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Abstract

Many robust control problems can be formulated in abstract form as convex feasibility programs, where one seeks a solution x that satisfies
a set of inequalities of the form F

.= {f (x, �)�0, � ∈ D}. This set typically contains an infinite and uncountable number of inequalities, and
it has been proved that the related robust feasibility problem is numerically hard to solve in general.

In this paper, we discuss a family of cutting plane methods that solve efficiently a probabilistically relaxed version of the problem. Specifically,
under suitable hypotheses, we show that an Analytic Center Cutting Plane scheme based on a probabilistic oracle returns in a finite and pre-
specified number of iterations a solution x which is feasible for most of the members of F, except possibly for a subset having arbitrarily
small probability measure.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Recently, there has been a widespread interest in the liter-
ature towards probabilistic methods for solving robust control
problems that are hard to attack using deterministic techniques.
An overview of this research area, along with many pointers
to the related literature is available for instance in the books
(Calafiore & Dabbene, 2006; Tempo, Calafiore, & Dabbene,
2004).

The focus of this paper is on analysis and design prob-
lems that can be cast in the format of a feasibility problem
over a possibly infinite intersection of linear matrix inequali-
ties (LMIs), see Section 2 for a precise statement. Such robust
feasibility problems are known to be computationally hard in
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general (Ben-Tal & Nemirovski, 1998; El Ghaoui, Oustry, &
Lebret, 1998). Deterministic methods based on LMI relax-
ations exist that may either solve exactly the problem—when
the dependence of the LMI parameters on the uncertainty is of
simple affine form, see Ben-Tal and Nemirovski (2002)—or
produce a family of LMI relaxations having decreasing
conservatism—when the uncertainty dependence is polyno-
mial (Bliman, 2004) or rational (Scherer, 2005). However,
no deterministic method is known that can solve exactly the
problem under generic uncertainty dependence.

To fix ideas, consider a paradigmatic problem of quadratic
stability. Let A(�) ∈ Rn,n be a generic function of a vector
of uncertain parameters � ∈ D ⊆ R�. The set of matrices
{A(�), � ∈ D} is said to be quadratically stable if there exist a
matrix P � 0 such that

AT(�)P + PA(�) ≺ 0, ∀� ∈ D, (1)

where the notation X � 0 (resp. X ≺ 0) indicates that X is a
symmetric positive (resp. negative) definite matrix. In this gen-
eral setting, no algorithm is known that solves the problem in
an exact and efficient way. There are, however, efficient prob-
abilistic algorithms that are guaranteed with high probability
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to return a solution P � 0 that may fail to satisfy the matrix
inequalities (1) at most on a subset of D having arbitrarily
small probability measure, see for instance Calafiore and Campi
(2005), Calafiore and Polyak (2001), Kanev, De Schutter, and
Verhaegen (2003), Oishi (2003) and Oishi and Kimura (2003).

The first of such algorithms has been proposed in Calafiore
and Polyak (2001) for general uncertain LMIs, and in Polyak
and Tempo (2001) in the context of robust linear quadratic con-
trol. These algorithms were based on an iterative scheme in
which the current solution is updated towards a descent direc-
tion obtained by a random gradient of a suitable feasibility vi-
olation function. Later, improved algorithms for probabilistic
feasibility, based on the use of the ellipsoid method (Nemirovski
& Yudin, 1983; Shor, 1970), have been developed in Kanev
et al. (2003) and further analyzed in Oishi (2003).

The two mentioned classes of probabilistic algorithms have
iterative nature and are suited for the solution of robust convex
feasibility problems. Also along the probabilistic approach, a
different method called the scenario optimization method has
been recently proposed in Calafiore and Campi (2005, 2006).
This method, which is mainly suited for optimization, works
by solving in one-shot a convex optimization problem subject
to a finite number of LMI constraints, sampled at random from
the original infinite constraint set.

The contribution of this paper is on the lines of the iterative
probabilistic methods of Calafiore and Polyak (2001), Kanev
et al. (2003), Oishi (2003), Oishi and Kimura (2003) and Tempo
et al. (2004). Its main purpose is to introduce a suitable prob-
abilistic version of an analytic center cutting plane (ACCP)
method, that can be employed in order to compute efficiently
a probabilistically feasible solution for an infinite set of linear
matrix inequalities.

Cutting plane methods (Goffin & Vial, 2002; Mitchell, 2003;
Péton, 2002) belong to the family of localization methods that,
at each iteration, keep an updated set that is guaranteed to con-
tain the original feasible set of the problem. In this sense, the
ellipsoid algorithm (EA) (Khachiyan, 1979; Lovász, Grötschel,
& Schrijver, 1993; Nemirovski & Yudin, 1983) can be inter-
preted as a particular cutting plane method that uses ellipsoids
to inscribe the feasible set. The EA is important for its ease
of implementation and has a better theoretical worst-case com-
plexity than the algorithm presented in this paper. However, it
is well known that in practice its numerical performance is poor
(it always attains its worst-case complexity, Lovász et al., 1993;
Nemirovski & Yudin, 1983), and that ACCP schemes provide
better practical computational performances. Moreover, the EA
may suffer from numerical problems related to the degradation
of the condition number of the ellipsoid shape matrix with the
number of iterations.

This paper is organized as follows. In Section 2 we for-
mally introduce the problem under study. Section 3 describes
the general probabilistic ACCP (P-ACCP) scheme and states
a first result on the functioning of the probabilistic oracle,
which constitutes the inner part of the algorithm. Section 4
discusses the outer centering and update phase of the algo-
rithm, while Section 5 contains the overall probabilistic conver-
gence results (one lengthy proof is relegated to the Appendix).

A comparative example is presented in Section 6, and conclu-
sions are finally drawn in Section 7.

2. Problem statement

Consider an uncertain LMI of the form

F(x, �)�0, (2)

where F(x, �) = F0(�) + ∑n
i=1 xiFi(�) and where Fi(�), i =

0, . . . , n are symmetric m × m real matrices, that depend in a
generic and possibly nonlinear way on the uncertainty vector
� ∈ D, being D a subset of R�. For a given � ∈ D, a point x ∈
Rn is feasible for (2) if and only if �max(F (x, �))�0, where
�max(X) denotes the largest eigenvalue of a symmetric matrix
X. Let us define

f (x, �)
.= �max(F (x, �)) (3)

and the collection of inequalities F
.= {f (x, �)�0, � ∈ D}.

Notice that f (x, �) is a convex function in x, for any fixed �.
This follows immediately from the variational characterization
of the largest eigenvalue

�max(F (x, �)) = sup
‖�‖=1

�TF(x, �)�

= sup
‖�‖=1

�TF0(�)� +
n∑

i=1

xi�
TFi(�)� (4)

and recalling that the supremum of affine functions is convex.
For fixed � ∈ D, define the set

X�
.= {x : f (x, �)�0}. (5)

A point x ∈ Rn is said to be robustly feasible for F if it satisfies
all members of F, i.e. if it belongs to the convex set

X
.= {x : f (x, �)�0, ∀� ∈ D} =

⋂
�∈D

X�. (6)

Robust feasible solutions are in general hard to determine
(Ben-Tal & Nemirovski, 1998; El Ghaoui et al., 1998), and we
shall not insist here on their computation.

Let instead a probability measure “Prob” be defined over D.
Our goal is to devise an algorithm that, with high probability,
returns a candidate solution x with the property that

V (x)
.= Prob{f (x, �) > 0}��, (7)

where � ∈ (0, 1) is an a priori specified small number. Such a
solution is called probabilistically robust, since it satisfies “al-
most all” the inequalities in F. In other words, the event that
the inequality f (x, �)�0 is violated has probability smaller
than the specified �. The quantity V (x) is the violation proba-
bility of a candidate solution x.

We show in the following sections that a probabilistically
feasible solution may be found in a numerical efficient way by
using an ACCP method based on a probabilistic oracle.
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3. An ACCP scheme with probabilistic oracle

Standard cutting plane methods for determining a feasible
point in a convex set X are based on the availability of a sepa-
ration oracle for the set X, and work by iteratively shrinking a
localization set that is guaranteed to contain X, see Goffin and
Vial (2002) and Péton (2002) and references therein.

Specifically, suppose that a localization set Lk ⊇ X is given
at iteration k of the procedure. Suppose that an oracle is avail-
able, such that when we query the oracle with a candidate point
xk ∈ Lk , the oracle either returns a “yes” answer, meaning
that xk ∈ X, or it returns a “no” answer (meaning that xk /∈X),
along with a separating hyperplane {� ∈ Rn : aT

k �=bk} having
the property that aT

k xk �bk and aT
k x�bk , for all x ∈ X.

When the oracle returns a “yes” answer, we are done, since
we found a feasible point. When the oracle returns a “no” an-
swer, we have a separating hyperplane which indicates that
the half-space {x : aT

k x > bk} cannot contain a feasible point
and can therefore be eliminated (cut) from our search. In this
case, we know that X ⊆ Lk ∩ Hk , where Hk

.= {x :
aT
k x�bk}, and the algorithm constructs an updated localiza-

tion set Lk+1 such that Lk+1 ⊇ Lk ∩ Hk . A new query
point xk+1 ∈ Lk+1 is then determined, and the process is
repeated.

Remark 1. Notice that, if an oracle was available for the set
X in (6), then a standard cutting plane method could be em-
ployed to determine a robustly feasible solution. However, it is
in general not possible to construct such an oracle, since check-
ing whether x ∈ X requires checking an infinite (and usually
uncountable) number of inequalities. The key point of this pa-
per is to use a probabilistic oracle which returns either a “no”
answer, meaning that the query point is unfeasible, or a “yes”
answer, meaning that, with a probability that can be made ar-
bitrarily close to one, the current query point is probabilisti-
cally feasible, that is V (xk)��. Such an oracle is discussed in
Section 3.1.

The probabilistic algorithm that we propose in this paper
is based on an ACCP method that uses a probabilistic oracle,
and is denoted as P-ACCP. In this method, the localization
set Lk is the polytope given by the intersection of an initial
localization set L1, that is assumed to contain X, and the half-
spaces described by all the cuts returned by the oracle up to
iteration k: Lk = L1 ∩ {⋂k−1

i=1 Hi}. In particular, we assume
that L1 is an hypercube described by

L1
.= {x: eT

i x�R + eT
i x0, −eT

i x�R − eT
i x0, i = 1, . . . , n},

(8)

where ei is the ith vector in the standard basis of Rn,
and x0 ∈ Rn, R > 0 are the hypercube center and radius,
respectively.

In the P-ACCP method, the query point xk is com-
puted as the analytic center of Lk , which is defined as the
unique minimizer of the logarithmic barrier function (see e.g.

Boyd & Vandenberghe, 2004)

�k(x)
.= −

k−1∑
i=1

ln(bi − aT
i x) −

n∑
i=1

ln(R − eT
i (x − x0))

−
n∑

i=1

ln(R + eT
i (x − x0)). (9)

We distinguish two phases in the P-ACCP method: an outer
phase where the localization set is updated and the new query
point is computed, and an inner phase that consists in the
operations performed by the probabilistic oracle. To analyze
the numerical complexity of such a scheme, we shall take
into account three different terms: (a) the number of oracle
calls required to obtain a solution, (b) the numerical com-
plexity of computing the query point, and (c) the operations
performed by the probabilistic oracle, which we quantify as
the maximum number of feasibility checks. We analyze the
two phases of the P-ACCP method and each of the complex-
ity terms in the next sections, under the following standard
assumption.

Assumption 1. The target set X is contained in an hyper-
cube L1.

Remark 2. Notice that the previous assumption requires the
set X to be bounded. In practical problems, if the original set
is unbounded, one can include additional constraints on the
problem variables (such as limits on the range of variation) so
to enforce boundedness.

To determine a bounding hypercube for X notice first that
by definition (6) for any fixed � ∈ D it holds that X ⊆ X�.
Therefore, it is sufficient to determine an hypercube including
X� (for one given choice of � ∈ D) in order to have a bounding
hypercube for X.

To actually find an hypercube containing X� one may pro-
ceed in at least two ways. A first possibility is to compute
an ellipsoid containing X�, using the technique proposed
in Boyd and El Ghaoui (1993) and also used in Kanev and
Verhaegen (2006), Section 8.4, and then determine the mini-
mal hypercube inscribing it. Alternatively, and perhaps with a
greater computational burden, one may proceed as proposed
in Kanev et al. (2003), and solve a series of 2n semidefinite
programs

�−
i = min

x
eT
i x s.t. F (x, �)�0, i = 1, . . . , n,

�+
i = max

x
eT
i x s.t. F (x, �)�0, i = 1, . . . , n

and then set x0 = 1
2 [(�+

1 + �−
1 ) · · · (�+

n + �−
n )]T, R =

1
2 maxi=1,...,n(�

+
i − �−

i ).
It is worth to notice at this point that the initial bounding

set does not need to be a hypercube, but it could as well be
an hyperrectangle, or a polytope in general. The choice of an
hypercube is made with the only purpose of simplifying the
convergence proof given in the Appendix.



G.C. Calafiore, F. Dabbene / Automatica 43 (2007) 2022–2033 2025

3.1. Inner iterations: the probabilistic oracle

In this section, we describe a probabilistic oracle that per-
forms a randomized check of feasibility of a query point xk .
When xk is found unfeasible, we show how to determine a hy-
perplane that separates X from xk . We start by stating the fol-
lowing lemma.

Lemma 1. Let xk, � be such that f (xk, �) > 0 and let g�(xk)

be a subgradient of f (x, �) at point xk . Then,

(1) The hyperplane {x : aT
k x = bk}, with

ak = g�(xk), bk = gT
� (xk)xk − f (xk, �) (10)

defines a deep cutting plane between X and xk , i.e. X ⊆
{x : aT

k x�bk}, and aT
k xk > bk .

(2) The hyperplane {x : aT
k x = bk}, with

ak = g�(xk), bk = gT
� (xk)xk (11)

defines a neutral cutting plane between X and xk , i.e.
X ⊆ {x : aT

k x�bk}, and aT
k xk = bk .

Proof. By convexity of f (x, �) and the definition of subgradi-
ent, it holds that, for all x, f (x, �)�f (xk, �)+gT

� (xk)(x −xk).

Hence, for all points in the half-space Hk
.= {x : aT

k x > bk}
with ak, bk given in (10) (i.e. the half-space {x : f (xk, �) +
gT
� (xk)(x − xk) > 0}), we have that f (x, �) > 0. Therefore, the

set X� defined in (5) belongs to the complementary half-space
Hk = {x : aT

k x�bk}. Since X = ⋂
�∈DX�, this implies that

X ⊆ X� ⊂ Hk , which means that the considered hyperplane
separates X from xk . Moreover, since f (xk, �) > 0, it follows
that aT

k xk − bk = f (xk, �) > 0 which proves that the cut is
deep. The second point of the lemma follows from a similar
reasoning. �

3.1.1. Computation of subgradients
Although the function f (x, �) defined in (3) is non-

differentiable whenever the maximum eigenvalue of F(x, �)

has multiplicity greater than one, we can easily compute a sub-
gradient for f (x, �), using the characterization in (4) as follows.
Let ��(x, �)

.= �TF(x, �)� = �TF0(�)� + ∑n
i=1 xi�

TFi(�)�
(this is an affine, hence convex and differentiable, function
of x), and let the gradient of ��(x, �) be ∇x��(x, �) =
[�TF1(�)� · · · �TFn(�)�]T. Then, for all unit-norm �,

f (x, �)���(x, �) = ��(xk, �) + ∇T
x ��(x, �)(x − xk). (12)

Now let �max be a vector such that sup‖�‖=1��(xk, �)

is attained. In the case under consideration, �max is a
unit-norm eigenvector of F(xk, �) associated with its
largest eigenvalue, hence ��max

(xk, �) = �T
maxF(xk, �)�max =

�T
max�max(F (xk, �))�max = �max(F (xk, �)) = f (xk, �). Then,

considering (12) for � = �max we have f (x, �)�f (xk, �) +
∇T

x ��max
(x, �)(x − xk), which shows that ∇x��max

is a sub-
gradient of f (x, �) at the point xk . This reasoning leads us to
the following lemma.

Lemma 2. A subgradient of f (x, �)=�max(F (x, �)) in x =xk

is given by

g�(xk) = [�T
maxF1(�)�max · · · �T

maxFn(�)�max]T,

where �max is a unit-norm eigenvector associated with the
largest eigenvalue of F(xk, �).

3.1.2. Probabilistic oracle
The probabilistic oracle is based on a randomized check of

satisfaction of the inequality f (xk, �)�0 on a finite number
of values of � chosen at random according to the probability
measure Prob.

Let xk be the query point at the kth outer iteration, let N(k)

be an integer (to be specified later), and let �(1)
k , . . . , �(N(k))

k

be a finite sequence of independent and identically distributed
random samples extracted according to Prob. A probabilistic
oracle is constructed as follows (to simplify notation, we denote
with gi(xk) a subgradient of f (xk, �

(i)
k )):

[feas, ak , bk] = p-oracle(xk , N(k))
set i= 0, feas= TRUE
1. while feas= = TRUE & i<N(k)
2. set i= i+1

3. if f (xk, �
(i)
k ) > 0

4. set feas= FALSE
5. return ak = gi(xk); bk = gT

i (xk)xk

6. end if
7. end while

A call to the probabilistic oracle may have two possible out-
comes. If the while loop is interrupted at some i < N(k), then
the query point xk is unfeasible: a separating hyperplane is ob-
tained by means of a neutral cut, and control is returned to the
outer phase of the cutting plane scheme, see the overall algo-
rithm in Section 4. Otherwise, if the while loop is run up to
i = N(k), the query point xk is declared “feasible” (in a prob-
abilistic sense), and xk is returned as a solution.

Remark 3. Notice that line 5 of the oracle could be modified
so to return a deep cut, instead of a neutral cut. We choose to
consider neutral cuts in the algorithm, since this choice greatly
simplifies the theoretical complexity analysis developed in the
Appendix. Moreover, the fast initialization technique discussed
in Section 4.1.1 cannot be used with deep cuts. However, since
deep cuts “cut off” a larger portion of the localization set at
each outer iteration, this set shrinks faster and hence algorithm
performance may be significantly improved in practice if deep
cuts are used. For an in-depth analysis of ACCP schemes with
deep cuts we refer the reader to Goffin and Vial (1999, 2002).

The probabilistic properties of the oracle are described in the
following theorem.

Theorem 1 (Success of the probabilistic oracle). Let � ∈ (0, 1)

be a given (small) probability level, and let xk be the query
point at outer iteration k of the P-ACCP algorithm. Then, with
probability greater than 1 − (1 − �)N(k) either the current
solution is found unfeasible by the probabilistic oracle (and
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hence it has to be updated), or it holds that V (xk)��, where
V (·) is the constraint violation probability defined in (7).

Proof. Notice first that xk is a random variable that depends on
the successive independent random extractions of the sequences
Sj = {�(1)

j , . . . , �(N(k))
j }; j = 1, . . . The probability measure on

xk is therefore defined on this product space, and it is denoted
as Prob∞. Define the following three events:

Feask
.= {the oracle declares xk “feasible”}, (13)

Badk
.= {V (xk) > �}, (14)

Iterk
.= {the kth outer iteration is reached}. (15)

Following a reasoning similar to the one proposed in Oishi
(2003, 2007), we evaluate the probability that, given that the
algorithm reached the kth outer iteration, it exits at this iteration
with a “bad” solution. We have

Prob∞{Feask ∩ Badk|Iterk}
= Prob∞{Feask|Badk ∩ Iterk}Prob∞{Badk|Iterk}
�Prob∞{Feask|Badk ∩ Iterk} < (1 − �)N(k). (16)

The last inequality is due to the fact that V (xk) = 1 −
Prob{f (xk, �)�0} and that Badk is the event Badk =
{Prob{f (xk, �)�0} < 1 − �}. Therefore, conditioned on the
event Badk ∩ Iterk , the probability that the oracle declares xk

feasible is the probability of N(k) successes in N(k) inde-
pendent trials, each having probability of success smaller than
1 − �, which is indeed smaller than (1 − �)N(k).

Considering the complementary events Updatek
.= Feask =

{the oracle declares xk unfeasible} and Goodk
.= Badk =

{V (xk)��}, we have that

Prob∞{Updatek ∪ Goodk|Iterk}
= 1 − Prob∞{Feask ∩ Badk|Iterk} > 1 − (1 − �)N(k), (17)

which proves the statement. �

Remark 4. Notice that by appropriate choice of the inner iter-
ations limit N(k), we can make the success probability of the
oracle as close as desired to one. This can be easily seen from
Eq. (17). Indeed, to achieve a desired success probability of at
least 1 − 	, where 	 ∈ (0, 1) is a small number, from (17) we
impose that 1 − (1 − �)N(k) �1 −	, from which it immediately
follows that we need:

N(k)� ln 1/	

ln 1/(1 − �)
. (18)

4. Outer iterations and centering

In this section, we detail the operations required in the outer
phase of the P-ACCP method. We first outline the overall
scheme of the P-ACCP algorithm. The meaning of the proba-
bilistic parameters �, 	 will be clarified in Section 5.

[x] = P − ACCP(L1, �, 	).
1. set outer iteration count k = 1
2. centering: compute the analytic center xk

of Lk

3. determine N(k) according to (24),
see Section 5

4. oracle call: [feas, ak , bk] = p-oracle(xk, N(k))

5. if feas= = FALSE
6. construct neutral cut Hk = {x : aT

k x�bk}
7. update localization set: Lk+1 = Lk ∩ Hk

8. set k = k + 1
9. goto 2.
10. else return x = xk

At outer iteration k, the new localization set Lk+1 is deter-
mined as the intersection of the cut Hk and the current local-
ization set Lk , which in turns consists in the intersection of the
initial hypercube L1 defined in (8) and the set of half-spaces
H1, . . . ,Hk−1.

To analyze the complexity of the outer iterations, we first
show how the new analytic center may be computed starting
from the previous query point xk−1.

4.1. Analytic center update

The analytic center of the set Lk+1 is defined as the mini-
mizer of the barrier function �k+1(x)=−∑k

i=1 ln(bi −aT
i x)−∑n

i=1 ln(R − eT
i (x − x0)) − ∑n

i=1 ln(R + eT
i (x − x0)). The

problem of minimizing �k+1(x) is an unconstrained convex
optimization problem, which can be solved by Newton method
starting from a point belonging to the open polytope {x :
‖x − x0‖∞ < R, aT

i x < bi, i = 1, . . . , k}. In the next two
subsections, we discuss the issues of initialization and imple-
mentation of a damped Newton algorithm that computes the
updated center xk+1.

4.1.1. Initialization
Notice that we cannot use the previous query point xk as the

starting point of Newton iterations because, by construction, it
violates one of the strict inequalities (the last one). However,
since the probabilistic oracle returns neutral cuts, we know that
xk lies on the boundary of Lk+1. This fact can be used to find
a point x̃k in the interior of Lk+1 to use as the starting point
of the Newton iterations.

The idea is the following: starting from xk (which lies on the
boundary of Hk), we move in the direction of −ak , until we
meet the boundary of Lk+1, see Fig. 1. The initialization point
x̃k that we choose is the one that lies halfway between xk and
the intersection with the boundary.

We determine x̃k as follows. Let x̃(�)
.= xk − �ak , ��0 and

define Ak−1
.= [In − In a1 · · · ak−1]T, and Bk−1

.= [1R +
x0 1R −x0 b1 · · · bk−1]T, where 1 ∈ Rn is a vector of ones.
Then, x̃(�) ∈ Lk+1 if and only if ��0, Ak−1x̃(�)�Bk−1, i.e.
if and only if ��0, vk ��wk , where vk

.= Ak−1xk −Bk−1 < 0,
wk

.= Ak−1ak . The value of ��0 that brings x̃(�) on the bound-
ary of Lk+1 is �̄ = sup{��0 : Ak−1x̃(�)�Bk−1}, which is
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Fig. 1. Initialization for analytic center update.

readily computed as

�̄ = min
i=1,...,n

�̄i where �̄i =
⎧⎨
⎩

+∞ if [wk]i �0,

[vk]i
[wk]i if [wk]i < 0.

(19)

This proves the following lemma.

Lemma 3. The point x̃k
.= x̃(�̄/2)=xk −(�̄/2)ak , with �̄ given

in (19), lies in the interior of Lk+1.

Remark 5. There exist many alternative ways to compute
an initial point x̃k , see for instance Goffin and Vial (2002).
A method that can be used also in the presence of deep cuts
consists in computing the Chebychev center of Lk+1, that
is, the center of the largest Euclidean ball inscribed in the
polytope. Computing the center and radius of the Chebychev
ball requires additional numerical effort, since the solution of
a linear program is needed. However, initializing the Newton
iterations from the Chebychev center may speed up the com-
putation of the analytic center. Moreover, one can also take
advantage of the information about the Chebychev radius in
defining a stopping rule for the algorithm, see Remark 7.

4.1.2. Center update
Starting from point x̃k , we determine the updated analytic

center xk+1 by using a standard Newton method with back-
tracking line search, which is analyzed in detail in Boyd and
Vandenberghe (2004, Section 9). This procedure is recalled
next, where hk+1(x)=∑k

i=1(bi−aT
i x)−1ai+∑n

i=1(R−eT
i (x−

x0))
−1ei − ∑n

i=1(R + eT
i (x − x0))

−1ei denotes the gradient of
�k+1(x), and

Hk+1(x) =
k∑

i=1

(bi − aT
i x)−2aia

T
i

+
n∑

i=1

(R − eT
i (x − x0))

−2eie
T
i

+
n∑

i=1

(R + eT
i (x − x0))

−2eie
T
i (20)

denotes the Hessian of �k+1(x).

Newton Iterations.
1. Given x̃k , set x = x̃k and tolerance �̃ > 0;
2. Compute Newton step: 
x = −H−1

k+1(x)hk+1(x);
3. if hT

k+1(x)H−1
k+1(x)hk+1(x) > 2�̃, then

4. choose stepsize s by backtracking
line search;

5. update: x = x + s
x

6. else return xk+1 = x

Backtracking Line Search.
1. Given descent direction 
x and para-

meters �bt ∈ (0, 0.5), 	bt ∈ (0, 1);
2. set s = 1;
3. while �k+1(x + s
x) > �k+1(x) + �btsh

T
k+1(x)
x ;

4. s = 	bts;
5. end while.

Remark 6. Notice that care should be exerted in the actual
numerical implementation of the above algorithm. As a matter
of fact, it is well known in the literature that the conditioning
of the Hessian may degrade as the number of hyperplanes in-
creases. To partially address this problem, suitable numerical
techniques, such as those based on the Cholesky decomposi-
tion, should be used to compute the inverse of Hk+1. Also,
methods based on pruning the polytope from “unimportant”
hyperplanes (see, e.g., Atkinson & Vaidya, 1995) may be used
to improve the numerical performance of the algorithm.

5. Properties and convergence

5.1. A bound on the number of oracle calls

The convergence of the outer iterations of the P-ACCP
method and its complexity can be analyzed using arguments
similar to the ones adopted in Goffin, Luo, and Ye (1996). A
proof of the next key theorem is reported in the Appendix.

Theorem 2. Fix a feasibility tolerance r ∈ (0, R). In at most

Nouter
.= max{50n, 13.87n2, 8n2(R/r)2.1} (21)

outer iterations, either the P-ACCP algorithm finds a proba-
bilistically feasible solution (see Theorem 3), or the problem
is “unfeasible” up to the given tolerance, in the sense that no
n-dimensional sphere of radius r is contained in X.

In other words, Theorem 2 shows that the number of calls to
the probabilistic oracle is of order O(n2(R/r)2.1) in the worst
case, and hence the procedure terminates in polynomial time.

Remark 7. A few comments are due regarding the role of the
feasibility tolerance r and the outer iterations bound Nouter.
First, notice that in order to ensure a priori that the algorithm
exits after a finite number of outer iterations, it is necessary that
the target set X contains a full-dimensional ball of radius r.

In a specific application, however, it may not be known if
these conditions are satisfied. For this reason, Theorem 2 is
formulated so to give an explicit bound guaranteeing that if the
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number of outer iterations reaches Nouter, then the problem un-
der consideration must fail to satisfy the feasibility conditions
with the assigned tolerance r. In this way, we demand to the
algorithm itself the verification of the feasibility hypothesis. In
practice, one may compute at each iteration the Chebychev ra-
dius of the localization set Lk . If this radius goes below some
pre-specified threshold, one can declare practical infeasibility
and stop the algorithm, usually well before reaching the itera-
tion limit Nouter.

We also remark that if the algorithm is implemented using
deep, instead of neutral, cuts (see Remark 3) then it may happen
that the updated polytope turns out to be empty. In this case,
the algorithm is terminated with a certificate proving that X is
empty and hence that the problem is unfeasible.

Remark 8. Notice that the theoretical bound on the number of
outer iterations for the P-ACCP algorithm, given in Theorem
2, is higher than the corresponding bound valid for the prob-
abilistic ellipsoid method, reported in Kanev et al. (2003) and
Oishi (2003). In our notation this latter bound is Nouter,EA =
2n2 log(

√
nR/r). Although the theoretical worst-case complex-

ity bound is in favor of the EA, it is known that in practice the
ACCP method achieves faster convergence. This fact is con-
firmed in the numerical tests reported in Section 6. Moreover,
our probabilistic scheme can also work with more refined vari-
ations of the basic ACCP method. These techniques have been
shown to achieve theoretical complexity bounds on the number
of outer iterations on the order of n log2(R/r), see Atkinson
and Vaidya (1995) and Goffin and Vial (2002).

In the next section, we analyze the goodness of the solution
returned by the P-ACCP algorithm from a probabilistic view-
point.

5.2. Probabilistic behavior of the P-ACCP algorithm

We next analyze the overall a priori probability of the P-
ACCP algorithm exiting with a “bad” solution, i.e. we assess
the probability of the event ExitBad

.= {P-ACCP exits at some
(unspecified) iteration k ∩ V (xk) > �}={P-ACCP exits at some
(unspecified) iteration k ∩ Badk}, where the event Badk is de-
fined in (14). The analysis is similar to the one developed in
Oishi (2003, 2007) for the case of the ellipsoid algorithm.

Define the events

ExitBadk
.= {P-ACCP exits at iteration k ∩ Badk}

and notice that

ExitBadi ∩ ExitBadj = 0 for i �= j (22)

since the algorithm may exit only at one specific outer iteration.
Notice further that, in order to exit at the kth iteration, the
algorithm has to reach the kth outer iteration, and then declare
xk “feasible,” i.e.

{P-ACCP exits at iteration k} = {Iterk ∩ Feask},

where the events Feask , Iterk are defined in (13), (15). There-
fore, we have

Prob∞{ExitBadk}
= Prob∞{Feask ∩ Badk ∩ Iterk}
= Prob∞{Feask ∩ Badk|Iterk}Prob∞{Iterk}
�Prob∞{Feask ∩ Badk|Iterk}
= Prob∞{Feask|Badk ∩ Iterk}Prob∞{Badk|Iterk}
�Prob∞{Feask|Badk ∩ Iterk} < (1 − �)N(k),

where the last inequality follows from (16). Now,

Prob∞{ExitBad}
= Prob∞{ExitBad1 ∪ ExitBad2 ∪ · · ·}
= Prob∞{ExitBad1} + Prob∞{ExitBad2} + · · ·

< (1 − �)N(1) + (1 − �)N(2) + · · · =
∞∑

k=1

(1 − �)N(k).

The previous sum can be made finite and arbitrarily small by
appropriate choice of N(k). This can be obtained in many ways.
For instance, by setting (1 − �)N(k) = qk , for some q < 1 we
have

∑∞
k=1(1 − �)N(k) =∑∞

k=1 qk =∑∞
k=0 qk − 1 = q/(1 − q).

Therefore, choosing a small 	 ∈ (0, 1) and selecting q=	/(1+
	) < 1, we have that

Prob∞{ExitBad} < 	 (23)

provided that

N(k)� k log(1 + 1/	)

log(1/(1 − �))
.

A better bound, in which the outer iteration index k appears
under the logarithm, can be derived using the technique pro-
posed in Oishi (2003). This is obtained by letting (1− �)N(k) =
(6/�2)	1/k2, from which we get

∞∑
k=1

(1 − �)N(k) = 6

�2 	
∞∑

k=1

1

k2 = 6

�2 	
�2

6
= 	.

Hence, (23) holds provided that

N(k)�Ninner(k)
.= 0.5 + 2 log k + log(1/	)

log(1/(1 − �))
. (24)

Notice that any N(k) which satisfies (24) also satisfies the
weaker bound (18). By the previous reasoning, the following
statement holds.

Theorem 3 (Behavior of a P-ACCP method). Let �, 	 ∈ (0, 1)

be given (small) probability levels, and let N(k), k = 1, 2, . . .,
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be integers satisfying (24). Then, the probability of the P-
ACCP algorithm returning a bad solution (i.e. an xk such that
V (xk) > �) is smaller than 	.

6. Numerical example

We consider the problem of assessing whether a family of
interval matrices of the form

A(�) = A0 +
na∑
i=1

na∑
j=1

�ij eie
T
j , |�ij |��, � > 0, (25)

with A(�) ∈ Rna,na , shares a common quadratic Lyapunov sta-
bility certificate. It is well known, see for instance Barmish
(1994), that a common quadratic certificate for the whole fam-
ily exists if and only if there exists a matrix P � 0 that si-
multaneously satisfies Nv = 2n2

a Lyapunov matrix inequalities
corresponding to the vertex matrices:

AT
v P + PAv ≺ 0, k = 1, . . . , Nv , (26)

where Av represents the kth vertex of the matrix polytope de-
fined by (25). Specifically, we here consider an example pre-
viously examined in Calafiore and Polyak (2001), with uncer-
tainty radius � = 0.5 and 10th order stable nominal matrix A0
in (27).

A0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−55 −23 90 37 −16 −130 44 −49 17 31

−11 40 −272 −241 250 249 −293 103 −8 54

56 56 −140 −56 58 106 −80 82 −32 −28

1 −54 113 −24 −111 −174 198 −46 −68 −85

61 61 −56 −52 −12 44 −49 76 −38 −22

44 107 −191 −176 197 164 −276 111 −58 26

−18 96 −278 −188 283 292 −440 107 29 101

−58 −134 82 173 −77 −89 181 −135 76 −20

39 133 −438 −215 273 422 −376 165 −8 78

−133 −113 217 89 −80 −221 151 −108 17 −36

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

243.4848 142.6003 121.3552 −27.8544 −196.6730 85.3411 −57.8713 137.4481 −32.2335 −23.1294

142.6003 293.9725 −63.8313 82.0954 −83.6371 129.5405 −46.5530 200.7275 −101.3757 −29.3993

121.3552 −63.8313 463.7165 60.7072 −272.9659 −158.1790 −8.9061 −129.0887 78.3220 50.3942

−27.8544 82.0954 60.7072 641.6258 −75.4175 −62.8078 120.3207 −41.7706 168.2345 103.8755

−196.6730 −83.6371 −272.9659 −75.4175 491.3339 55.7253 −77.7316 −27.6907 51.9761 101.8737

85.3411 129.5405 −158.1790 −62.8078 55.7253 337.8017 −296.9537 140.0586 75.9091 92.2008

−57.8713 −46.5530 −8.9061 120.3207 −77.7316 −296.9537 448.8441 −18.1767 −186.6656 −191.7594

137.4481 200.7275 −129.0887 −41.7706 −27.6907 140.0586 −18.1767 249.5202 −110.3031 −70.0670

−32.2335 −101.3757 78.3220 168.2345 51.9761 75.9091 −186.6656 −110.3031 270.2053 193.2367

−23.1294 −29.3993 50.3942 103.8755 101.8737 92.2008 −191.7594 −70.0670 193.2367 192.3494

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (27)

Note that a direct application of (26) would require the simul-
taneous solution of Nv =2100 � 1.26×1030 Lyapunov inequal-
ities, which is clearly unaffordable. Very recently, a result has
been derived in Alamo, Tempo, Ramirez, and Camacho (2007),
which permits to reduce the previous figure to Nv = 22na �
1.05 × 106. However, the number of required vertices still re-
mains large and exponential in the matrix dimension.

We hence switch to a probabilistic approach and look for a
stability certificate which is common to “most” of the matrices
in the uncertain family. In addition, in order to enforce bound-
edness of the feasibility set, we impose a limit on the condi-
tion number of P, of the form I�P�1000I . The problem has
n = na(na + 1)/2 = 55 variables.

We first applied the P-ACCP algorithm starting from an initial
hyperrectangle computed according to the procedure described
in Remark 2, assuming �= 0. Setting a probability of violation
� = 10−4 and a level of confidence 	 = 10−12, the P-ACCP
algorithm (with neutral cuts) stopped after 201 outer iterations
with the solution P in (27).

The behavior of the P-ACCP algorithm is shown in Fig. 2:
for each outer iteration (reported on the abscissae), a number
of inner iterations (represented by the bar height in the plot) is
performed until either the current solution is found unfeasible
(and hence is updated), or the number of random checks reaches
the exit level Ninner(k). The solution was returned after being
tested and found feasible in the inner loop for Ninner(201) =
387, 357 random values of the uncertainty.
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Fig. 2. Number of inner iterations performed at each step by the P-ACCP
algorithm.
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Fig. 3. Number of inner iterations performed at each step by the ellipsoid
algorithm.

For the purpose of comparison, we run the probabilistic el-
lipsoid algorithm of Kanev et al. (2003) on this example, using
exactly the same sequence of uncertainty extractions. The EA
was initialized as described in Kanev et al. (2003), i.e. by com-
puting a minimal ellipsoid containing the hyperrectangle pre-
viously determined. Notice that the same bound (24) applies
to the number of inner iterations of the EA; see for instance
Oishi (2003). The EA returned a probabilistically feasible so-
lution after 2760 outer iterations. The performance of the EA
is shown in Fig. 3.

A few comments are in order. We first remark that the update
phase of the EA (see for instance the explicit algorithm de-
scription in Kanev et al., 2003, Section 3) only involves matrix
multiplications, and that its numerical cost does not depend on
the number of outer iterations elapsed before the update phase.
Indeed, the center update phase in the EA was executed in a
very short and almost constant time of about 0.45 ms. Contrary,
the update phase of the P-ACCP method requires the compu-
tation of an analytic center of a number of linear inequalities
that increases with the number of outer iterations. This results
in a computational cost that shows basically linear growth, see
Fig. 4. However, the EA needs a much higher number of outer
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Fig. 4. Computation times for the center update phase of the P-ACCP algo-
rithm.
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Fig. 5. Total computation time at kth iteration for the P-ACCP and the
ellipsoid algorithms.

iterations (2760 for the EA versus 201 for P-ACCP) in order
to find a probabilistically feasible point. Since each outer iter-
ation requires quite a high number of inner iterations (random-
ized feasibility checks), the overall computation time resulted
to be much higher for the EA compared to that of P-ACCP,
see Fig. 5.

Finally, we run a P-ACCP algorithm with deep cuts on the
same example. In this case the algorithm found an empty poly-
tope after 53 outer iterations, thus proving that the set X is
actually empty, hence the problem is unfeasible from a deter-
ministically robust point of view.

7. Conclusions

In this paper, we proposed the use of a randomized ACCP
technique (P-ACCP) for solving in a probabilistic sense a gen-
eral class of robust feasibility problems involving LMIs. A so-
lution with arbitrarily small violation level can be found with
a computational effort which is polynomial in the problem pa-
rameters and in the required probabilistic levels of accuracy.

The proposed method improves upon the available iterative
randomized methods for probabilistic feasibility (Calafiore &
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Polyak, 2001; Oishi & Kimura, 2003; Polyak & Tempo, 2001;
Kanev et al., 2003; Oishi, 2003), due to the better practical
convergence properties of the interior-point cutting plane algo-
rithm, which constitutes the kernel of our method. For feasi-
bility problems where very low levels of violation probability
are required, the P-ACCP method may also be preferable to
the scenario-based technique of Calafiore and Campi (2006),
since this latter approach may require the one-shot solution
of an SDP problem with too large a number of LMIs, while
P-ACCP works iteratively with one sampled LMI constraint at
a time. In this respect, notice also that the oracle checks in the
P-ACCP method only involve solution of symmetric eigenvalue
problems, and are fully parallelizable. It is, however, fair to say
that the technique in Calafiore and Campi (2006) is applicable
to general robust optimization problems, whereas P-ACCP in
its present form only works for feasibility problems.

We also remark that the probabilistic analysis in this paper
is not restricted to the basic ACCP method explicitly discussed
here, but can actually be applied with minor modifications
to any type of cutting plane technique, see Calafiore (2006).
Changing the way in which the localization set is maintained
and updated and the center is computed changes (hopefully in
the improving direction) the complexity bound Nouter of the
outer iterations of the method. For instance, if a suitable prun-
ing is performed on the localization polytope at each outer iter-
ation (as proposed in Atkinson & Vaidya, 1995), then a rather
sophisticated analysis in Atkinson and Vaidya (1995) shows
that the number of outer iterations grows as O(n(ln(R/r)))2,
thus further improving the theoretical worst-case complexity of
the method.

Appendix A. Proof of Theorem 2

First, we state a known property of the barrier function (9)
that is instrumental for the proof. For simplicity, and without
loss of generality, we shall assume henceforth that x0 = 0 and
‖ai‖ = 1.

Proposition 1 (Boyd and Vandenberghe, 2004, Section 8). The
barrier function (9) is a self-concordant function, for which
the following inequalities hold for all k > 0 and for all x in

its domain: �k(x)��∗
k +

√
(x − xk)

TH̃k(x − xk) − ln(1 +√
(x − xk)

TH̃k(x − xk)), where H̃k
.= Hk(xk) is the Hessian

(20), evaluated in the analytic center and �∗
k

.= �k(xk).

Define preliminarily the clauses: B
.= {“an n-dimensional

sphere of radius r is contained inX”};P
.= {“the P-ACCP algo-

rithm finds a probabilistically feasible solution in at most Nouter
iterations”}; R

.= {“the P-ACCP algorithm finds a robustly
feasible solution, i.e. an x ∈ X, in at most Nouter iterations”}.

Notice that R ⇒ P since, obviously, a robustly feasible
solution is also a probabilistically feasible solution. We prove
in the sequel that B ⇒ R, from which it follows that B ⇒ P.
This implies that “P or B” is true, which is the statement of
Theorem 2.

To prove that B ⇒ R, we follow a reasoning similar to the
one in Goffin et al. (1996), and bound from above and below
the values of the barrier �∗

k+1
.= �k+1(xk+1) with appropriate

functions of k.

A.1. An upper bound on �∗
k+1

At iteration k, if the algorithm has not terminated, it means
that the target set X is contained in the set Lk+1, which is
described by the inequalities

−R�xi �R, i = 1, . . . , n; aT
j x�bj , j = 1, . . . , k (A.1)

with analytic center xk+1. Suppose now, for the purpose of
contradiction, that an n-dimensional sphere of radius r and
(unknown) center xo is contained in X ⊆ Lk+1. This im-
plies that, for all directions ‖z‖�1, we have ‖xo + rz‖∞ �R,
aT
j (xo + rz)�bj , j = 1, . . . , k. In particular, this means that

(R + xo
i )�r, (R − xo

i )�r, i = 1, . . . , n, (A.2)

bj − aT
j xo �r, j = 1, . . . , k. (A.3)

The first inequality is trivial and follows from the choice z=−ei ,
the second inequality follows from the choice z=aj , and from
the fact that ‖aj‖= 1. Applying the inequalities (A.2)–(A.3) to
the quantities in the barrier function, we obtain the following
upper bound:

�∗
k+1

.= inf
x

�k+1(x)

��k+1(x
o)�(2n + k) ln(1/r)

.= UP(k). (A.4)

A.2. A lower bound on �∗
k+1

To obtain a lower bound on �∗
k+1, we write �∗

k+1 =
infx�k+1(x) = infx(�k(x) − ln(bk − aT

k x)) = infx(�k(x) −
ln(−aT

k (x − xk))), where the last equality follows from the
fact that the cuts are neutral, and hence aT

k xk = bk . Ap-
plying now Proposition 1 to �k , we get: �∗

k+1 � infx(�∗
k +√

(x − xk)
TH̃k(x − xk)) − ln(1 +

√
(x − xk)

TH̃k(x − xk)) −
ln(−aT

k (x − xk)) = inf
(�∗
k +

√

TH̃k
 + ln(1 +

√

TH̃k
) −

ln(−aT
k 
)), with 


.= (x − xk). Taking the gradient with re-
spect to 
, it can be shown that the infimum is attained for


∗ = −�H̃−1
k ak/

√
aT
k H̃−1

k aT
k , �

.= (1 + √
5)/2. Substituting in

the previous expression, we have

�∗
k+1 ��∗

k + � − ln(1 + �) − ln(�
√

aT
k−1H̃

−1
k ak−1)

��∗
k − 1

2
ln(aT

k H̃−1
k ak) (A.5)

��∗
1 − 1

2

k∑
j=1

ln(aT
j H̃−1

j aj ) (A.6)

= 2n ln(1/R) − 1

2

k∑
j=1

ln(aT
j H̃−1

j aj ), (A.7)
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where (A.5) follows yielding the term � − ln(1 + �) − ln(�) =
0.1744 > 0; (A.6) follows from a recursive application of the
first inequality; and (A.7) follows from �∗

1 =�1(x1)=�1(0)=
−2n ln(R).

We now concentrate on bounding from below the Hes-
sian H̃j which appears in the above expression. To this end,
we first bound the first term of the Hessian (see (20)) as∑j

i=1(bi − aT
i xj )

−2aia
T
i �(1/4R2n)

∑j
i=1 aia

T
i , since, for

i = 1, . . . , j , we have (bi − aT
i xj )=(1)(aT

i xi − aT
i xj ) =

aT
i (xi − xj )�‖aj‖‖xi − xj‖=(2)‖xi − xj‖� (3)2R

√
n, where

(1) is a consequence of the fact that all cuts are neutral,
(2) follows from the assumption ‖aj‖ = 1, and (3) follows
from ‖xi − xj‖�√

n‖xi − xj‖∞ �(‖xi‖∞ + ‖xj‖∞)
√

n.
Similarly, to bound the second term of the Hessian, we
write

∑n
i=1(R − eT

i xj )
−2eie

T
i + ∑n

i=1(R + eT
i xj )

−2eie
T
i =

(1/R2)
∑n

i=1 ((1−[xj ]i/R)−2+(1+[xj ]i/R)−2)eie
T
i �2/R2I ,

since |[xj ]i |�R, i = 1, . . . , n, and (1 − �)−2 + (1 + �)−2 �2
for � ∈ [−1, 1]. Hence, we get the inequality

H̃j�
2

R2

⎛
⎝I + 1

8n

j∑
i=1

aia
T
i

⎞
⎠ .= 2

R2 Bj , (A.8)

where matrices Bj can be recursively defined, for j =1, . . . , k,
as follows: B0

.= I , Bj
.= Bj−1 + (1/8n)aja

T
j . Ap-

plying bound (A.8)–(A.7), we get: �∗
k+1 �2n ln(1/R) −

1
2

∑k
j=1 ln((R2/2)aT

j B−1
j aj )=2n ln(1/R)+ (k/2) ln(2/R2)+

1
2

∑k
j=1(− ln(aT

j B−1
j aj )). Notice now that − ln(x) is a con-

vex function, hence applying Jensen’s inequality we have:
− ln((1/k)

∑k
j=1 	j )�(1/k)

∑k
j=1(− ln(	j )), which leads

to the inequality �∗
k+1 �2n ln(1/R) + (k/2) ln(2/R2) −

(k/2) ln((1/k)
∑k

j=1 aT
j B̃−1

j aj ). To further bound �∗
k+1, first

notice that, again by Jensen’s inequality, − ln(Tr(Bk)/n) =
− ln((1/n)

∑n
i=1 �i )�(1/n)

∑n
i=1(− ln(�i ))=−(1/n) ln det Bk ,

where �i are the eigenvalues of Bk . Combining this latter
expression with the chain of equalities Tr(Bk) = Tr(I +
(1/8n)

∑k
i=1 aia

T
i ) = n + (1/8n)Tr(

∑k
i=1 aia

T
i ) = n +

(1/8n)
∑k

i=1Tr(aT
i ai) = n + k/8n, leads to the inequality

ln det Bk �n ln(Tr(Bk)/n) = n ln(1 + k/8n2). On the other
hand, we have

ln det Bk = ln det

(
Bk−1

(
I + 1

8n
B−1

k−1aka
T
k

))
(A.9)

= ln det Bk−1 + ln

(
1 + 1

8n
aT
k B−1

k−1ak

)
(A.10)

� ln det Bk−1 + 1

16n
aT
k B−1

k−1ak (A.11)

� ln det B0 + 1

16n

k∑
j=1

aT
j B−1

j−1aj (A.12)

� 1

16n

k∑
j=1

aT
j B−1

j−1aj , (A.13)

where (A.10) follows from the fact that det(I +abT)=1+bTa,
∀a, b ∈ Rn; (A.11) follows from the fact that aT

k B−1
k−1ak �1,

and that, for x ∈ [0, 1], ln(1 + x)�x ln(2)�x/2, and (A.12)
follows from a recursive application of (A.11). Putting things
together, we get

∑k
j=1 aT

j B−1
j aj �16n2 ln(1 + k/8n2) which

leads to

�∗
k+1 �2n ln

1

R
+ k

2
ln(2/R2) − k

2
ln

(
16n2

k
ln

(
1 + k

8n2

))

= 2n ln
1

R
+ k

2
ln(2/R2) − k

2
ln

(
2

ln(1 + k/8n2)

k/8n2

)

= 2n ln
1

R
+ k

2
ln(1/R2) + k

2
ln

(
k/8n2

ln(1 + k/8n2)

)
,

hence �∗
k+1 �LW(k),

LW(k)
.= (2n + k) ln

1

R
+ k

2
ln

(
k/8n2

ln(1 + k/8n2)

)
. (A.14)

A.3. An upper bound on the iterations count k

Combining (A.4) and (A.14) we get the inequality
LW(k)��∗

k+1 �UP(k) in the variable k. Notice that we can
write

UP(k) − LW(k)

= (2n + k) ln(1/r) − (2n + k) ln(1/R) − k

2
ln Υ (k)

= (2n + k) ln(R/r) − k

2
ln Υ (k), (A.15)

where Υ (k)
.= (k/(8n2))/ ln(1 + k/(8n2)). We show that for

some finite k, the difference UP(k) − LW(k) is negative,
which leads to a contradiction, i.e. a ball of radius r cannot
be contained in Lk+1. First, notice that, for any � > 1, (2n +
k) < � k holds for all k > k1(�)

.= 2n/(� − 1). Also, for any
	 < 1, there exists a k2(	) such that Υ (k) < (k/8n2)	 holds
for all k > k2(	) where k2(	) is the only positive root of the
transcendental equation Υ (k) = (k/8n2)	. Hence, substituting
the last two inequalities into (A.15), we get

UP(k) − LW(k)��k ln(R/r) − k

2
ln

(
k

8n2

)	

,

for k > max{k1(�), k2(	)}. The quantity on the right-hand side
is negative for

k > k3(�, 	)
.= 8n2(R/r)2�/	. (A.16)

Therefore, for k > max{k1(�), k2(	), k3(�, 	)} we have that
UP(k) − LW(k) < 0 and the contradiction is found. From
(A.16) we notice that �/	 can be chosen arbitrarily close to
one, and therefore k grows as O

(
n2R2/r2

)
. In particular, by

choosing � = 1.04 and 	 = 0.9905 we get the explicit bound
(21) on the number of oracle calls, thus concluding the proof.
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