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The problem of aggregating multi-agent preference orderings has received considerable attention in
many fields of research, such as multi-criteria decision aiding and social choice theory; nevertheless, the
case in which the agents’ importance is expressed in the form of a rank-ordering, instead of a set of
weights, has not been much debated. The aim of this article is to present a novel algorithm – denominat-
ed as ‘‘Ordered Paired-Comparisons Algorithm’’ (OPCA), which addresses this decision-making problem
in a relatively simple and practical way. The OPCA is organized into three main phases: (i) turning mul-
ti-agent preference orderings into sets of paired comparisons, (ii) synthesizing the paired-comparison
sets, and (iii) constructing a fused (or consensus) ordering. Particularly interesting is phase two, which
introduces a new aggregation process based on a priority sequence, obtained from the agents’ importance
rank-ordering. A detailed description of the new algorithm is supported by practical examples.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

A general decision-making problem is that of aggregating mul-
ti-agent preference orderings of different alternatives into a single
fused ordering. Assume that M decision-making agents1 (D1 to DM)
formulate preference orderings among n alternatives of interest (a, b,
c, d, etc.). The objective is to aggregate the M agents’ orderings into a
single fused ordering, which should reflect them as much as possi-
ble; for this reason, the fused ordering can also be defined as consen-
sus or compromise ordering [1,2]. This aggregation should also take
into account the agents’ importance, which is not necessarily equal
for all of them.

This decision-making problem is very diffused in a variety of
real-life contexts, ranging from multi-criteria decision aiding [3] to
social choice theory [4,5]. Some of the reasons for this diffusion
are that: (i) preference orderings are probably the most intuitive
and effective way to represent preference judgments of alterna-
tives [6], and (ii) they do not require a common scale – neither
numeric, linguistic or ordinal – to be shared by the interacting
agents [7].
The literature includes a variety of algorithms or aggregation
techniques, which can be generally divided in two categories [8]:
(i) methods in which all agents have the same importance [9–
11], and (ii) methods in which agents have recognized attributes
and/or privileged positions of power, represented by weights
[3,12–14].

Regarding the second category of methods, in some practical
contexts weights are not available and/or their definition can be
arbitrary and controversial. For example, weights are often
imposed according to political strategies; e.g., the scientific com-
mittee of a competitive examination for promotion of faculty
members may (arbitrarily) decide that scientific publications will
account for 40% of the total performance, research projects for
20%, teaching activity for 30%, etc. Although the literature provides
several techniques for guiding weight quantification – for example,
the AHP procedure [15,16], the method proposed in [17], or that in
[18] – they are often neglected in practice, probably because of
their complexity.

For these contexts, the problem of weight assignment is partial-
ly overcome by expressing the agents’ importance in the form of a
rank-ordering – such as D1 > (D2 � D3) > . . . > DM – instead of a set
of weights defined on a cardinal scale. In fact, the formulation of
such a rank-ordering is certainly simpler and more intuitive than
that of a set of weights, especially when the agent importance pri-
oritization is uncertain [6].

This paper will focus on this specific problem, which can be
denominated as ordinal semi-democratic; the adjective semi-demo-
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cratic indicates that agents do not necessarily have the same impor-
tance, while ordinal indicates that their rank is defined by a crude
ordering. This makes the set of the possible solutions relatively
wide, since they may range between the two extreme situations
of dictatorship – in which the resulting fused ordering basically
reflects the preference ordering by the most important agent (dicta-
tor) – and democracy – where the agents’ preference orderings are
considered as equi-important.

The ordinal semi-democratic decision-making problem is
intriguing for two features: (i) the way the preference orderings
are compared, and (ii) the way they are synthesized into a fused
ordering, which should also reflect the agents’ importance rank-
ordering. Despite the adaptability to a large number of practical
contexts, this specific problem has received little attention in the
literature. Yager [7] proposed an algorithm, hereafter abbreviated
as YA (which stands for Yager’s Algorithm), which addresses the
problem in a relatively simple, fast and automatable way. Unfortu-
nately, this algorithm has some limitations: (i) it is applicable to
linear preference orderings only, with neither incomparabilities
nor omissions of the alternatives [19], (ii) the resulting fused
ordering may sometimes not reflect the preference ordering for
the majority of agents [20], and (iii) the fused ordering is deter-
mined neglecting an important part of the information available
[21]. These limitations will be clarified in the next sections.

The objective of this paper is to introduce a new algorithm,
denominated as ‘‘Ordered Paired-Comparisons Algorithm’’ (here-
after abbreviated as OPCA), able to overcome the YA’s limitations.
The main features of this algorithm are that (i) agents’ preference
orderings are decomposed into sets of paired comparisons of the
alternatives, and (ii) the different importance of agents determines
a different priority sequence when comparing and synthesizing
these sets into a fused ordering.

The remainder of the paper is organized into three sections. Sec-
tion 2 recalls the YA in detail. Section 3 illustrates the OPCA. The
description of both algorithms is supported by practical examples.
Section 4 presents a structured comparison of the two algorithms,
aimed at highlighting the advantages of the OPCA with respect to
the YA. The concluding section summarizes the original contribu-
tions of this paper and its practical implications, limitations and
suggestions for future research.

2. Basics of the Yager’s Algorithm (YA)

In this section we recall the YA. For a more rigorous description,
we refer the reader to the original contribution by Yager [7].

The algorithm can be schematized in the following three basic
phases, which are described individually in Sections 2.1, 2.2, 2.3:

� construction and reorganization of preference vectors;
� definition of the reading sequence;
� construction of the fused ordering.

2.1. Construction and reorganization of preference vectors

The YA is applicable to (non-strict2) linear orderings only. The
goal of this phase is building preference vectors based on the prefer-
ence orderings by the agents. For each agent’s vector, we place the
alternatives as they appear in the ordering, with the most preferred
one(s) in the top positions. If at any point p > 1 alternatives are tied
(i.e., indifferent), we place them in the same element and then place
the null set (‘‘Null’’) in the next p � 1 lower positions. For example,
when considering three alternatives (a, b and c) with the ordering
2 The adjective ‘‘non-strict’’ means that these orderings allow the relationship of
indifference (‘‘�’’) between alternatives. For simplicity, the adjective will be omitted
hereafter.
(a � b) > c, the resulting vector will conventionally be [{a � b}, Null,
{c}]T. By adopting this convention, the number (n) of elements of a
vector will coincide with the number of alternatives of interest.

Considering four fictitious agents (D1 to D4), with four relevant
orderings of six alternatives (a, b, c, d, e and f), and assuming a cer-
tain (linear) rank-ordering between agents (i.e., D4 > (D2 � D3) > -
D1), the resulting preference vectors can be constructed as shown
in Table 1. For simplicity, vectors will be denominated as the rele-
vant agents (i.e., Di). Each vector element can be associated with an
indicator (j) depicting the position/level of the element, in the pref-
erence vector.

Next, preference vectors are transformed into ‘‘reorganized’’
vectors, conventionally denominated as D�i . This transformation
consists in (i) sorting the Di vectors decreasingly with respect to
the agents’ importance and (ii) aggregating those with indifferent
importance (e.g., D2 and D3 in the example) into a single vector.
This aggregation is performed through a level-by-level union of
the vector elements, where alternatives in elements with the same
(j-th) position are considered as indifferent. The resulting D�i vec-
tors will therefore have a strictly decreasing importance ordering.

Going back to the example in Table 1, the four vectors (D1 and
D4) are turned into three reorganised vectors (D�1 to D�3, see Table 2).
It can be noted that D�2 – given by the aggregation of two vectors
with equal importance (i.e., D2 and D3) – contains two occurrences
for each alternative. Of course, the total number of ‘‘reorganized’’
vectors will be smaller than or equal to the number (M) of initial
preference orderings (3 against 4 in the example presented).

2.2. Definition of the reading sequence

This phase defines a sequence for reading the elements of the D�i
vectors, according to the following pseudo-code:

1. Initialise the sequence number to S = 0.
2. Consider the elements with lowest position, by setting j = 1.
3. Consider the most important D�i vector, by setting i = 1.
4. Set S = S + 1.
5. Associate the element of interest with the sequence

number S.
6. If i is lower than the total number of D�i vectors, then:
7. Set i = i + 1.
8. Consider the element with position j, related to the i-th D�i

vector.
9. Go To Step 4.
10. End If.
11. If j < n (i.e., total number of alternatives), then:
12. Set j = j + 1.
13. Go To Step 3.
14. End If.
15. End.

The sequence defines a bottom-up level-by-level reading of vec-
tor elements. The first elements read are those with lowest position
(j = 1). When considering elements with the same (j-th) position,
priority is given to the vectors from agents of greater importance.
After having read all the elements with (j-th) position, we move
up to the (j + 1)-th position, repeating the reading sequence. Table 2
reports the sequence numbers (S) associated with each element of
the reorganized vectors in the example presented.

2.3. Construction of the fused ordering

This third phase is aimed at determining a fused ordering
through a gradual selection of the alternatives. The following pseu-
do-code illustrates the algorithm for constructing the fused
ordering:



Table 1
Construction of preference vectors related to the orderings by four fictitious agents (D1 to D4).

Agents D1 D2 D3 D4

Preference orderings b > a > (d � e) > f > c c > b > (a � d � e) > f b > (a � c) > f > (d � e) a > c > b > d > e > f

Preference vectors j Elements Elements Elements Elements
6 {b} {c} {b} {a}
5 {a} {b} {a,c} {c}
4 {d,e} {a,d,e} Null {b}
3 Null Null { f } {d}
2 { f } Null {d,e} {e}
1 {c} {f} Null { f }

n = 6 total alternatives are considered: a, b, c, d, e and f.
The agents’ importance ordering is D4 > (D2 � D3) > D1.

Table 2
Reorganized vectors (D�i ) related to the four preference vectors in Table 1 and relevant
sequence numbers (S).

Agents D�1 (D4) D�2 (D2 � D3) D�3 (D1)

j S Element S Elements S Elements

Reorganized vectors 6 16 {a} 17 {b,c} 18 {b}
5 13 {c} 14 {a,b,c} 15 {a}
4 10 {b} 11 {a,d,e} 12 {d,e}
3 7 {d} 8 { f } 9 Null
2 4 {e} 5 {d,e} 6 { f}
1 1 { f } 2 { f } 3 {c}

Table 3
Step-by-step construction of the fused ordering when applying the YA to the example
in Table 1.

Step (S) Element Residual alternatives Gradual ordering

0 – {a,b,c,d,e, f} Null
1 {f} {a,b,c,d,e} f
2 {f} {a,b,c,d,e} f
3 {c} {a,b,d,e} c > f
4 {e} {a,b,d} e > c > f
5 {d, e} {a,b} d > e > c > f
6 { f } {a,b} d > e > c > f
4 {d} {a,b} d > e > c > f
8 { f } {a,b} d > e > c > f
9 Null {a,b} d > e > c > f
10 {b} {a} b > d > e > c > f
11 {a, d, e} Null a > b > d > e > c > f
End – – –
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1. Initialise the gradual ordering to ‘‘Null’’.
2. Initialise S = 1.
3. Consider the element with sequence number S.
4. If the element is not ‘‘Null’’, then:
5. Identify the alternative(s) in the element of interest.
6. If all these alternatives are not yet present in the gradual

ordering, then:
7. Include the alternative(s) not yet present at the top of

the gradual ordering. Tied alternatives should be
considered as indifferent (�).

8. If the gradual ordering includes all the (n) alternatives,
then:

9. Go to Step 15.
10. End If.
11. End If.
12. End If.
13. Increment S = S + 1.
14. Go to Step 3.
15. The final fused ordering is given by the gradual ordering.
16. End.

The YA can be classified as an AND-ing type as for an alternative
to be in a higher positions of the fused ordering, it should be in a
higher position for any of the individual orderings (i.e., AND rela-
tionship). Reversing the perspective, a generic alternative is
excluded from the higher positions of the fused ordering when it
is in a lower position in (at least) one of the individual preference
orderings.

Applying the algorithm to the vectors in Table 2, the resulting
fused ordering is a > b > d > e > c > f. Table 3 shows the gradual con-
struction of the fused ordering; the first two columns report the S
value of the element of interest and the alternative(s) that it con-
tains, while the last two report the alternatives not yet included
in the gradual ordering and the gradual ordering itself.
3. Ordered Paired-Comparisons Algorithm (OPCA)

This section introduces the OPCA, supporting the description
with a practical example. Section 3.1 focuses on the input data
admitted by this algorithm, while the remaining three subsections
(i.e., Sections 3.2, 3.3, 3.4) illustrate the three basic phases of this
algorithm (see the scheme in Fig. 1):

� construction of the sets of paired comparisons;
� synthesis of the sets of paired comparisons;
� construction of the fused ordering.

The second phase is the core of the algorithm and relies on an
original aggregation process, in which the agents’ importance
determines a priority sequence for synthesizing the sets of paired
comparisons.
3.1. OPCA input data

As explained in Section 2.1, the YA is applicable to linear order-
ings only, where no alternatives are omitted and any two alterna-
tives are comparable. The authors believe that – to fit a relatively
large amount of practical contexts – the general ordinal semi-
democratic decision-making problem should admit orderings in
which some alternatives are omitted and/or incomparable with
each other. According to the Mathematics’ Order theory, such
orderings are classified as partial [19] and can be diagrammed as
graphs with branches, which determine different possible paths
from the element(s) at the top to that one(s) at the bottom. If
two alternatives are not comparable, there exists no direct path
from the first to the second one (or viceversa).



Fig. 1. Characteristic phases of the OPCA.

Fig. 2. Graphical representation of the preference orderings by four fictitious agents (D1 to D4). The alternatives in the decision-making problem are a, b, c, d, e and f. The
agents’ rank-ordering is assumed to be D4 > (D2 � D3) > D1. Symbols ‘‘ > ’’, ‘‘�’’ and ‘‘||’’ respectively depict the strict preference, indifference and incomparability relationship.

Table 4
Decomposition of the preference orderings from Fig. 2 into sets of paired-comparison relationships.

Agent D1 D2 D3 D4

Preference orderings c > b > {[a > (d � e)] || f} b > d > f > c (a �f) > b > (c � d � e) a > b > c > d > e
Alternatives of interest {a,b,c,d,e, f} {b,c,d, f} {a,b,c,d,e, f} {a,b,c,d,e}
Omitted alternatives None {a,e} None {f}
Incomparable alternatives (a, d and e) with f None None None

Paired-comparison relationships (a,b) b > a a || b a > b a > b
(a,c) c > a a || c a > c a > c
(a,d) a > d a || d a > d a > d
(a,e) a > e a || e a > e a > e
(a, f) a || f a || f a � f a || f
(b,c) c > b b > c b > c b > c
(b,d) b > d b > d b > d b > d
(b,e) b > e b || e b > e b > e
(b, f) b > f b > f f > b b || f
(c,d) c > d d > c c � d c > d
(c,e) c > e c || e c � e c > e
(c, f) c > f f > c f > c c || f
(d,e) d � e d || e d � e d > e
(d, f) d || f d > f f > d d || f
(e, f) e || f e || f f > e e || f

The symbols ‘‘ > ’’, ‘‘�’’, and ‘‘||’’ respectively stand for ‘‘strictly preferred to’’, ‘‘indifferent to’’ and ‘‘incomparable to’’.
The agents’ importance ordering is D4 > (D2 � D3) > D1.
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Table 5
Possible paired-comparison relationships between two generic alternatives (a and b)
and corresponding scores.

Relationship Score assigned to the alternatives

a b

a > b a preferred to b 1 0
b > a b preferred to a 0 1
a � b a indifferent to b 0.5 0.5
a || b a incomparable to b N/A N/A
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By admitting partial preference orderings, agents would not be
forced to include dubious alternatives in their preference orderings
or to make dubious comparisons. For the purpose of example, let
us consider the preference orderings illustrated in Fig. 2; the
Table 6
(a) Assignment of the scores to the paired-comparison relationships. (b) Process for synt
comparison, we report the turn-by-turn score and the corresponding cumulative score (la

(a) (b)
Sets of paired-
comparison
relationships

Tu
1

D1 D2 D3 D4

Paired-comparison
relationships
and scores

(a, b) b > a a || b a > b a > b Paired-
comparison
relationships
and scores

(a, b) a
a 0 N/A 1 1 a 1
b 1 N/A 0 0 b 0
(a, c) c > a a || c a > c a > c (a, c) a
a 0 N/A 1 1 a 1
c 1 N/A 0 0 c 0
(a, d) a > d a || d a > d a > d (a, d) a
a 1 N/A 1 1 a 1
c 0 N/A 0 0 d 0
(a, e) a > e a || e a > e a > e (a, e) a
a 1 N/A 1 1 a 1
e 0 N/A 0 0 e 0
(a, f) a || f a || f a � f a || f (a, f) a
a N/A N/A 0.5 N/A a N
f N/A N/A 0.5 N/A f N
(b,c) c > b b > c b > c b > c (b, c) b
b 0 1 1 1 b 1
c 1 0 0 0 c 0
(b, d) b > d b > d b > d b > d (b, d) b
b 1 1 1 1 b 1
d 0 0 0 0 d 0
(b, e) b > e b || e b > e b > e (b, e) b
b 1 N/A 1 1 b 1
e 0 N/A 0 0 e 0
(b, f) b > f b > f f > b b || f (b, f) b
b 1 1 0 N/A b N
f 0 0 1 N/A f N
(c, d) c > d d > c c � d c > d (c, d) c
c 1 0 0.5 1 c 1
d 0 1 0.5 0 d 0
(c, e) c > e c || e c � e c > e (c, e) c
c 1 N/A 0.5 1 c 1
e 0 N/A 0.5 0 e 0
(c, f) c > f f > c f > c c || f (c, f) c
c 1 0 0 N/A c N
f 0 1 1 N/A f N
(d, e) d � e d || e d � e d > e (d, e) d
d 0.5 N/A 0.5 1 d 1
e 0.5 N/A 0.5 0 e 0
(d, f) d || f d > f f > d d || f (d, f) d
d N/A 1 0 N/A d N
f N/A 0 1 N/A f N
(e, f) e || f e || f f > e e || f (e, f) e
e N/A N/A 0 N/A e N
f N/A N/A 1 N/A f N

The agents’ importance ordering is D4 > (D2 � D3) > D1.
The parameter m represents the number of agents formulating a paired-comparison relat
Eq. (1); t is the preference threshold, which is conventionally set to the t⁄ value, determ

a For the paired comparisons (a, f) and (e, f), the condition m P q is not satisfied, there
alternatives in this fictitious decision-making problem are a, b, c,
d, e and f, and the agents’ importance ordering is assumed to be
D4 > (D2 � D3) > D1. It can be noticed that the partial ordering by
agent D1 includes two possible paths (A and B); the alternatives
positioned along path A (i.e., a, d, and e) are not comparable with
that one positioned along path B (i.e., f). Also, orderings do not nec-
essarily include all the alternatives; e.g., alternatives a and e are
omitted by D2, while f is omitted by D4.
3.2. Construction of the sets of paired comparisons

At this stage, agents’ preference orderings are turned into corre-
sponding sets of paired comparison relationships. Since the deci-
sion-making problem in Fig. 2 includes n = 6 alternatives, there
will be C6

2 ¼ 15 total paired comparisons (see the first column in
hesizing the individual sets of paired comparisons into a single one. For each paired
belled as ‘‘CUM’’).

rn
(D4)

Turn
2 (D2 � D3)

Turn 3 (D1) m q t Fused paired
comparisons

> b CUM a || b a > b CUM b > a CUM
1 N/A 1 2 0 2 3 2 1.25 a > b
0 N/A 0 0 1 1

> c CUM a || c a > c CUM c > a CUM
1 N/A 1 2 0 2 3 2 1.25 a > c
0 N/A 0 0 1 1

> d CUM a || d a > d CUM a > d CUM
1 N/A 1 2 1 3 3 2 1.25 a > d
0 N/A 0 0 0 0

> e CUM a || e a > e CUM a > e CUM
1 N/A 1 2 1 3 3 2 1.25 a > e
0 N/A 0 0 0 0

|| f CUM a || f a � f CUM a || f CUM
/A 0 N/A 0.5 0.5 N/A 0.5 1 2 0.75a a || f
/A 0 N/A 0.5 0.5 N/A 0.5
> c CUM b > c b > c CUM c > b CUM

1 1 1 3 0 3 4 2 1.5 b > c
0 0 0 0 1 1

> d CUM b > d b > d CUM b > d CUM
1 1 1 3 1 4 4 2 1.5 b > d
0 0 0 0 0 0

> e CUM b || e b > e CUM b > e CUM
1 N/A 1 2 1 3 3 2 1.25 b > e
0 N/A 0 0 0 0

|| f CUM b > f f > b CUM b > f CUM
/A 0 1 0 1 1 2 3 2 1.25 b > f
/A 0 0 1 0 0 0
> d CUM d > c c � d CUM c > d CUM

1 0 0.5 1.5 1 2.5 4 2 1.5 c � d
0 1 0.5 1.5 0 1.5

> e CUM c || e c � e CUM c > e CUM
1 N/A 0.5 1.5 1 2.5 3 2 1.25 c > e
0 N/A 0.5 0.5 0 0.5

|| f CUM f > c f > c CUM c > f CUM
/A 0 0 0 0 1 1 3 2 1.25 f > c
/A 0 1 1 2 0 2
> e CUM d || e d � e CUM d � e CUM

1 N/A 0.5 1.5 0.5 2 3 2 1.25 d > e
0 N/A 0.5 0.5 0.5 1

|| f CUM d > f f > d CUM d || f CUM
/A 0 1 0 1 N/A 1 2 2 1 d � f
/A 0 0 1 1 N/A 1
|| f CUM e || f f > e CUM e || f CUM
/A 0 N/A 0 0 N/A 0 1 2 0.75a e || f
/A 0 N/A 1 1 N/A 1

ionships different from ‘‘||’’; q is the quorum threshold, which is determined by using
ined according to Eq. (2) (shown later in this section).
fore the result of the synthesis process is an incomparability relationship (‘‘||’’).



Table 7
Example of synthesis of paired-comparison judgements by four agents. The synthesis
result is calculated by varying the agents’ rank-ordering and the t value.

Paired-comparison relationships

D1 D2 D3 D4

(a,b) a > b b > a b > a a > b
a 1 0 0 1
b 0 1 1 0

Agents’ rank orderings Fused paired comparison

t = 1 1 < t 6m/2 m/2 < t 6m

1: D1 > D2 > D3 > D4 a > b b > a a || b
2: D3 > D2 > D1 > D4 b > a b > a a || b
3: (D1 � D3) > D4 > D2 a � b a > b a || b
4: D1 � D2 � D3 � D4 a � b a � b a || b
N: . . . ? ? a || b

In this case, M = 4.

1 m/2 m 0 … 2 

Voting-order-effect  
(1 < t ≤ m/2) 

No-voting-order-effect 
 (m/2 < t ≤ m) 

borderline 
situation 

dictatorship unanimity t* 

[ ]m,t 1∈

Fig. 3. Schematic subdivision of the range of variability of the t threshold. The
parameter m depicts the number of agents involved in the synthesis process.

Table 8
Example of Paired Comparison Chart related to the fused paired comparisons in the
last column of Table 6(b). The fused ordering is constructed according to the
normalized score (in the column labelled with ‘‘R/C’’).

a b c d e f R C R/C

a – 1 1 1 1 N/A 4 4 1
b 0 – 1 1 1 1 4 5 0.8
c 0 0 – 0.5 1 0 1.5 5 0.3
d 0 0 0.5 – 1 0.5 2 5 0.4
e 0 0 0 0 – N/A 0 4 0
f N/A 0 1 0.5 N/A – 1.5 3 0.5

Resulting fused ordering: a(1) > b(0.8) > f(0.5) > d(0.4) > c(0.3) > e(0).
R is the total score of each alternative; C is the number of paired comparisons
usable for determining the total score of each alternative.

3 The adjective ‘‘fused’’ indicates that each paired-comparison relationship repre-
sents the fusion between the homologous paired-comparison relationships, obtained
from the preference orderings.
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Table 4). For each paired comparison there are three possible rela-
tionships: ‘‘strict preference’’ (‘‘>’’), ‘‘indifference’’ (‘‘�’’) and ‘‘in-
comparability (‘‘||’’).

The decision of using paired-comparison relationships is moti-
vated by several reasons:

1. They allow to express the preference between two alternatives
in a natural and intuitive way.

2. They represent a practical expedient for splitting the agents’
preference orderings into elementary elements (i.e., the
paired-comparison relationships) and facilitating the compar-
ison of the orderings.

3. They can be derived from both linear or partial preference
orderings.

4. They could also be derived from agents’ judgements expressed
in other forms (e.g., measurements/evaluations on ordinal/in-
terval/ratio scales), as long as they admit relationships of order-
ing among the alternatives.
Chen et al. [22] have recently suggested an algorithm that,
similarly to the OPCA, uses paired comparisons for synthesizing
the preference orderings. This technique is not directly compara-
ble to the OPCA as it requires the agents’ importance hierarchy
to be defined by a set of weights and not by a (linear) rank-
ordering.

3.3. Synthesis of the sets of paired comparisons

The goal of this phase is to synthesize the agents’ sets of paired
comparisons into a single set of fused3 paired comparisons. The
synthesis process is based on several steps. First, for a generic paired
comparison, each agent assigns a vote to the alternatives, according
to the scoring system in Table 5. The vote is assigned to the preferred
alternative or, in the case alternatives are tied, it is split equally
between them (i.e., 0.5 and 0.5). If two alternatives are incomparable
for one agent, that agent will be excluded from voting. Among the
possible scoring systems, the proposed one seems relatively natural
and intuitive.

Next, for a generic paired comparison, the following parameters
are determined:
m i
.e., the number of voting agents, excluding those for which
the two alternatives of interest are incomparable.
Obviously, m will coincide with the total score given by the
voting agents and it will be smaller than or equal to M.
q i
.e., a quorum threshold. If m P q, the synthesis process is
performed as explained later in this section; if m < q, the
synthesis process is aborted, determining a fused paired-
comparison relationship of incomparability (‘‘||’’).
t i
.e., a preference threshold used in the synthesis process;
later in this section we will explain how to determine
suitable values of t.
The use of q is for preventing dubious fused paired-comparison
relationships, in situations where agents find it difficult to compare
the two alternatives of interest. For example, regarding the paired
comparison (a, f) or (e, f), one agent only (out of four) is able to
compare these pairs of alternatives. In these situations, it seems
reasonable that the synthesis results in an incomparability rela-
tionship, when m does not reach the threshold q.

We conventionally set:

q ¼ M=2; ð1Þ

although we are aware that this threshold may be varied depending
on the required ‘‘degree of prudence’’.

Table 6(a) contains the vote assignment related to the paired
comparisons in Table 4.

Agents’ votes are reorganized according to two criteria: (i)
agents are sorted decreasingly with respect to their importance
rank-ordering, and (ii) for equi-important agents (such as D2 and
D3, in the example in Fig. 2), the corresponding scores are aggregat-
ed. Table 6(b) contains the reorganized votes related to the paired
comparisons in Table 4.

In the case m P q, i.e., when the quorum threshold is reached,
the synthesis process is performed as follows. For each paired com-
parison (a, b), the agents’ votes are examined gradually, proceeding
in descending order with respect to their relative importance. If
two (or more) agents have indifferent importance, their votes are
examined in the same turn (e.g., the votes by D2 and D3 are both
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examined in turn 2, see Table 6(b)). Of course, the total number of
turns will be smaller than or equal to the number (M) of agents (3
against 4 in the example presented). Simplifying, the synthesis
process establishes that the first alternative whose cumulative
score (‘‘CUM’’) reaches a preference threshold t (that we will focus
on later) is the preferred one. The following pseudo-code illustrates
the synthesis of the agents’ paired comparisons into a fused one:

1. Initialise the cumulative scores of a and b (CUM(a) and
CUM(b) respectively) to 0.

2. If m < q (quorum is not reached), then:
3. The resulting fused paired comparison is a || b
4. Else If m P q (quorum is reached), then:
5. Set the value of the preference threshold t.
6. For each (i-th) turn:
7. CUM(a) = CUM(a) + the score of a in that turn.
8. CUM(b) = CUM(b) + the score of b in that turn.
9. If CUM(a) P t OR CUM(b) P t, then:
10. Exit For.
11. End If.
12. End For.
13. If CUM(a) P t AND CUM(b) < t, then:
14. The resulting fused paired comparison is a > b.
15. Else If CUM(a) < t AND CUM(b) P t, then:
16. The resulting fused paired comparison is b > a.
17. Else If CUM(a) P t AND CUM(b) P t, then:
18. If CUM(a) = CUM(b), then:
19. The resulting fused paired comparison is a � b.
20. Else If CUM(a) > CUM(b), then:
21. The resulting fused paired comparison is a > b.
22. Else If CUM(a) < CUM(b), then:
23. The resulting fused paired comparison is b > a.
24. End If.
25. Else If CUM(a) < t AND CUM(b) < t, then:
26. The resulting fused paired comparison is a || b.
27. End If.
28. End If.
29. End.

More precisely, the fused paired comparison may consists of
three possible relationships:

1. Indifference. It occurs when both the alternatives reach t at the
same turn and, until that turn, they have had the same score.
For example, considering the paired comparison (c, d) in the
example in Table 6, the resulting relationship is c � d, since
the two alternatives both reach t (i.e., 1.5) in turn 2 and have
the same cumulative score at that moment.

2. Strict preference of one alternative with respect to the other one
(i.e., a > b or b > a). It occurs when (i) one alternative reaches t in
a certain turn while the other one not, or (ii) both the alterna-
tives reach t in a certain turn (and possibly exceed it), but the
cumulative score (‘‘CUM’’) until that turn is higher for one alter-
native (i.e., the preferred one) with respect to the other one. For
example, considering the paired comparison (a, b) in the exam-
ple in Table 6, the resulting relationship is a > b, since the alter-
native a reaches t in turn 2, while b not.

3. Incomparability (a || b). It can occur in two different cases: (i)
when m < q (i.e., when the quorum threshold is not reached
by the number of agents involved in the synthesis process,
i.e., those formulating paired-comparison relationships differ-
ent from ‘‘||’’) and (ii) when m P q but none of the two alterna-
tives reaches t, even though all agents have assigned their vote.
The latter situation can occur when using relatively high values
of t.
In the proposed synthesis approach, the different ‘‘voting pow-
er’’ of agents determines a different priority order when expressing
their (unitary) vote. This is the most important difference with
respect to other approaches in which the agent vote is weighted
and there is no priority order when voting [3,12–14].

Let us now focus the attention on the rationale for choosing a
suitable t value. As a first consideration, when m/2 < t 6m, the result
of the synthesis is not affected by the agents’ voting order. In other
words, when t 2 m=2;m� �, the criterion for selecting one alternative
over another – in a generic paired comparison (a, b) – degenerates
into that of the majority, regardless of the agents’ voting order. For
instance, if a has a total score larger than or equal to t, the synthesis
will certainly result in a > b, since there will be no voting sequence
for which b can reach t before a. Let us consider the example in
Table 7, in which the votes by four agents should be synthesized into
a fused paired comparison (a, b). Three of all the possible agents’
rank-orderings are considered. When t 2 m=2 ¼ 2;m ¼ 4� �, the
result of the synthesis does not depend on the voting sequence (it
is always a || b in this case). For this reason, m=2;m� � can be classified
as range of no-voting-order-effect (see Fig. 3).

We remark that, as t increases within this range, the required
level of agreement between agents increases. The extreme case is
t = m, corresponding to a unanimity situation where the fused
paired comparison will always result into an incomparability rela-
tionship, except when all the m agents involved share the same
preference or indifference relationship.

On the other hand, in the case 1 6 t 6m/2, the voting order of
agents may affect the result of the synthesis process. For the pur-
pose of example, Table 7 shows that, when t = 1 or 1 < t 6m/2,
results may change depending on the voting order. Since the
agents’ voting order may affect the result of the synthesis, [1, m/
2] may be denominated as range of voting-order-effect. There are
two extreme cases: (i) t = 1, which denotes the dictatorship situa-
tion, in which the fused paired comparison coincides with that of
the most important agent, and (ii) t = m/2, which denotes the bor-
derline situation with respect to the no-voting-order-effect range.

Based on the previous considerations, a reasonable value of t
can be that in the middle of the voting-order-effect range (see the
representation in Fig. 3, where it is denoted by a star), i.e.:

t ¼ t� ¼ 1þm=2
2

: ð2Þ

The t⁄ value is purely conventional and a different value – as long as
included in the voting-order-effect range – could lead to slightly dif-
ferent synthesis results. The t values reported in the semi-last col-
umn of Table 6(b) are obtained applying Eq. (2); the last column
contains the resulting fused paired-comparison relationships.

3.4. Construction of the fused ordering

This stage aims at summarizing the set of fused paired-compar-
ison relationships into a fused ordering. This problem is not new in
the scientific literature and a variety of techniques have been pro-
posed over the years. The oldest technique is probably that by Con-
dorcet [9,11,23], while in recent decades several approaches based
on the concept of ‘‘graph kernel’’ (borrowed from graph theory)
have gained a certain popularity [3,24].

Without going into the pros and cons of the different tech-
niques, we suggest to use the so-called ‘‘Paired Comparison Chart’’
(PCC) by Dym et al. [25]. Despite some limitations, this technique is
relatively simple and effective.

Let us briefly illustrate it, considering the set of fused paired
comparisons resulting from Table 6(b). Comparisons are reported
in a matrix, as illustrated in Table 8. For a generic paired compar-
ison, we assign a score to the alternatives according to the same
scoring system in Table 5: in the case of strict preference, the pre-
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ferred alternative earns one point; in the case of indifference, the
point is divided equally between the two alternatives (i.e., 0.5 and
0.5), while in the case of incomparability, it is not assigned to any
alternative (and the field is conventionally filled with ‘‘N/A’’).

Next, the sum of the scores of each alternative is determined
(‘‘R’’ in Table 8). In the classical PCC procedure – which does not
admit incomparability relationships between alternatives – the
most preferred alternatives are those with higher R values. How-
ever, the use of R values would penalize alternatives that cannot
be compared to some others. For example, the alternatives a and
b in Table 8 have the same R value; however, while a is preferred
to the totality of the alternatives (except f, due to the incompara-
bility relationship a || f), b loses the comparison with a.

This distortion can be avoided by normalizing the R values,
dividing them by the relevant C values, i.e., the numbers of ‘‘us-
Table 9
Ad hoc criteria and social choice theory axioms for comparing the YA and the OPCA.

Perspective Description

(a) Ad hoc criteria Consistency The fused ordering should reflect t
ones. A practical way to check this
between the fused ordering and th
consistent if it holds in the majori

Efficiency Algorithm’s ability to use the infor
algorithm that focuses on the low
orderings of certain agents, canno

Versatility The versatility criterion can be rel
input data and (ii) the ability to ad
peculiarities make one algorithm p

(b) Axioms from social
choice theory

Idempotency If all of the preference vectors are
Monotonicity If any agent modifies his or her pr

should respond only by promoting
Non-dictatorship The algorithm should account for t

single agent (dictator).
Unrestricted domain or
universality

For any set of individual agent pre
the alternatives.

Independence of
irrelevant alternatives

The preference between x and y sho
one alternative is removed, then th

Non-imposition or citizen
sovereignty

Every ranking of the alternatives s

Pareto-efficiency If every voter prefers a certain alter
other too.

Table 10
Comparison between the YA and the OPCA in terms of consistency between the agents’ p
comparison is based on the YA’s and OPCA’s results to the decision-making problem in Ta

Paired comparison Relationship in the preference orderings

D4 D2 D3

(a,b) a > b b > a b > a
(a,c) a > c c > a a � c
(a,d) a > d a � d a > d
(a,e) a > e a � e a > e
(a, f) a > f a > f a > f
(b,c) c > b c > b b > c
(b,d) b > d b > d b > d
(b,e) b > e b > e b > e
(b, f) b > f b > f b > f
(c,d) c > d c > d c > d
(c,e) c > e c > e c > e
(c, f) c > f c > f c > f
(d,e) d > e d � e d � e
(d, f) d > f d > f f > d
(e, f) e > f e > f f > e

The fused orderings obtained by the YA and OPCA are respectively a > b > d > e > c > f an
The cells highlighted in gray depict the inconsistent or dubious results.
able’’ paired comparisons for which the alternatives of interest
do not result in any incomparability relationship. For example, in
Table 8 the alternative f has C = 3, since it is only comparable to
b, c and d. By changing the perspective, the C value represents
the maximum score achievable by a certain alternative, consider-
ing the usable paired comparisons.

Having said that, the most preferred alternatives are those with
a higher ‘‘R/C’’ score (see the column labelled with ‘‘R/C’’ in
Table 8). In the case exemplified in Table 8, the fused ordering is
a > b > f > d > c > e.

A ‘‘prudence threshold’’ (Q) can be introduced to prevent the
alternatives which are difficult to compare with other ones from
being dubiously included in the fused ordering: when the C value
of one alternative does not reach Q, the alternative is excluded
from the fused ordering. The threshold Q can be conventionally
he preference orderings for the majority of agents, especially the most important
is to observe the ‘‘compatibility’’, at the level of individual paired comparisons,

e agents’ preference orderings. We say that a relationship in the fused ordering is
ty of the agents’ preference orderings.
mation contained in the individual preference orderings. For instance, an

er part of the preference orderings only, or one that ignores the preference
t be considered as very efficient.
ated to two different aspects: (i) the algorithm’s ability to adapt to a variety of
apt to a democratic case, i.e., when all agents are equi-important. Both these
otentially applicable to a great amount of practical contexts.

the same, the resulting fused ordering is this one.
eference ordering by promoting a certain alternative, then the fused ordering

that same alternative or not changing, never by placing it lower than before.
he wishes of multiple agents. It cannot simply mimic the preference ordering of a

ference orderings, the algorithm should yield a unique and complete ranking of

uld depend only on the individual preferences between x and y. In other words, if
e algorithm should still create the same ordering of the remaining alternatives.

hould be possible as outcome.

native over another, then the fused ordering must prefer this alternative over the

reference orderings and the fused ordering, at the level of paired comparisons. This
ble 1.

Relationship in the fused ordering

D1 YA OPCA

b > a a > b b > a
a > c a > c c > a
a > d a > d a > d
a > e a > e a > e
a > f a > f a > f
b > c b > c c > b
b > d b > d b > d
b > e b > e b > e
b > f b > f b > f
d > c d > c c > d
e > c e > c c > e
f > c c > f c > f
d � e d > e d > e
d > f d > f d > f
e > f e > f e > f

d c > b > a > d > e > f.



Table 11
Concise comparison between the YA and the OPCA, on the basis of (a) the ad hoc criteria and (b) the axioms from social choice theory, illustrated in Table 9. The symbols ‘‘U’’ and
‘‘�’’ respectively indicate the axioms satisfied or not by the two algorithms.

Criterion YA OPCA

(a) Ad hoc
criteria

Consistency Limited, due to the (rather drastic) mechanism for selecting
the alternatives in the fused ordering.

Good, thanks to the new logic, which is based on paired-comparison data
derived from the preference orderings.

Efficiency Limited, as the fused ordering is determined after having read
a relatively small portion of the vector elements, overlooking
the upper positions.

Good, since the OPCA better uses the information contained in the
preference orderings.

Versatility Limited, as (i) it admits linear preference orderings only and
(ii) it does not perform well in the case of equi-important
agents.

Good, as (i) it admits partial preference orderings, with omitted and/or
incomparable alternatives, and (ii) it performs quite well even in the case
of equi-importance agents.

(b) Social
choice
theory
axioms

Idempotency U U
a

Monotonicity U U

Non-
dictatorship

U U

Unrestricted
domain or
universality

U U

Independence
of irrelevant
alternatives

� �

Non-imposition
or citizen
sovereignty

U U

Pareto-
efficiency

U U

a Since the fused ordering is linear, the idempotency axiom is satisfied in the case agents’ preference orderings are linear.
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set to Q = n/2, n being the total number of alternatives of the deci-
sion-making problem. According to this convention, alternatives
that are not comparable with (at least) the majority of the remain-
ing ones (i.e., alternatives for which C < Q) are preventively
excluded from the fused ordering. In the example in Table 8, all
the alternatives meet the minimum requirement C P Q = 3 (since
n = 6), therefore it is not necessary to exclude any alternative.

A particular feature of the PCC technique is that it always
returns a fused ordering, also when the fused paired comparisons
do not satisfy the property of transitivity [9]. On the other hand,
it can be demonstrated that this technique may violate the Arrow’s
axiom of independence of irrelevant alternatives [8]; however, Dym
et al. [25] showed that the negative consequences of this feature
are not crucial. For specific situations, other more sophisticated
techniques can be used to obtain a fused ordering [3].

4. Structured comparison between YA and OPCA

This section presents a structured comparison of the YA and the
OPCA, from two perspectives: that of the three ad hoc4 criteria of
consistency, efficiency and versatility, and that of some popular
axioms borrowed from social choice theory [8]; a short description
is presented in Table 9.

Considering the consistency criterion, the YA is somehow weak,
as noted by Wang [20] and Franceschini et al. [21]. This aspect is
evident when analyzing the YA’s results to the decision-making
problem in Table 1: the paired-comparison relationships from
the fused ordering and those from the individual preference order-
ings have several inconsistencies; e.g., for agents D2, D3 and D4

(which represents the majority and, by the way, are all more
important than D1), c > d and c > e, while these relationships are
reversed in the fused ordering. Among the fifteen overall paired
4 The adjective ‘‘ad hoc’’ indicates that these criteria were specifically defined for (i)
facilitating the comparison between the YA and the OPCA, and (ii) highlighting the
advantages of the latter algorithm with respect to the former one.
comparisons, four – i.e., more than 25%! – look inconsistent or
dubious (see Table 10). These inconsistencies are due to the YA’s
logic of selection of the alternatives, which is rather drastic as
the occurrence of one alternative in a low position – even for a
single preference ordering – can determine a very low position in
the fused ordering. E.g., in the example in Table 1, c is in the penul-
timate position of the fused ordering as it was relegated by D1 at
the bottom of the preference ordering.

Applying the OPCA to the same decision-making problem in
Table 1, we obtain a fused ordering (i.e., c > b > a > d > e > f), which
is significantly better than that one produced by the YA, since all
the paired comparisons – except one – seem consistent (see
Table 10). This is not an isolated coincidence, but depends on the
fact that the phase two of the OPCA tends to maximize the
consistency between the fused ordering and the preference
orderings. Also, the OPCA’s fused ordering seems more reasonable
than the YA’s, since c makes up four positions, consistently with its
relatively high rank position in the majority of the agents’
preference orderings. Tables A1 and A2 (in Appendix) respectively
illustrate the construction of the fused paired comparisons and the
corresponding PCC.

For the purpose of further example, let us analyze the consis-
tency of the OPCA’s solution to the decision-making problem
exemplified in Fig. 2. The fused ordering seems to reflect the
agents’ (partial and linear) preference orderings quite well, since
almost the totality of the paired-comparison relationships are con-
sistent (see Table A3, in Appendix).

Considering the efficiency criterion, the YA does not performs
very well since it tends to overlook the upper positions of the pref-
erence orderings; e.g., in the example proposed in Table 1 the fused
ordering is determined after having read just eleven out of eigh-
teen total elements; in particular, the two top levels of the prefer-
ence vectors have been totally ignored (see Table 3).

The OPCA is significantly more efficient in this sense, since the
fused ordering is determined considering the totality of the ele-
ments in the preference orderings, not only those in the lower
positions.
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The versatility criterion can be analyzed from the following
two angles: (i) the ability to adapt to a variety of input data
and (ii) the ability to adapt to a democratic case. Regarding the
first aspect, the YA is applicable to linear preference orderings
only, while the OPCA is significantly more versatile, since it
admits partial preference orderings, with omitted and/or incom-
parable alternatives. Regarding the second aspect, it can be shown
that the YA may lose its effectiveness in the case of democracy.
For example, let us assume that all the four preference orderings
in Table 1 are equi-important. The individual orderings would be
Table A1
Application of the OPCA to the decision-making problem in Table 1: (a) decomposition of
assignment of the scores to the alternatives; (b) process for synthesizing the individual se
turn-by-turn score and the corresponding cumulative score (labelled as ‘‘CUM’’); in this exa
comparison.

(a) (b)
Sets of paired-comparison
relationships

Turn 1 (D4)

D1 D2 D3 D4

Paired-comparison relationships and scores Paired-comparison re

(a,b) b > a b > a b > a a > b (a, b) a > b C
a 0 0 0 1 a 1 1
b 1 1 1 0 b 0 0

(a, c) a > c c > a a � c a > c (a, c) a > c C
a 1 0 0.5 1 a 1 1
c 0 1 0.5 0 c 0 0

(a, d) a > d a � d a > d a > d (a, d) a > d C
a 1 0.5 1 1 a 1 1
d 0 0.5 0 0 d 0 0

(a,e) a > e a � e a > e a > e (a, e) a > e C
a 1 0.5 1 1 a 1 1
e 0 0.5 0 0 e 0 0

(a, f) a > f a > f a > f a > f (a, f) a > f C
a 1 1 1 1 a 1 1
f 0 0 0 0 f 0 0

(b,c) b > c c > b b > c c > b (b, c) c > b C
b 1 0 1 0 b 0 0
c 0 1 0 1 c 1 1

(b,d) b > d b > d b > d b > d (b, d) b > d C
b 1 1 1 1 b 1 1
d 0 0 0 0 d 0 0

(b,e) b > e b > e b > e b > e (b, e) b > e C
b 1 1 1 1 b 1 1
e 0 0 0 0 e 0 0

(b, f) b > f b > f b > f b > f (b, f) b > f C
b 1 1 1 1 b 1 1
f 0 0 0 0 f 0 0

(c,d) d > c c > d c > d c > d (c, d) c > d C
c 0 1 1 1 c 1 1
d 1 0 0 0 d 0 0

(c,e) e > c c > e c > e c > e (c, e) c > e C
c 0 1 1 1 c 1 1
e 1 0 0 0 e 0 0

(c, f) f > c c > f c > f c > f (c, f) c > f C
c 0 1 1 1 c 1 1
f 1 0 0 0 f 0 0

(d,e) d � e d � e d � e d > e (d, e) d > e C
d 0.5 0.5 0.5 1 d 1 1
e 0.5 0.5 0.5 0 e 0 0

(d, f) d > f d > f f > d d > f (d, f) d > f C
d 1 1 0 1 d 1 1
f 0 0 1 0 f 0 0

(e, f) e > f e > f f > e e > f (e, f) e > f C
e 1 1 0 1 e 1 1
f 0 0 1 0 f 0 0

The agents’ importance ordering is D4 > (D2 � D3) > D1.
merged into a single reorganized vector (in Table A4(a), in Appen-
dix) and the reading sequence of the vector elements would be
trivial: i.e., from the bottom to the top. The resulting fused order-
ing would be (a � b) > (d � e) > (c � f), which lacks in discrimina-
tion power, since it contains nothing less than three relationships
of indifference (for six total alternatives); see the step-by-step
construction in Table A4(b) (in Appendix).

As regards the OPCA, in the case of democracy the equi-impor-
tant agents would express their vote in a single turn. Table A5 (in
Appendix) reports the synthesis process and the resulting fused
the preference orderings in Table 1 into sets of paired-comparison relationships and
ts of paired comparisons into a single one. For each paired comparison, we report the
mple, the threshold t was conventionally set to t = t⁄ = 1.5, since m = 4 for each paired

Turn 2 (D2 � D3) Turn 3 (D1) Fused paired comparisons
(t⁄ = 1.5)

lationships and scores

UM b > a b > a CUM b > a CUM b > a
0 0 1 0 1
1 1 2 1 3

UM c > a a � c CUM a > c CUM a � c
0 0.5 1.5 1 2.5
1 0.5 1.5 0 1.5

UM a � d a > d CUM a > d CUM a > d
0.5 1 2.5 1 3.5
0.5 0 0.5 0 0.5

UM a � e a > e CUM a > e CUM a > e
0.5 1 2.5 1 3.5
0.5 0 0.5 0 0.5

UM a > f a > f CUM a > f CUM a > f
1 1 3 1 4
0 0 0 0 0

UM c > b b > c CUM b > c CUM c > b
0 1 1 1 2
1 0 2 0 2

UM b > d b > d CUM b > d CUM b > d
1 1 3 1 4
0 0 0 0 0

UM b > e b > e CUM b > e CUM b > e
1 1 3 1 4
0 0 0 0 0

UM b > f b > f CUM b > f CUM b > f
1 1 3 1 4
0 0 0 0 0

UM c > d c > d CUM d > c CUM c > d
1 1 3 0 3
0 0 0 1 1

UM c > e c > e CUM e > c CUM c > e
1 1 3 0 3
0 0 0 1 1

UM c > f c > f CUM f > c CUM c > f
1 1 3 0 3
0 0 0 1 1

UM d � e d � e CUM d � e CUM d > e
0.5 0.5 2 0.5 2.5
0.5 0.5 1 0.5 1.5

UM d > f f > d CUM d > f CUM d > f
1 0 2 1 3
0 1 1 0 1

UM e > f f > e CUM e > f CUM e > f
1 0 2 1 3
0 1 1 0 1



Table A2
Paired Comparison Chart related to the set of fused paired comparisons resulting from
Table A1 (b). A fused ordering is constructed based on the total score earned by
alternatives (in the column labelled with ‘‘R’’). The R values do not need to be
normalized, because of the lack of relationships of incomparability between the
alternatives.

a b c d e f R

a – 0 0.5 1 1 1 3.5
b 1 – 0 1 1 1 4
c 0.5 1 – 1 1 1 4.5
d 0 0 0 – 1 1 2
e 0 0 0 0 – 1 1
f 0.5 0 0 0 0 – 0.5

Resulting fused ordering: c(4.5) > b(4) > a(3.5) > d(2) > e(1) > f(0.5).

Table A4
Application of the YA to the four preference orderings in Table 1, assuming that agents
are equi-important (i.e., D1 � D2 � D3 � D4): (a) single reorganized vector; (b) step-
by-step construction of the fused ordering.

D�1 (D1 �D2�D3�D4)

j S Elements

(a)
6 6 {a, (2)b,c, f}
5 5 {(2)a,b, (2)c}
4 4 {a,b, (2)d, (2)e}
3 3 {d, f}
2 2 {d, (2)e, f}
1 1 {c, (2)f}

Step (S) Element Residual alternatives Gradual ordering

(b)
0 – {a,b,c,d,e, f} Null
1 {c, (2)f} {a,b,d,e} c � f
2 {d, (2)e, f} {a,b} (d � e) > (c � f)
3 {d, f} {a,b} (d � e) > (c � f)
4 {a,b, (2)d, (2)e} Null (a � b) > (d � e) > (c � f)
End – – –
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paired comparisons when using t = t⁄ = 1.5 (since m = 4 for each
paired comparison). Next, the set of fused paired comparisons is
turned into a fused ordering, through the PCC method (see the
matrix in Table A5(b), in Appendix). The resulting fused
ordering would be b > a > c > d > e > f, which seems to have an
acceptable discrimination power (i.e., it contains no indifference
relationships).

Table 11 presents a concise comparison between the YA and
the OPCA, from the point of view of the three ad hoc criteria
examined so far and some popular axioms from the social choice
theory, showing whether they are met (or not) by the YA and
the OPCA. The mathematical proof is left to the reader. Despite
their substantial differences, the two algorithms meet the same
axioms.
5. Conclusions

This paper presented the OPCA, a new algorithm for aggregating
preference orderings into a fused one. Similarly to the YA, the OPCA
can be applied to specific problems in which the agents’ impor-
tance is expressed in the form of a rank-ordering. The OPCA has
three main advantages with respect to the YA: (i) it is more consis-
tent, since the fused ordering better reflects the multi-agent pref-
erence orderings, (ii) it is more efficient in using the information
Table A3
Consistency analysis of the OPCA’s solution to the decision-making problem in Fig. 2. The co
the level of paired-comparison relationships.

Paired comparison Relationship in the preference orderings

D4 D2 D3

a, b a > b a || b a >
a, c a > c a || c a >
a, d a > d a || d a >
a, e a > e a || e a >
a, f a || f a || f a �
b, c b > c b > c b >
b, d b > d b > d b >
b, e b > e b || e b >
b, f b || f b > f f >
c, d c > d d > c c �
c, e c > e c || e c �
c, f c || f f > c f >
d, e d > e d || e d �
d, f d || f d > f f >
e, f e || f e || f f >

The fused orderings obtained by the OPCA is a > b > f > d > c > e.
The cells highlighted in gray depict dubious paired-comparison relationships from the f
available, and (iii) it is more versatile, since it admits partial pref-
erence orderings (with omitted and/or incomparable alternatives)
and can be applied effectively even when agents are equi-impor-
tant. Also, it is intuitive and easily automatable.

The most original part of the OPCA is the aggregation of the
agents’ sets of paired comparisons into a single one. Contrary to
other approaches, in this stage, the different ‘‘voting power’’ of
agents determines a different voting priority, and not a different
weight of the vote.

The choice of the t value makes it possible to switch with a con-
tinuity from the situation of dictatorship (when t = 1) to that of
democracy (when t > m/2). For synthesizing the set of fused paired
comparisons into a fused ordering, we suggested to use the PCC
method because of its simplicity and effectiveness [25]. The fact
remains that it can be replaced by more sophisticated approaches
from the existing literature.
mpatibility of the fused ordering with the agents’ preference orderings is evaluated at

Relationship in the fused ordering

D1

b b > a a > b
c c > a a > c
d a > d a > d
e a > e a > e
f a || f a || f
c c > b b > c
d b > d b > d
e b > e b > e
b b > f b > f
d c > d c � d
e c > e c > e

c c > f f > c
e d � e d > e

d d || f d � f
e e || f e || f

used ordering.



Table A5
Application of the OPCA to the four preference orderings in Table 1, assuming that
agents are equi-important (i.e., D1 � D2 � D3 � D4): (a) process for synthesizing the
sets of paired comparisons into a set of fused paired comparisons (t was
conventionally set to t⁄ = 1.5, since m = 4 for each paired comparison); (b) Paired
Comparison Chart related to the set of fused paired comparisons.

(a)
Turn 1 (D1 � D2 � D3 � D4) Fused paired comparisons (t⁄ = 1.5)

Paired-comparison relationships and scores
(a,b) a > b b > a b > a b > a b > a
a 1 0 0 0
b 0 1 1 1

(a,c) a > c c > a a � c a > c a > c
a 1 0 0.5 1
c 0 1 0.5 0

(a,d) a > d a � d a > d a > d a > d
a 1 0.5 1 1
c 0 0.5 0 0

(a,e) a > e a � e a > e a > e a > e
a 1 0.5 1 1
e 0 0.5 0 0

(a, f) a > f a > f a > f a > f a > f
a 1 1 1 1
f 0 0 0 0

(b,c) c > b c > b b > c b > c b � c
b 0 0 1 1
c 1 1 0 0

(b,d) b > d b > d b > d b > d b > d
b 1 1 1 1
d 0 0 0 0

(b,e) b > e b > e b > e b > e b > e
b 1 1 1 1
e 0 0 0 0

(b, f) b > f b > f b > f b > f b > f
b 1 1 1 1
f 0 0 0 0

(c, d) c > d c > d c > d d > c c > d
c 1 1 1 0
d 0 0 0 1

(c, e) c > e c > e c > e e > c c > e
c 1 1 1 0
e 0 0 0 1

(c, f) c > f c > f c > f f > c c > f
c 1 1 1 0
f 0 0 0 1

(d, e) d > e d � e d � e d � e d > e
d 1 0.5 0.5 0.5
e 0 0.5 0.5 0.5

(d, f) d > f d > f f > d d > f d > f
d 1 1 0 1
f 0 0 1 0

(e, f) e > f e > f f > e e > f e > f
e 1 1 0 1
f 0 0 1 0

(b)
a b c d e f R

a – 0 1 1 1 1 4
b 1 – 0.5 1 1 1 4.5
c 0 0.5 – 1 1 1 3.5
d 0 0 0 – 1 1 2
e 0 0 0 0 – 1 1
f 0 0 0 0 0 – 0

Fused ordering: b(4.5) > a(4) > c(3.5) > d(2) > e(1) > f(0).

F. Franceschini et al. / Information Fusion 26 (2015) 84–95 95
Future research go in two directions: (i) sensitivity analysis of
the robustness of the OPCA with respect to small variations in the
preference orderings and/or in the t, q and Q thresholds, (ii) applica-
tion of the algorithm to various decision-making frameworks.
Appendix A.

See the following tables (Tables A1–A5).
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