorem 1 (Cala&ore et al., 2000a). Let �∈Rn;m; m¿ n;
be factored as in De)nition 1; with 1¿1 ¿ · · ·¿n ¿ 0.
The following statements are equivalent:

(i) � ∼ U[B1];
(ii) The joint pdf of U; � and V is fU;�;V (U;�; V ) =

fU (U )f�(�)fV (V ); where fU (U ) =U[{U :UTU =
I}]; fV (V )=U[{V :V TV=I; [V ]1; j ¿ 0; j=1; : : : ; n}];
and

f�(�) = KR
n∏

j=1

m−n
j

∏
16j¡k6n

(2
j − 2

k) (4)

and KR is a normalization constant given by

KR = n!�n=2
n−1∏
j=0

�(1 + m+j
2 )

�( 32 +
j
2 )�(

m−n+j+1
2 )�(1 + j

2 )
: (5)

The value of KR is determined using the techniques de-
scribed in Selberg (1944).
In the literature, the uniform distribution over the orthog-

onal group is known as the Haar invariant distribution (An-
derson, 1984). Further discussion and the proof of the pre-
vious result may be found in Cala&ore et al. (2000a).
This result provides explicit expressions of the (indepen-

dent) pdfs of U;�; V . We can therefore generate uniform
samples of � by generating independently samples of U ,
V and � according to their pdfs, and then computing the
product U�V T. The problem of generating U and V has
been thoroughly discussed in Cala&ore et al. (2000a) and in
Stewart (1980). The problem of e4ciently generating the
singular values according to their pdf (4) is an open prob-
lem and is addressed in the next section.

2.1. On the marginal densities of the singular values

In this section, we focus on the generation of random
samples of the singular values of a matrix �∈B1 ⊂ Rn;m;

according to pdf (4). To this aim, we make use of a stan-
dard method for random generation with multivariate distri-
butions, the so-called conditional method (Devroye, 1986).
The basic idea of this method is to rewrite a multivariate
density function as a product of conditional densities. One
can then generate the &rst random variable according to its
(univariate) marginal density, then generate the next vari-
able conditional on the &rst one, and so forth. In other words,
the conditional method reduces an n-dimensional genera-
tion problem to n one-dimensional problems. In our case,
we have

f�(�) = f1 (1)f2 (2|1) · · ·fn(n|1 · · · n−1);

where the conditional densities fi(i|1; : : : ; i−1) are
given by the ratio of marginal densities

fi(i|1; : : : ; i−1) =
f(i)

 (1; : : : ; i)

f(i−1)
 (1; : : : ; i−1)

: (6)

In turn, the marginal densities f(i)
 (1; : : : ; i); i = 1; : : : ; n

are de&ned as the multiple integral

f(i)
 (1; : : : ; i) =

∫
· · ·

∫
f�(�) di+1 · · · dn: (7)

A singular values matrix � with density f�(�) can there-
fore be obtained generating sequentially the i’s, i=1; : : : ; n,
where each i is distributed according to the univariate den-
sity fi(i|1; : : : ; i−1). However, this method requires the
computation of the marginal densities (7), which is often a
very di4cult task (Devroye, 1997). To address this prob-
lem, we &rst state the following lemma.

Lemma 1. The marginal densities (7) may be written in
the form

f(i)
 (1; : : : ; i) =

KR
2n−i Wi(2

1 ; : : : ; 
2
i )

i∏
k=1

m−n
k ; (8)

where

Wi =Wi(x1; : : : ; xi)
:=
∫
Di

|Vn| d�(xn) · · · d�(xi+1); (9)

being d�(xk)
:= x k dxk ;  = 1

2(m − n − 1); and Di
:=

{0¡xn ¡ · · ·¡xi}.

The proof of this lemma is reported in Appendix A. We
now concentrate on the closed form solution of the multiple
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integral (9). The following key theorem provides a direct
way to compute the conditional densities that are needed for
the application of the conditional method.

Theorem 2. For i=1; : : : ; n; the multiple integral in (9) can
be computed as

Wi = x!ii det1=2




M (xi)
Vi−1

0

−VT
i−1 0 0


 ; (10)

where the blocks corresponding to the term Vi−1 =
Vi−1(x1; : : : ; xi−1) are not present if i = 1; and !i

:=
( + 1)(n− i);

M (xi)
:=




[
OS(xi) X(xi)

−XT(xi) 0

]
if (n− i) even;




OS(xi) X(xi) OF(xi)

−XT(xi) 0 0

− OF
T
(xi) 0 0


 if (n− i) odd;

(11)

and; for r; j = 1; : : : ; n;

OSrj(xi)
:=

r − j
(r +  )(j +  )(r + j + 2 )

xr+j−2
i ;

OFj(xi)
:=

x j−1
i

j +  
; Xj(xi)

:= x j−1
i :

(12)

The proof of this result is lengthy and requires the introduc-
tion of further preliminary concepts. The complete proof is
reported in Appendix C.

Remark 1. Notice that the matrix appearing in (10) is a
skew-symmetric polynomial matrix of even order; therefore
its determinant is always a perfect square in the entries of
the matrix; see e.g. Vein and Dale (1999). Considering the
factor x!ii in (10); and recalling that  = (m− n− 1)=2; it is
straightforward to verify that Wi(2

1 ; : : : ; 
2
i ) is a multivariate

polynomial in 1; : : : ; i. At the ith step of the conditional
method; the variables 1; : : : ; i−1 are assigned to numerical
values; therefore the conditional density fi(i|1; : : : ; i−1)
de&ned in (6) is a univariate polynomial in i. Sample gen-
eration according to a given univariate polynomial density
is a standard problem; and can be e4ciently performed us-
ing one of the available methods; see e.g. Devroye (1986).

2.2. An e;cient algorithm for the generation of the
singular values

In this section, we propose an e4cient algorithm for com-
puting recursively the marginal densities given in (8), us-
ing the results of Theorem 2. We &rst state a lemma that

provides a direct way to compute the square root of the de-
terminant of real skew-symmetric matrices obtained adding
two rows and two columns to a given real skew-symmetric
matrix of even order. Formally, let q be an even integer and,
for k = 1; : : : ; q=2, let OH 2k(x)∈Rq+2(k−1);2 be a polynomial
matrix in the scalar variable x, with

OH 2k(x)
:=

[
H2k(x)

02(k−1);2

]
; H2k(x)

:= [h2k−1(x) h2k(x)];

(13)

where h2k−1(x); h2k(x)∈Rq;1 are given polynomial vectors
in x. Let also Q0(x)∈Sq be a given skew-symmetric poly-
nomial matrix, and de&ne, for k = 1; : : : ; q=2, the bordered
matrix

Q2k(x)
:=

[
Q2(k−1)(x) OH 2k(x)

− OH
T
2k(x) 02;2

]
∈Sq+2k (14)

and, for k = 0; : : : ; q=2,

p2k(x)
:=
√
|Q2k(x)|: (15)

Notice that, from the properties of determinants of
skew-symmetric matrices it follows that p2k(x) is a poly-
nomial in x, see for instance Vein and Dale (1999). We
are now ready to state the following lemma, which plays
a key role for the development of the sample generation
algorithm.

Lemma 2. The polynomial p2k(x) de)ned in (15) may be
computed (up to a sign) as

p2k(x) =± d2k(x)

p2k−1
0 (x)

for k = 1; : : : ; q=2; (16)

where p0(x) =
√|Q0(x)|; and d2k(x) is a polynomial

determined according to the following recursion: for
k = 1; : : : ; q=2;

d2k(x) = hT2k−1(x)Z2(k−1)(x)h2k(x); (17)

Z2k(x) = d2k(x)Z2(k−1)(x)
+Z2(k−1)(x)(H2k(x)JH2k(x)T)Z2(k−1)(x); (18)

where Z0(x) = AdjQ0(x);

J :=

[
0 1

−1 0

]

and H2k ; h2k−1; h2k are de)ned in (13).

The proof of this lemma is reported in Appendix B.
The result of Lemma 2 is now used to develop an e4cient

recursive algorithm for the generation of the singular values.
In order to apply Lemma 2 to the result of Theorem 2, four
diMerent cases need to be considered, corresponding to the
combinations of n and i being even or odd. This is necessary
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since Lemma 2 requires the use of matrices of even order.
We explain the use of the lemma for the case n even, the
case n odd follows from a similar reasoning. Consider the
case n even: we construct two parallel recursions, one that
holds for i even, and one for i odd. If i is even, then the
determinant in (10) may be immediately rewritten in form
(14), with i = 2k,

Q0(xi) = OS(xi); H2k = [X (x2k−1) X (x2k)]:

Thus, recursion (17) provides the Wi’s for i even. If i is
odd, then the determinant in (10) may still be rewritten in
the form of Lemma 2, shifting the indices k ← k + 1=2
in (14)

Q1(xi) =




OS(xi) OF(xi) X(xi)

− OF
T
(xi) 0 0

−XT(xi) 0 0


 ;

H2k+1 =



X (x2k) X (x2k+1)

0 0

0 0


 :

Recursion (17) now provides the Wi’s for i odd.
We report below the algorithm for the generation of the

singular values. In the algorithm, we denote with x and  the
current variables, while the subscripted terms xi; i denote
variables evaluated to their numerical values.

Algorithm. De)ne the following quantities:

Q(e)
0 (x) = OS(x); Q(e)

1 (x) =




OS(x) OF(x) X(x)

− OF
T
(x) 0 0

−XT(x) 0 0


 ;

Q(o)
0 (x) =

[ OS(x) OF(x)

− OF
T
(x) 0

]
; Q(o)

1 (x) =

[
OS(x) X(x)

−XT(x) 0

]
;

where OS; OF; and X are de)ned in (12). A random matrix
�=diag(1; 2; : : : ; n) distributed according to (4); can be
generated via the following algorithm.

Initialization (see Remark 2).

• If n is even, then

Z0(x) = AdjQ(e)
0 (x); Z1(x) = AdjQ(e)

1 (x)

p0(x) =
√
|Q(e)

0 (x)|; p1(x) =
√
|Q(e)

1 (x)|:

• If n is odd, then

Z0(x) = AdjQ(o)
0 (x); Z1(x) = AdjQ(o)

1 (x)

p0(x) =
√
|Q(o)

0 (x)|; p1(x) =
√
|Q(o)

1 (x)|:

• W1(x) = x( +1)(n−1)p1(x).
• f(1)

 () = KR=(2n−1)W1(2)m−n.
• Generate 1 according to f1 () ≡ f(1)

 (). Set x1 = 2
1.

• k = 1, if n= 1 then go to [End].

Generation (even).

• If n even, h(x) =X(x), else h(x) =
[
X(x)
0

]
.

• d2k(x) = hT(x2k−1)Z2(k−1)(x)h(x).

• p2k(x) = d2k(x)=p2k−1
0 (x).

• W2k(x) = W2k(2
1 ; : : : ; 

2
2k−1; x) = x( +1)(n−2k)p2k(x).

• f(2k)
 () =f(2k)

 (|1; : : : ; 2k−1)

=± (KR=(2n−2k))W2k(2)m−n
2k−1∏
j=1

m−n
j :

• Generate 2k according to

f2k () = f(2k)
 ()=f(2k−1)

 (1; : : : ; 2k−1). Set x2k = 2
2k .

Update (even).

• d2k(x) = hT(x2k−1)Z2(k−1)(x)h(x2k).

• Z2k(x) = d2k(x)Z2(k−1)(x) + Z2(k−1)(x)·
×[h(x2k−1)h(x2k)]J [h(x2k−1)h(x2k)]TZ2(k−1)(x).

• If 2k + 1¿n, then goto [End].

Generation (odd).

• If n even, h(x) =

[
X(x)

0

]
, else h(x) =



X(x)

0

0


.

• d2k+1(x) = hT(x2k−1)Z2k−1(x)h(x2k).

• p2k+1(x) = d2k+1(x)=p2k−1
1 (x).

W2k+1(x) =W2k+1(2
1 ; : : : ; 

2
2k ; x)

= x( +1)(n−2k−1)p2k+1(x):

f(2k+1)
 () =f(2k+1)

 (|1; : : : ; 2k)

=±(KR=(2n−2k−1))W2k+1(2)m−n

×
2k∏
j=1

m−n
j :

• Generate 2k+1 according to

f2k+1() = f(2k+1)
 ()=f(2k)

 (1; : : : ; 2k). Set x2k+1 =
2
2k+1.

Update (odd).

• Z2k+1(x) = d2k+1(x)Z2k−1(x) + Z2k−1(x)
×[h(x2k)h(x2k+1)]J [h(x2k)h(x2k+1)]TZ2k−1(x).
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Loop.

• If k = �n=2� then goto [End].
• k = k + 1; goto [Generation (even)].

End.

• Return �= diag(1; : : : ; n).

Remark 2. The data required by the initialization phase
of the algorithm are simply determined as follows. De&ne
D(x) := diag(1; x; x2; : : : ; xn−1); 0 := (n=2)(n − 1); then we
have that Q(e)

0 (x) = D(x)Q(e)
0 (1)D(x); and AdjD(x) =

diag(x0; x0−1; : : : ; x0−n+1); AdjQ(e)
0 (x) = AdjD(x)AdjQ(e)

0

(1)AdjD(x). Similarly; we get AdjQ(e)
1 (x)=Adj diag(D(x);

x0; x0)AdjQ(e)
1 (1)Adj diag(D(x); x0; x0). Therefore; for the

even case; we have

p0(x) = x0
√
|Q(e)

0 (1)|; p1(x) = x0
√
|Q(e)

1 (1)|:

We proceed in an analogous way for the odd case;
writing AdjQ(o)

0 (x)=Adj diag(D(x); x0)AdjQ(o)
0 (1)Adj diag

(D(x); x0); AdjQ(o)
1 (x) = Adj diag(D(x); x0)AdjQ(o)

1 (1)
Adj diag(D(x); x0). Therefore; for the odd case; we have

p0(x) = x0
√
|Q(o)

0 (1)|; p1(x) = x0
√
|Q(o)

1 (1)|:

Remark 3. The sign uncertainty on the conditional densities
is resolved in the algorithm imposing that the f(i)

 ’s are
positive on their domains.

Notice also that the only operations required for the
construction of the conditional densities are simple matrix
additions and multiplications. No inversion or computation
of determinants of polynomial matrices are required. The
generation of each i according to the resulting univariate
polynomial density may be performed very e4ciently us-
ing, for instance, the methods described in Devroye (1986).
The computational cost required to generate one sample of
� is basically n times the cost required to generate one i.

3. A probabilistic framework for uncertain systems

In recent years, we witnessed a widespread use of algo-
rithms based on uncertainty randomization, for the analysis
and synthesis of robust control systems, see e.g. Ray and
Stengel (1993); Tempo and Dabbene (1999); Vidyasagar
and Blondel (2001) and Vidyasagar (2001). The main idea
behind randomized methods is to associate a probability dis-
tribution to the uncertainty set, and to assess system perfor-
mance in terms of empirical probability.
We brieXy recall below the basic randomized algorithms

for estimating empirical probability and the expected value,

and discuss various examples of application in the following
sections.
Let � be a random variable with pdf f�(�) over the set

�� and let g(�) be a (Lebesgue) measurable function of
�. The expected value of g(�) is denoted as E(g(�)). An
empirical estimate ÊN of E(g(�)) is given by

ÊN =
1
N

N∑
i=1

g(�i);

where �i; i = 1; : : : ; N are i.i.d. samples generated accord-
ing to the pdf f�(�). The estimate ÊN is usually referred to
as the empirical mean. Given accuracy 4∈ (0; 1) and con)-
dence �∈ (0; 1), if

N¿
log 2

�

242

samples are drawn (ChernoM, 1952), then the empiri-
cal mean is close to the actual mean in probability, i.e.
Prob{|E�(g(�))− ÊN |6 4}¿ 1− �.

It should be remarked that the sample size N given by
the ChernoM bound is independent of the size of �� and
the pdf f�(�). If the costs associated with the generation
of each sample �i and the evaluation of g(�i) for &xed
�i are both polynomial-time, then the estimation of the
empirical mean can be performed in polynomial-time. For
further details on randomized algorithms, see for instance
Tempo and Dabbene (1999) and Vidyasagar (1997). Sim-
ilarly, the problem of estimating the probability pA that �
belongs to a set A ⊆ �� is reduced to the computation of
the empirical mean, taking as g(�) the indicator function
of A.
The next sections present examples of application of the

randomized approach to a selection of problems arising in
systems and control. In particular, we consider the compu-
tation of the solution for uncertain least-squares problems,
the probabilistic counterpart of the real structured stability
radius, and the assessment of approximate feasibility of un-
certain linear matrix inequalities (LMI). An application to
reduced order controller design in an H∞ framework may
be found in Cala&ore et al. (2000b). Also, a probabilistic
approach to the stability analysis of families of paramet-
ric polynomials is presented in Polyak and Shcherbakov
(2000).

3.1. Uncertain least-squares problems

In this section, we consider the problem of determining
approximate solutions to the system of linear equations

A(�)x = b(�);

where x∈Rn, b∈Rm, and A and b are generic functions
(a4ne or not) of the uncertainty �∈�1 in form (1). The
solution of this problem in a deterministic worst-case setting



G. Cala)ore, F. Dabbene / Automatica 38 (2002) 1265–1276 1271

is studied in Cala&ore and El Ghaoui (2001) and El Ghaoui
and Lebret (1997); the worst-case solution is computed as

x̂RLS = argmin
x

max
�
‖A(�)x − b(�)‖2: (19)

Here, we assume instead that � is a random matrix with
given radially symmetric probability distribution over �1,
and seek a solution x̂ such that

x̂ = argmin
x

E{‖A(�)x − b(�)‖2}: (20)

To the authors knowledge, the above problem has in general
no analytical solution. In a randomized approach, we gener-
ate N samples �i of the uncertainty, and look for a solution
x̂N such that the empirical mean is minimized

x̂N = argmin
x

ÊN (x);

where

ÊN (x)
:=

1
N

N∑
i=1

‖A(�i)x − b(�i)‖2:

The solution of the above problem is of course still in the
form of an LS problem, and may be e4ciently computed
recursively. Assuming w.l.o.g. that A(�1) is full-rank, we
have

x̂k+1 = x̂k + R−1
k+1A

T(�k+1)(b(�k+1)− A(�k+1)x̂k);

where Rk+1 =Rk +AT(�k+1)A(�k+1), and the recursion for
k = 1; : : : ; N is started with R0 = 0; x̂0 = 0. As a numerical
example, we considered the following data, adapted from El
Ghaoui and Lebret (1997),

A=




3 1 4

0 1 1

−2 5 3

1 4 5:2


 ; b=




0

2

1

3


 ;

where A(�) = A + �, with O(�)6 1. Taking N = 10; 000
uniform samples of �, we obtained the solution x̂TN =
[ − 0:1768 0:1009 0:3448]. The standard LS estimate is
x̂LS = (ATA)−1ATb= [− 10:0 − 9:7285 9:9834]T, and the
robust estimate introduced in El Ghaoui and Lebret (1997)

Table 2
Statistics for comparison of residuals: average, peak, and regularity

Average Peak Sample covariance

rN 2.2650 2.6344 0.0198
rLS 11.8962 18.5164 9.409
rRLS 2.2848 2.5515 0.0107

is x̂RLS=[−0:0312 0:2073 0:2055]T. To compare the results,
we computed the estimation residuals riN

:= ‖A(�i)x̂N −
b‖; riLS

:= ‖A(�i)x̂LS − b‖; riRLS
:= ‖A(�i)x̂RLS − b‖, for

a large number of uncertainty samples �i, and obtained
the statistics reported in Table 2. Also, the worst-case
(with respect to the uncertainty) residuals, de&ned as
rwc∗

:= max�‖A(�)x∗ − b(�)‖, result in rwcN = 2:6532; rwcLS =
18:9394; rwcRLS = 2:572.
Problem (20) may therefore be e4ciently solved using

the proposed randomized approach. The resulting solution
has, at least on the data used in the example, a performance
which is very close to that of the deterministic worst-case
counterpart (19). It should be also remarked that (19) may
be solved exactly only in some special cases (see El Ghaoui
& Lebret, 1997), while the randomized approach presents
no computational complexity issues, and works equally well
when the data depends in a non-linear way on the uncer-
tainty, and when the uncertainty has a more complicated
block structure.

3.2. The probabilistic structured real stability radius

In this section, we apply the randomized approach to
the computation of the probabilistic structured real stabil-
ity radius of a matrix, see Cala&ore, Dabbene, and Tempo
(1999b) and Qiu et al. (1995). Given a Hurwitz stable ma-
trix A∈Rp;p and matrices B∈Rp;n, C ∈Rm;p, and assum-
ing � ∼ U [��], we study the probability of stability p(�) :=
Prob{A+BZC is stable}. For given p∗ ∈ [0; 1], the proba-
bilistic real stability radius is de&ned as �R(p∗) := sup {� :
p(�)¿p∗}. In words, given a probability level p∗, the
probabilistic real stability radius �R(p∗) gives the maximum
“size” of the structured perturbation �, measured according
to the spectral norm, so that the probability that A + BZC
is stable is at least p∗.
The evaluation of p(�) can be performed by means of

randomized techniques. In particular, given B= C = I , and

A=




−0:9319 0:9633 1:1021 2:8166 −1:5852 −1:3271
−3:5667 1:4700 2:3962 5:2311 −2:8212 −4:2641
1:4202 −1:1677 −1:6874 −3:3362 1:0364 2:8705

−0:1946 0:6813 0:0580 0:4244 −0:2107 −0:6973
1:2169 −0:3964 −0:8681 −1:9139 0:1026 0:7190

−2:8445 2:0764 1:4435 4:1812 −1:8238 −2:9809



;
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Fig. 1. Estimated probability of stability. The solid line shows the results
obtained with a perturbation structure of three 2 × 2 blocks; the dotted
line shows the results obtained with a perturbation structure of a 4 × 4
and a 2× 2 blocks.

we considered two diMerent perturbation structures, one with
� composed of three 2× 2 full real blocks, and one with �
composed of a 4×4 and a 2×2 full real blocks. Fig. 1 shows
the degradation of the empirical probability of stability, as
the perturbation radius � varies between 0:01 and 0:05.

3.3. Approximate feasibility of uncertain LMIs

An uncertain LMI constraint is a convex constraint in the
vector variable �∈Rm of the form

F(�; �) ≺ 0; �∈��; (21)

where ‘≺’ means “negative de&nite”, and F(�; �)=F0(�)+∑m
i=1 �iFi(�), with Fi = FT

i . A given vector �̂ is said to be
robustly feasible for (21) if it satis&es (21) for all �∈��. A
large number of problems arising in robust control may be
cast as feasibility problems involving uncertain LMIs of the
type above, see (Boyd, El Ghaoui, Feron, & Balakrishnan,
1994; El Ghaoui et al., 1998). A classical example is for
instance the assessment of quadratic stability of an interval
matrix, Boyd et al. (1994). Robust semide&nite program-
ming (SDP) theory (Ben-Tal et al., 2000; El Ghaoui et al.,
1998) develops computable su4cient conditions for robust
feasibility of uncertain LMIs.
Given a candidate solution �̂, we here consider the

problem of assessing the probability p of satisfaction of
(21). The solution �̂ will be called a p-approximately feasi-
ble solution for (21), see also Cala&ore and Polyak (2001).
To this end, de&ne the sets

�good
:= {�∈�� : F(�̂; �) ≺ 0};

�bad
:= {�∈��:� �∈ �good}:

Assuming uniform density over ��, we have

p(�) := Prob{F(�̂; �) ≺ 0}=Vol{�good}:

We then use the randomization procedure to compute an
empirical estimate p̂N of p. This approach has been used
for design and analysis of robust LMIs in Cala&ore and
Polyak (2001), to which the reader is referred for numerical
examples.

4. Conclusions

Deterministic worst-case analysis and synthesis methods
for uncertain systems are, by and large, based on a struc-
tured description of the uncertainty, which is restricted in a
spectral (operator) norm bounded set. To compare consis-
tently deterministic results with the recently emerged prob-
abilistic ones, a technique to e4ciently generate uncertainty
samples uniformly distributed in the above set turned out to
be fundamental. This was the main technical issue discussed
in this paper.
The proposed sample generation technique relies on the

result of Theorem 1 for the closed form expression of the
marginal probability densities of the singular values of uni-
form matrices, and on an e4cient recursive implementation
of the conditional method for their actual generation.
The use of the proposed framework has then been illus-

trated, presenting several applications to the solution of hard
problems arising in the systems and control area.
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Appendix A. Proof of Lemma 1

Consider (4), and introduce the change of variables xk =
2
k ; k = 1; : : : ; n. Then the Jacobian of the transformation

from x to  is 1=(2n
∏

k
√
xk) (see for instance, Devroye,

1986 for the rule of change of variables in probability density
functions), and the pdf in the new variables is expressed as

fx(x1; : : : ; xn) =
KR
2n

∏
16j¡k6n

(xj − xk)
n∏

k=1

x k ; (A.1)

where 1¿x1 ¿x2 ¿ · · ·¿xn ¿ 0, and  := (m− n− 1)=2.
Notice that fx can be written in terms of the determinant of
a Vandermonde matrix Vn

fx(x1; : : : ; xn) =
KR
2n
|Vn(x1; : : : ; xn)|

n∏
k=1

x k : (A.2)
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The marginal densities of x can be then written as

f(i)
x (x1; : : : ; xi) =

KR
2n

Wi(x1; : : : ; xi)
i∏

k=1

x k ; (A.3)

where Wi
:=

∫
Di
|Vn| d�(xn) · · · d�(xi+1), and d�(xk)

:=
x k dxk ; Di

:= {0¡xn ¡ · · ·¡xi}. Statement (8) can be
directly obtained from (A.3), applying again the change of
variable rule.

Appendix B. Proof of Lemma 2

For k = 1; : : : ; q=2, de&ne Ẑ2k ∈Sq as

Ẑ2k =
[
Iq 0q;2k

]
Q−1

2k

[
Iq

02k;q

]
: (B.1)

De&ne D̂2k ∈S2 as D̂2k = OH
T
2kQ

−1
2(k−1)

OH 2k , then, in view of
(13) and (B.1), we have that

D̂2k = HT
2k Ẑ2(k−1)H2k =

[
0 d̂(x)

−d̂(x) 0

]
;

where d̂2k(x) = hT2k−1Ẑ2(k−1)h2k is a scalar function of x.
We are interested in computing p2k(x) =

√|Q2k(x)|.
Consider then (14) and apply the Schur rule for determi-
nants, obtaining |Q2k(x)| = |Q2(k−1)| · |HT

2kQ
−1
2(k−1)H2k | =

|Q2(k−1)| · |D̂2k |. Then p2
2k(x) = p2

2(k−1)(x)d̂
2
2k(x). Notice

that to compute d̂2k we need Ẑ2(k−1), which can be com-
puted recursively. To this aim, we &rst compute the in-
verse of Q2k , using the block matrix inversion rule. Setting
9 := Q−1

2(k−1)
OH 2k D̂

−1
2k , we have

Q−1
2k =


Q−1

2(k−1) − 9 OH
T
2kQ

−1
2(k−1) −9

9T D̂
−1
2k


 :

Using (B.1) it is straightforward to obtain the recursion

Ẑ2k = Ẑ2(k−1) +
1

d̂2k
Ẑ2(k−1)H2kJHT

2k Ẑ2(k−1): (B.2)

Since we are interested in a recursion involving polyno-
mial matrices, we need to normalize the quantities d̂2k and
Ẑ2k , so to eliminate denominators. It can be shown that
the choice d2k

:= d̂2kp2
0

∏k
‘=1 d2‘; Z2k

:= Ẑ2kp2
0

∏k
‘=1 d2‘,

corresponding to the normalization Z0
:= |Q0|Q0 = AdjQ0,

leads to the desired polynomial recursion given in (17)
and (18).

Appendix C. Technical Preliminaries and Proof
of Theorem 2

First, we recall that the determinant of a matrix X ∈Sn is
zero if n is odd, and is a perfect square in the entries of X if
n is even. The notation X̃ j1 ;:::; jp denotes the matrix obtained
removing the rows and columns of indices j1; : : : ; jp from

matrix X . The notation X̃ i1 ;:::;ip;j1 ;:::; jp denotes the matrix ob-
tained removing the rows of indices i1; : : : ; ip, and columns
of indices j1; : : : ; jp from matrix X .

C.1. Preliminaries

Pfa;ans: Let S ∈Sn, then its Pfa;an is de&ned as the
following polynomial in the entries sij of S

Pf (S) :=
1

2mm!

n∑
j1 ;:::; jn=1

E(j1; : : : ; jn)sj1j2sj3j4 · · · sj2m−1j2m ;

where m = �n=2�, and E(x1; : : : ; xn) is an alternant func-
tion called signature function, de&ned as E(x1; : : : ; xn)

:=∏
16i¡j6n sign(xj − xi): In particular, E(x1; : : : ; xn) = 0 if

any two of the xi’s are equal. For further details on the def-
inition and properties of Pfa4ans, the reader is referred to
Prasolov (1994) and Weyl (1946). A fundamental property
of the Pfa4an is that, for n even Pf 2(S) = det(S).
The following result on bordered Pfa4ans will be useful

in the sequel, and may be found in Vein and Dale (1999,
Chap. 4).

Lemma C.1. Let S ∈Sn with n odd; consider the bordered
matrix

S(1) =


 S a1

−aT1 0


 ;

where aT1 = [a11 · · · an1]; then the Pfa;an of S(1) may be
expressed as Pf (S(1)) =

∑n
j=1(−1) j+1aj1 Pf (S̃j).

We next report an extension of the previous result, which
may be easily proved by induction.

Lemma C.2. Let S ∈Sn and consider the bordered matrix

S(p) =


 S A

−AT 0


 ; A=



a11 · · · a1p

... · · · ...

an1 · · · anp


 ;

where n + p is even. De)ning ‘(A; j1; : : : ; jp)
:=

(−1) j1+···+jp+pE(j1; · · · ; jp)aj1 ;1aj2 ;2 · · · ajp;p; the Pfa;an
of S(p) may be expressed as

Pf (S(p)) =
n∑

j1 ;:::; jp=1

‘(A; j1; : : : ; jp)Pf (S̃j1 ;:::; jp):

C.1.1. A multiple integral of a determinant
We here make use of the following result regarding a

multiple integral of a special type of determinant.
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Theorem C.3 (de Bruijn, 1955). Consider the integral

I(<) =
∫ <

0
· · ·

∫ <

0
|[=(z1)  (z1) · · · =(zp)  (zp)]|

×d�(z1) · · · d�(zp);

where =(@);  (@) are arbitrary n-dimensional (n = 2p)
vector real functions of the real variable @; integrable
over [0; <]; and �(@) is a suitable measure. De)ning the
matrix S(<)∈Sn; whose (i; j)th element; i; j = 1; : : : ; n; is
given by

[S(<)]i; j
:=
∫ <

0
[=i(@) j(@)−  i(@)=j(@)] d�(@); (C.1)

we have that I(<) = p! Pf (S(<)).

Below, we provide an extension of de Bruijn’s theorem that
plays a key role for our subsequent developments.

Theorem C.4. Consider the integral

I(<) =
∫ <

0
· · ·

∫ <

0
|[A =(z1)  (z1) · · · =(zp)  (zp)]|

×d�(z1) · · · d�(zp); (C.2)

where A∈Rn; r ; 2p + r = n; and =(@);  (@) are arbitrary
n-dimensional vector real functions of the real variable z;
integrable over [0; <]; and �(@) is a suitable measure. De)ne
the matrix S(p)(<)∈Sn+p as

S(p)(<) :=


 S(<) A

−AT 0


 ;

where S(<)∈Sn is de)ned as in (C.1). Then

I(<) = p! Pf (S(p)(<)): (C.3)

Proof. De&ne A = A(z1; : : : ; zp)
:= [A =(z1)  (z1) · · ·

=(zp)  (zp)]. We &rst expand the determinant in (C.2) with
respect to the columns of A; using the Laplace expansion
(Vein & Dale; 1999);

|A|=
n∑

j1 ;:::; jp=1

‘(A; j1; : : : ; jp)|Ãj1 ;:::; jp;1;:::;p|: (C.4)

Integrating (C.4) we obtain

I(<) =
n∑

j1 ;:::; jp=1

‘(A; j1; : : : ; jp)
∫ <

0
· · ·

∫ <

0
|Ãj1 ;:::; jp;1;:::;p|

×d�(z1) · · · d�(zp):

The integrals appearing in the above expression may be
computed using Theorem 3; obtaining∫ <

0
· · ·

∫ <

0
|Ãj1 ;:::; jp;1;:::;p| d�(z1) · · · d�(zp) = p! Pf (Z(<));

where Z(<) also depends on the indices (j1; : : : ; jp); and
may be recognized to be a principal submatrix of the
skew-symmetric matrix S(<) de&ned in (C.1); that is
Z(<) ≡ S̃j1 ;:::; jp(<). Integral (C.2) can therefore be written as

I(<) = p!
n∑

j1 ;:::; jp=1

‘(A; j1; : : : ; jp) Pf (S̃j1 ;:::; jp(<)): (C.5)

The proof then follows applying Lemma C.2 to (C.5).

C.2. Proof of Theorem 2

To prove the theorem we need to consider two separate
cases, depending on whether n− i is even or odd.
Case n− i even: Notice &rst that in the integral (9), each

column of Vn(x1; : : : ; xn) is function of only one variable.
We can therefore integrate using the method of integration
over alternate variables (Mehta, 1991). First, we integrate
xn; xn−2; : : : ; xi+2 over their respective domains: let F(z) :=∫ z
0 X(�) d�(�), then

Wi =
∫
Di

|[Vi X(xi+1) F(xi+1)− F(xi+3) X(xi+3)

F(xi+3)− F(xi+5) · · · X(xn−1) F(xn−1)]|
×d�(xn−1) · · · d�(xi+5) d�(xi+3) d�(xi+1):

The addition of one column to another column does not
change the determinant of a matrix, therefore

Wi =
∫
Di

|[Vi X(xi+1) F(xi+1) · · · X(xn−1) F(xn−1)]|

×d�(xn−1) d�(xn−3) · · · d�(xi+1): (C.6)

Notice now that the integrand in (C.6) is symmetric in the
remaining variables 1 xi+1; xi+3; : : : ; xn−1, therefore one can
integrate over them independently (see Mehta, 1991) and
divide the result by ((n− i)=2)!, obtaining

Wi =
(
n− i
2

!
)−1 ∫ xi

0
· · ·

∫ xi

0
|[Vi X(xi+1) F(xi+1) · · ·

X(xn−1) F(xn−1)]| d�(xn−1) d�(xn−3) · · · d�(xi+1):

We can now apply the result of Theorem C.3 to the above
integral, obtaining

Wi(x1; : : : ; xi) = Pf


 S(xi) Vi

−VT
i 0


 ; (C.7)

1 The integrand is symmetric in the variables, since interchanging xi
and xj amounts to the interchanging of two pairs of columns.
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where S(xi)∈Sn is de&ned as in (C.1), with =k(x)
:=

Xk(x) = xk−1, and  k(x)
:= Fk(x) =

∫ x
0 �k−1� d� = (xk+ =

(k +  )), for k = 1; : : : ; n. Therefore,

Srj(xi) =
r − j

(r +  )(j +  )(r + j + 2 )
xr+j+2 
i :

De&ne now OS(xi) as in (12), such that S(xi) = x2( +1)
i

OS(xi).
Then, recalling that Vi =[Vi−1 Xi], and that the exchange
of one row and one column does not aMect the determinant,
factoring out the term x2( +1)

i from the Pfa4an, we rewrite
(C.7) as

Wi = x( +1)(n−i)
i Pf




OS(xi) X(xi) Vi−1

−XT(xi) 0 0

−VT
i−1 0 0


 ; (C.8)

from which follows the statement of (11).
Case n − i odd. We now &rst integrate xn; xn−2; : : : ; xi+1

over their respective domains, obtaining

Wi =
∫
Di

|[Vi F(xi)− F(xi+2) X(xi+2)

F(xi+2)− F(xi+4) · · · X(xn−1) F(xn−1)]|
×d�(xn−1) · · · d�(xi+4) d�(xi+2):

Again, performing elementary operations on the columns,
we obtain

Wi =
∫
Di

|[Vi F(xi) X(xi+2) F(xi+2) · · · X(xn−1)

F(xn−1)]| d�(xn−1) · · · d�(xi+4) d�(xi+2):

The integrand above is symmetric in the remaining variables
xi+2; xi+4 : : : ; xn−1, therefore integrating over them indepen-
dently, and dividing the result by ((n − i − 1)=2)! (Mehta,
1991), we obtain

Wi =
(
n− i − 1

2
!
)−1 ∫ xi

0
· · ·

∫ xi

0
|[Vi F(xi)

X(xi+2)F(xi+2) · · · X(xn−1) F(xn−1)]|
×d�(xn−1) · · · d�(xi+4) d�(xi+2):

We can now apply the result of Theorem 3 to the above
integral, obtaining

Wi(x1; : : : ; xi) = Pf




S(xi) Vi F(xi)

−VT
i

−FT(xi)
0


 ; (C.9)

where S(xi)∈Sn is de&ned as in (1). De&ning now OS(xi)
and OF(xi) as in (12), the result in (11) is then obtained
following the same reasoning as in the even case.
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