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A review of localization algorithms for distributed wireless sensor networks in manufacturing

F. Franceschini*, M. Galetto, D. Maisano and L. Mastrogiacomo

Dipartimento di Sistemi di Produzione ed Economia dell’Azienda, Politecnico di Torino, Corso Duca degli Abruzzi 24,
10129 Torino, Italy

Wireless sensor networks (WSNs) typically consist of a large number of densely populated sensor nodes. Due to
important advances in integrated circuits and radio technologies, the use of distributed sensor networks is
becoming increasingly widespread for a variety of applications, e.g. indoor navigation, environmental monitoring,
people and object tracking, logistics, industrial diagnostics, quality control, and other manufacturing activities. In
many cases, such as in objects tracking, knowing the physical location of network nodes is essential. Locating
elements of WSNs is not a trivial task. Manual methods are wearisome and may be inaccurate, especially for
large-scale networks. Therefore, many self-locating methods – where nodes cooperate with each other without
human involvement – have recently been studied and implemented. The purpose of this work is to analyse the
most significant methods for automatic location of distributed WSNs. The first part of the paper provides a
description of the most common criteria used to categorize existing network localization algorithms. A taxonomy
is then suggested that may be a useful tool to help evaluate, compare and select such algorithms. Five of the most
representative algorithms are explained and discussed in detail in order to identify their strong points and their
limitations.

Keywords: distributed wireless sensor networks; localization algorithms; wireless networks; algorithm taxonomy;
manufacturing

1. Introduction

A wireless network typically consists of a large number
of nodes (e.g. sensor devices) with a dense distribution,
equipped with transceivers. Each device can commu-
nicate with other devices within its communication
range. A wireless network is typically modelled as a
graph, where each node represents a physical device.
Two nodes are connected by an edge, if and only if,
they can directly communicate.

Dramatic advances in integrated circuits and radio
technologies have made the use of large wireless
sensor networks (WSNs) possible for many applica-
tions. In particular, attention towards the utilization
of WSNs in manufacturing is increasing. Since sensor
devices do not need cables and may be easily
deployed or moved, they can be practically utilized
for a variety of industrial applications – factory
logistics and warehousing, environmental control and
monitoring, support for assembly processes, industrial
dimensional measuring and real-time surveillance are
only some possible applications of WSNs (Doss and
Chandra 2005, Intel Corporation 2005, Koumpis
et al. 2005, PepperlþFuchs 2005, Franceschini et al.

2006, Oh et al. 2006, Pan et al. 2006, Wang and Xi
2006). While outdoor localization applications are
widespread today (e.g. Global Positioning System
(GPS)), indoor applications can also benefit from
location determination knowledge (Gotsman and
Koren 2004). To make such applications feasible,
the device costs should be low and the network
should be organized without significant human
involvement.

The solution of adding a GPS device to all the
nodes in a network is not practical for many reasons.
GPS devices cannot work indoors, they are bulky,
expensive and are inefficient in power consumption,
while wireless sensor nodes are required to be small,
low priced and low powered (Bulusu et al. 2000).

In some applications (e.g. indoor navigation,
objects tracking, remote diagnostics, etc.) mobile nodes
calculate their position making reference to fixed
network nodes. So, fixed network nodes should be
aware of their respective location. To reach this state –
especially for large-scale sensor networks – many
self-localization methods have been recently studied
and implemented. Generally, nodes automatically
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cooperate, estimating local distances to their neigh-
bours, converging to a consistent coordinate assign-
ment. Nodes work together in a peer-to-peer way to
build a map of the sensor network.

Received-Signal-Strength (RSS) andTime-of-Arrival
(ToA) are two common approaches for estimating the
distance between nodes within their mutual transmis-
sion range (Wu et al. 2005). RSS measures the power
of the signal at the receiver and calculates the distance
according to the propagation loss model (see Figure 1).
ToA measures the propagation time (Dt) of the
received signal (typically radio signals for large
distances or ultrasound for small distances) and
determines the distance by multiplying it by its own
speed. In general, RSS is an easier parameter to
implement, while ToA may achieve a higher accuracy
(Patwari et al. 2005).

In current work at the technical laboratory at
DISPEA (Politecnico di Torino, Italy) a metrological
application based on a WSN has been developed. Such
an application requires a reasonable level of accuracy
in distance estimates. As a consequence, inter-node
distances are measured implementing a ToA techni-
que, with ultrasound transceivers. Considering a speed
of sound of around 340 m/s (when temperature and
relative humidity of the air are T ¼ 208C and
H � 50%, respectively), a propagation time Dt ¼ 10
ms corresponds to a distance D ¼ vDt � 3.4 mm
between ultrasound transceivers. (Note that in the
same propagation time Dt a radio signal (speed around
300 000 km/s) covers a distance of 3000 km.) The
limited resolution of timers is the main reason why
ultrasound signals are preferable to radio signals for
small distance measurements.

Angle-of-Arrival (AoA) is another approach for
WSNs localization. Usually, sensor nodes receive
signals from at least three neighbours (in particular,
to collect angle information) and determine their
coordinates by triangulation according to the angle
bearings of incoming signals (Nasipuri and Li 2002,
Niculescu and Nath 2003). One potential problem of

this approach is the expense of equipment to obtain
precise angle estimates (Priyantha et al. 2003). Due to
the drawbacks of implementing AoA techniques, in the
following discussion we assume RSS or ToA ap-
proaches to estimate distances between neighbouring
nodes.

1.1. Applications of WSNs in manufacturing

To give a concrete idea of the potential of WSNs in
manufacturing, this section briefly introduces some of
the most interesting research issues.

(1) Support for final assembly. Ultrasonic sensors
are mounted on power tools (e.g. screwdrivers)
to detect their real position and activate them if
they are in the right position, during final
assembly (PepperlþFuchs 2005).

(2) Industrial control and monitoring. Sensor de-
vices can be deployed to perform industrial
control and monitoring (for instance control of
the air conditions of pollution, temperature and
pressure in different areas of a factory) or for
emergency responses in the case of incidents
(Doss and Chandra 2005, Koumpis et al. 2005,
Pan et al. 2006).

(3) Dimensional measuring. Coordinate measure-
ment of large objects by means of a wireless
sensor ‘constellation’ distributed around them.
This research project was developed at the
industrial metrology and quality laboratory of
DISPEA, Politecnico di Torino (Franceschini
et al. 2006).

(4) Factory logistics and warehousing. In an in-
dustrial warehouse mobile forklifts generally
move along corridors in order to reach the
shelves where goods are stored (see Figure 2).
Forklifts and shelves can be equipped with
ultrasound transceivers that communicate with
each other, with the purpose of evaluating
mutual distances using a ToA technique

Figure 1. Representation scheme of RSS and ToA approaches for distance estimation.
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Figure 2. Schematic layout: industrial warehouse equipped with a network of wireless sensors.

(Intel Corporation 2005). This type of WSN
can be utilized to calculate the position of the
forklifts for:
. indoor navigation – mobile forklifts,

equipped with wireless transceiver, can be
automatically guided towards their
destination;

. traffic monitoring – physical traffic can be
monitored in order to identify most con-
gested areas or to improve goods distribution
(Capkun et al. 2001).

2. Scope and method of the review

The purpose of this paper is to provide a reference
framework of the major algorithms for automatic
localization of network nodes. A taxonomy to evaluate
and compare them is also suggested. The first part of
the paper provides a description of the most common
criteria to categorize network localization algorithms.
Subsequently, five of the most representative algo-
rithms are independently described and set in the
suggested taxonomy, in order to identify their common
features as well as those that set them apart.
Considering the great abundance of algorithms

presented in the literature, those discussed here were
selected owing to their originality and spread. Finally,
other network localization algorithms are briefly
described. All algorithms are accompanied by expla-
natory representation schemes.

2.1. Categorization of network localization algorithms

Generally, localization algorithms are designed to be
applied to a typical sensor network comprising a large
number of nodes with a dense distribution. As a
consequence, many of them do not fit to small
networks with few distributed nodes. In this latter
case, nodes can be manually located. Localization
algorithms can be classified into the following four
categories.

(1) The first category is based on the presence
(or absence) of nodes with pre-configured
coordinates.
. Anchor-based algorithms. The location sys-

tem is implemented by selecting a set of
reference nodes (‘landmarks’ or ‘anchor
nodes’) with known coordinates. A localiza-
tion system with anchor nodes has the
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limitation that it needs another location
system (e.g. GPS) to determine the anchor
nodes’ positions. Furthermore, a large num-
ber of anchor nodes is required for the
resulting position errors to be acceptable
(Priyantha et al. 2003).

. Anchor-free algorithms. These use local dis-
tance measurements among nodes to deter-
mine their respective coordinates; they do
not assume the availability of nodes with pre-
configured coordinates.

(2) The second category is based on the way node
locations ‘propagate’ in the network.
. Incremental algorithms. These algorithms

usually start with a set of three or more
reference nodes with known coordinates.
Other nodes in the network can contact the
reference nodes and determine their own
coordinates. As an unknown position node
obtains an acceptable position estimate, it
may serve as a new reference point. This
process can be incrementally applied until all
nodes in the network have obtained their
coordinates.

. Concurrent algorithms. In this approach,
many pairs of sensors communicate and
share measurements in order to achieve
localization for all sensors. Rather than
solving each sensor position one at time, all
sensor positions are simultaneously esti-
mated. Such localization systems not only
allow unknown-location devices to make
measurements with known-location refer-
ences, but they additionally allow unknown-
location devices to make measurements
with other unknown-location devices. The
additional information gained from these
measurements between pairs of unknown-
location devices enhances the accuracy
and robustness of the localization system.
Such systems have been described as ‘co-
operative’ (Ji and Zha 2004, Patwari et al.
2005).

(3) The third category subdivides localization
approaches into two broad classes, based on
the ‘granularity’ of information acquired by the
sensors during communication.
. Fine-grained algorithms. Algorithms that use

accurate information – such as the distance
from a reference point based on RSS or ToA
measurements – fall into the category of fine-
grained localization methods. Typically, they
use technologies, such as infrared (IR),
ultrasound (US) or radio frequency (RF)
signals.

. Coarse-grained algorithms. Algorithms that
utilize less accurate information, such as
proximity (two devices are considered to be
‘in proximity’ if they can directly commu-
nicate) to a given reference point, are
categorized as coarse-grained localization
methods. Coarse-grained algorithms estimate
inter-node distances using rough techniques
such as hop-count. In a wireless network, the
number of hops is the number of edges
traversed by a signal along the shortest path
between the source node and the destination
node. For example, in Figure 3 the number
of hops between nodes j and n is 2. Hop-
count may be used to determine a rough
evaluation of inter-node distances (Priyantha
et al. 2003).

As expected, fine-grained algorithms are more
accurate than coarse-grained. In the absence of
measurement errors, fine-grained algorithms provide
exact network nodes positioning.

(4) The fourth category is based on computational
distribution.
. Centralized algorithms. Computing is per-

formed by a single centralized node or
network device. All nodes broadcast infor-
mation to a single computer to solve the
localization problem (Doherty et al. 2001).

. Distributed algorithms. Computing is equally
distributed among network nodes. Each
node receives location information from
neighbouring nodes, performs computation
and re-transmits the obtained results to
them.

It is important to note that many of the algorithms
discussed in the following sections have never been
physically implemented on real sensor networks.
Rather, most of them have been studied and developed
on the basis of computer simulations. Few algorithms
have been practically tested in WSNs. The difficulty

Figure 3. Schematic representation of the concept of hop-
count in a sensor network.
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with such experimental campaigns is due to the
following main aspects: sensor firmware programming,
sensor physical allocation, time taken to adjust the
network and time for experiments (Patwari et al. 2005).
Regarding the future, additional effort is needed to test
algorithms in order to practically assess their perfor-
mance and reliability.

2.2. Taxonomy description

In this section we propose a taxonomy to benchmark
network localization algorithms. Taxonomy is a useful
tool for evaluating and comparing algorithms, depend-
ing on the network features and peculiarities. In the
next section, five of the most representative localiza-
tion techniques are illustrated and classified in detail.
Evaluation criteria are defined and described in
Table 1.

3. Detailed description of localization algorithms

In this section five of the most significant fine-grained
localization algorithms are described in detail, follow-
ing the criteria on taxonomy presented previously. The
descriptions of the algorithms are summarized in

Table 2 to assist network designers in their evaluation
and comparison.

3.1. Assumption based coordinates (ABC) algorithm

The ABC algorithm is a 2D/3D, incremental and
anchor-free algorithm (Savarese et al. 2001). It starts
with a node (n0) assuming that it is located at the origin
of a local coordinate system. The algorithm localizes
three (two in 2D networks) other nodes directly
connected with n0, assigning them coordinates in order
to satisfy the inter-node distances (these nodes (n1,n2,
n3) are the first to establish a connection with n0.) To
build such a local coordinate system the following
assumptions are made:

(1) n1 is located along the x-axis;
(2) the direction of the positive y-axis is defined by

n2;
(3) the direction of the positive z-axis is defined by

n3 (see Figure 4).

The algorithm proceeds incrementally. Given a new
node with unknown position, it calculates its coordi-
nates using the distances to four (or more) neighbours

Table 1. Definitions and descriptions of the suggested taxonomy.

Criterion Description

Algorithm description Name/acronym Name or acronym assigned by the author(s)
Author(s) and publication date Author(s) name(s) and date of the algorithm official release
Fine-grained/coarse-grained ‘Granularity’ of the inter-node distance estimates provided

by the algorithm
Short description Short description of the algorithm modus operandi

Network features 2D/3D Space displacement of the sensors networks (2D if nodes are
coplanar, 3D if they are spatially distributed)

Single-hop/ multi-hop In single-hop networks all sensors are connected to each other.
In multi-hop networks, not all the sensors are directly
connected.
They can communicate using specific routing protocols

Limitations Specific restrictions or features of the network
(e.g. node distribution)

Anchor-free/anchor-based Anchor-free algorithms do not require nodes with pre-configured
coordinates

Computational Data processing description Short description of data processing method.
workload Centralized/distributed algorithm Computing is performed by a single centralized node or network

device, or it is equally distributed among network nodes
Incremental/concurrent algorithm Nodes positions are incrementally (one after the other), or

concurrently (parallel processing) estimated
Computational complexity Quantitative evaluation of the time required during computation.

Generally, it is estimated depending on number of nodes,
network connectivity{, or other network parameters

Benefits Best advantages in using the algorithm
Drawbacks Major deficiencies and drawbacks of the algorithm
Possible improvements Possible ways of addressing the problems and limitations

of the algorithm

{From network theory, connectivity between two nodes is defined as the number of connections (edges) in the network allowed to fail before the
two nodes (vertices) become disconnected. Network connectivity is defined as the mean value of the network connectivities.
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u
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w
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u
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p
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p
la
n
a
r
n
o
d
es

–
in

3
D

–
o
r
th
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b
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b
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b
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b
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b
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b
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d
is
ta
n
ce

m
ea
su
re
m
en
ts

fr
o
m

a
lr
ea
d
y
lo
ca
li
ze
d

n
ei
g
h
b
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b
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b
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b
a
se
d
o
n

h
o
p
-c
o
u
n
t.
S
ec
o
n
d

p
h
a
se

is
a
m
a
ss
-s
p
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m
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b
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b
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p
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b
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b
y
a
n
o
n
-a
m
b
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p
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re
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p
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p
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b
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p
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b
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b
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d
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p
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d
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b
e
im

p
le
m
en
te
d

w
it
h
o
u
t
a
ce
n
tr
a
li
ze
d

n
et
w
o
rk

d
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b
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l
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p
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p
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p
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b
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b
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p
le
x
it
y

o
f
ea
ch

n
o
d
e
is
h
ig
h
er

th
a
n
A
B
C
.
W
e
es
ti
m
a
te
d

it
to

b
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b
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b
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b
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p
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p
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p
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b
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b
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b
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d
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p
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p
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u
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b
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b
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d
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d
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p
li
ca
te

ca
lc
u
la
ti
o
n
s

A
F
L
is
a
n
ch
o
r-
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b
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h
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p
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p
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b
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p
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with already known coordinates. In general, the
trilateration problem can be formulated as follows.
Given a set of nodes ni with known coordinates (xi, yi,
zi) and a set of measured distances Di, a system of
equations needs to be solved to calculate the unknown
position of P(u, v, w) (Ward et al. 1997, Chen et al.
2003).

ðx1 � uÞ2 ðy1 � vÞ2 ðz1 � wÞ2
ðx2 � uÞ2 ðy2 � vÞ2 ðz2 � wÞ2

..

.

ðxn � uÞ2 ðyn � vÞ2 ðzn � wÞ2
¼

D2
1

D2
2

..

.

D2
n

2
6664

3
7775 ð1Þ

If the trilateration problem is over defined (more
equations than required to solve the localization
problem), it can be solved using a least-mean squares
approach (Savvides et al. 2001). The accuracy strongly
depends on the geometry of the position references and
the accuracy of distance measurements. Errors can

propagate through all subsequent trilateration compu-
tations, leading to an inaccurate localization of nodes
far away from n0.

3.1.1. Network features

ABC is an anchor-free algorithm developed both for
2D and 3D network topologies. For widespread
networks it can be inaccurate due to error propaga-
tion. To be located, in a 3D case each node has to
communicate with at least four non-coplanar nodes
with already known coordinates (three non-aligned in
the 2D case, as shown in Figure 5).

3.1.2. Computational workload

The position estimation does not require centralized
computation. All nodes are not required to commu-
nicate their connectivity information to a centralized
computer in order to solve the localization problem.
Computing is distributed among nodes with each:

(1) receiving ranging and location information
from neighbouring nodes;

(2) solving a local localization problem;
(3) transmitting the results to neighbouring nodes.

The computational complexity for each node
linearly increases with the number of localized
neighbours. Each node performs O(n) computations,
n being the number of neighbours already located.

3.1.3. Benefits

The algorithm is relatively simple and does not require
complicated calculations. Furthermore, no anchor
nodes are required.

Figure 4. Local coordinate system built around the starting
node (n0).

Figure 5. Representation scheme of the trilateration problem in a 2D network.
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3.1.4. Drawbacks

ABC suffers from error propagation, the results being
unsuitable for widespread networks. As with all
incremental algorithms, error propagation is cumula-
tive, which results in poor coordinate assignment. In
particular, positioning accuracy decreases for nodes
that are distant from the ‘origin’ node. Because of its
incremental nature, complete graph realization is not
guaranteed even if every node of the network has four
neighbours (Priyantha 2003).

If measurements are corrupted by noise, however
small, the algorithm can lead to ambiguous or
incorrect nodes displacements. Figure 10 (see section
3.5) shows an example of a possible ambiguity.

As with all anchor-free algorithms, ABC will
produce a topologically correct map with a random
orientation relative to a global coordinate system. In
fact, there are an infinite number of network solutions,
since the coordinates can be rotated or translated as
long as their distances do not change (Gotsman and
Koren 2004).

3.1.5. Possible improvements

A partial solution to error propagation consists of
introducing a number of anchor nodes. Since a global
coordinate system is implicitly defined assigning
anchor node positions, the problem of network
orientation is solved. In addition, the risk of incorrect

nodes displacements is reduced. The price to pay for
the introduction of anchor nodes is the a priori manual
location of them.

3.2. Triangulation via extended range and redundant
association of intermediate nodes (TERRAIN)
algorithm

The TERRAIN algorithm builds on the ABC algo-
rithm, but it is anchor-based (Savarese et al. 2001,
Savarese et al. 2002). Nodes are divided into two
categories:

(1) anchor nodes: reference nodes with known
coordinates; to start the algorithm, there must
be at least four.

(2) regular nodes: other nodes, originally with
unknown coordinates.

At first, each anchor node starts executing an
independent ABC algorithm (see Figure 6). As a
consequence, the number of different ABC algorithms,
which will propagate within the network, corresponds
to the number of anchor nodes. Furthermore, each
ABC assumes that the starting anchor node is located
at the origin of a local coordinate system. As explained
in section 3.1, such a coordinate system is defined by
selecting and localizing the next three regular nodes.
Then the algorithm incrementally proceeds. Regular
nodes calculate their coordinates, according to the

Figure 6. Schematic representation of TERRAIN algorithm.
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locally defined system, using the distances to four (or
more) already located neighbours.

In order to estimate distances from them, each
regular node waits until at least four independent
ABC algorithms ‘propagate’ to it from four anchor
nodes. At that time a standard trilateration can be
performed. In general TERRAIN is more accurate
than ABC (Savarese et al. 2001). As the number of
anchor nodes increases, the accuracy of position
estimates improves.

A similar approach is presented by Niculescu and
Nath (2001), who propose an ad hoc positioning
system (APS) where at least three landmarks (with
GPS receivers) are assumed to be available. Nodes
estimate the distance to these landmarks (that may be
multiple hops away) according to the number of hops
or the route distance obtained by a distance vector
algorithm. Node coordinates can be calculated using
the trilateration approach.

3.2.1. Network features

As with the ABC algorithm, the TERRAIN algorithm
was developed for both 2D and 3D networks. To be
located, each node has to be reached by at least four
different ABC algorithms, which start from as many
anchor nodes. The availability of four neighbours is a
necessity but still may not be sufficient for a node
location.

3.2.2. Computational workload

The developed algorithm does not require centralized
computation. Each single regular node plays the same
role. It

(1) receives ranging and location information from
neighbouring nodes;

(2) solves a local optimization problem;
(3) and transmits the obtained results to the

neighbouring nodes.

The computational complexity for each node is
evidently higher than ABC. The number of computa-
tions performed by each node is estimated to be
O(m(n þ 1)), where n is the number of neighbours and
m the number of the ABC algorithms that has reached
the node (Kahaner et al. 1988).

3.2.3. Benefits

This method reduces error propagation by the use of
anchor nodes and a final refinement process. Com-
pared to ABC, TERRAIN is more accurate (Savarese
et al. 2001).

3.2.4. Drawbacks

If measurements are corrupted by noise the algorithm
can lead to dramatically incorrect nodes displace-
ments. The method is not able to prevent such
ambiguities. Because of its incremental nature, the
complete graph realization is not guaranteed.

3.2.5. Possible improvements

A first solution to prevent error propagation is to
increase the number of anchor nodes. A uniform distri-
bution within the sensor network should guarantee low
error accumulation. The price to pay is the a priori
localization of such nodes. A different kind of approach
to improve location accuracy leads to the introduction of
an iterative refinement process, where each node uses the
range measurements and the most recently computed
coordinates of each neighbour to refine its position. This
process iterates several times until the locations of all
the nodes converge. Average position errors are lower
after this refinement and the iterative algorithm, starting
from a reasonable graph realization, should reduce the
risk of diverging (Savarese et al. 2001).

3.3. Savvides et al. localization algorithm

This algorithm operates on an ad hoc network where a
small percentage of nodes know their own posi-
tion (anchor nodes) (Savvides et al. 2001). Before
describing the algorithm, we introduce the concept of
beacon and unknown nodes. Nodes with unknown
positions are defined as unknown nodes, while
localized nodes are called beacons. At the beginning
only anchor nodes are considered beacons. Unknown
nodes measure their distances from an adequate
number of neighbouring beacons, and estimate their
positions by performing a numeric optimization. The
optimization, known as maximum likelihood, is
obtained taking the minimum mean square esti-
mate (MMSE) of an error function (EF), defined as
the difference between the measured distances and the
estimated Euclidean distances (Kahaner et al. 1988):

EF ¼
Pn

i¼1½Mi � Ei�2
n

ð2Þ

where Mi is the ith inter-node measured distance
(e.g. using RSS or ToA approaches), Ei is the ith inter-
node Euclidean distance (obtained considering the
nodes’ estimated positions) and n is the number of
neighbouring beacons. This process of estimation is
known as atomic multilateration.

Once an unknown node estimates its position, it
becomes a beacon and broadcasts its position to other
nearby unknown nodes, enabling them to estimate
their locations. In general an unknown node will
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perform an atomic multilateration as soon as it
receives information from at least four non-coplanar
beacons (three non-aligned beacons in 2D networks).
This process, defined as iterative multilateration,
incrementally repeats until all the unknown nodes
obtain an estimate of their position (see Figure 7).

The algorithm is fully distributed, or alternatively,
can be implemented by a single centralized node. In
this latter case, the algorithm starts by estimating the
position of the unknown node with the maximum
number of beacons, using an atomic multilateration to
obtain better accuracy and faster convergence. Simi-
larly, when an unknown node estimates its location, it
becomes a beacon and this process repeats until the
positions of all the nodes (which eventually have four
or more neighbouring beacons) are estimated.

3.3.1. Network features

This anchor-based algorithm was developed for both
2D and 3D networks. In 3D networks, each node must
be connected with at least four non-coplanar beacons.
In 2D, it must be connected with at least three non-

linear beacons. The presence of four neighbours is then
a necessary but not a sufficient condition for a new
node localization.

3.3.2. Computational workload

The algorithm can work in a distributed or a
centralized manner. In both ways, each node needs
an atomic multilateration algorithm to be implemen-
ted. Computational complexity for each node is
estimated to linearly increase with the number of
neighbouring beacons. Each node performs O(n)
computations, n being the number of neighbours.

3.3.3. Benefits

The algorithm is relatively easy to implement and it
can be fully distributed.

3.3.4. Drawbacks

The algorithm suffers from error accumulation,
providing inaccurate positions for nodes far from

Figure 7. Schematic representation of Savvides et al. localization algorithm (Savvides et al. 2001).
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anchor nodes. In the centralized version, the error
propagation is reduced by first localizing the most
connected unknown nodes. Because of its incremental
nature, complete graph realization is not guaranteed. If
measurements are corrupted by noise, the algorithm can
lead to dramatically incorrect nodes displacements.

3.3.5. Possible improvements

Error propagation can be minimized through an
iterative refinement process – for example, a numerical
optimization such as mass–spring relaxation (see
section 3.4) – performed after node location.

3.4. Anchor-free localization (AFL) algorithm

The anchor-free localization (AFL) algorithm was
proposed by Priyantha et al. (2003). The algorithm is
concurrent, anchor-free, 2D/3D, and proceeds in two
phases.

The first phase goal is to produce a qualitative
network nodes graph. Arcs are weighted by considering
the number of hops. The authors proposed a coarse-
grained approach to estimate inter-node distances using
hop-count and radio connectivity, without using accu-
rate ranging information from other technologies (e.g.
ultrasound). The first phase of AFL can be considered
a typical example of coarse-grained algorithm.

For clarity we describe the algorithm for a 2D
network. The 3D network case is a simple extension. The
algorithm first elects five reference nodes: the first four
nodes (n1 7 n4) are selected on the periphery of the
graph and the pair n1 7 n2 is roughly perpendicular to
the pair nodes n3 7 n4. The remaining node (n5) is
elected in the ‘middle’ of the graph (see Figure 8). These
five nodes are elected in five steps using a hop-count
technique based exclusively on radio connectivity.

. Step 1. Select an arbitrary node n0 (see Figure 8).
Then, select the reference node n1 to maximize

h0,1 (hop-count between nodes n0 and n1, i.e. the
number of nodes along the shortest radio path
between nodes n0 and n1).

. Step 2. Select reference node n2 to maximize h1,2
(hop-count between nodes n1 and n2).

. Step 3. Select reference node n3 to minimize
jh1,3 7 h2,3j and maximize h1,3 þ h2,3. This step
selects a node that is roughly equidistant from n1
and n2 (1st condition), and is ‘far away’ from
them (2nd condition).

. Step 4. As in the previous step, select reference
node n4 to minimize jh1,4 7 h2,4j and minimize
h3,4. This optimization selects a node roughly
equidistant from nodes n1 and n2, while being
furthest from node n3.

. Step 5. As in the previous step, select reference
node n5 to minimize jh1,5 7 h2,5j and maximize
jh3,5 7 h4,5j. This optimization selects the node
representing the rough ‘centre’ of the graph.

This heuristic approach uses hop-counts from the
chosen reference nodes (h1,i, h2,i, h3,i, h4,i, h5,i) to
determine approximate node coordinates. Further
details about the heuristic method can be found in
the original paper (Priyantha et al. 2003).

The second phase of the AFL algorithm is fine-
grained. Inter-node distances are determined using a
more accurate measurements technique based on ToA.
This is a concurrent phase.Nodes positions are estimated
simultaneously by implementing a mass–spring optimi-
zation. Nodes are interpreted as concentrated masses,
linked by springs. The force that each spring applies to
linked nodes depends on the difference between inter-
node estimated distances and actual distances (using
the ToA method). The starting estimate of inter-node
distances is provided by the first phase of AFL. Nodes
are gradually moved in order to minimize spring forces
providing a more plausible node configuration.

In more detail, each node (ni) periodically sends its
estimated position (pi) to all its neighbours. Each node

Figure 8. First phase of AFL: election of five reference nodes.
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also knows the estimated position of all its neighbours.
Using these positions, node ni calculates the estimated
distance (di,j) to each neighbour (nj). It also knows the
distance (ri,j), measured using ToA. Let vi,j represent
the direction unit vector from pi (estimated position of
ith node) to pj (estimated position of jth node). The
force Fi,j along the direction vi,j is given by Fi,j ¼
vi,j(di,j 7 ri,j). The resultant force on the node ni is given
by Fi ¼

PN
j¼1 fij, N being the number of neighbours.

The energy Ei,j of nodes ni and nj (due to the
difference in the measured and estimated distances) is
directly proportional to the square of jFi,jj. The total
energy of node ni is equal to:

Ei ¼
XN
j¼1

Eij / ¼
XN
j¼1

ðdij � rijÞ2 ð3Þ

The total energy of the system (E) is given by
E ¼ PN

i¼1 Ei.
In order to reduce its energy Ei, each node ni

moves, one by one, by an infinitesimal amount in the
direction of the resultant force Fi. The location of the
node is updated and the node broadcasts its new
location to its neighbours (see Figure 9). Whenever a
node receives a location update from its neighbours, it

recalculates its total force and updates its location. The
mass–spring optimization terminates when the resul-
tant forces Fi of nodes decrease to zero.

A similar approach was presented by Howard et al.
(2001). In their system, robots equipped with odo-
metric equipment (instrument indicating the distance
travelled) move through an environment, assigning
approximate initial positions to beacons. Then, bea-
cons run a distributed spring-based relaxation
procedure.

The Gotsman and Koren (2004) algorithm is
analogous to AFL. It works in two phases. The first
phase produces a qualitative network nodes graph,
while the second phase performs an optimization of the
network layout.

Wu et al. propose a self-configurable positioning
technique, quite similar to AFL, built upon two
models (Wu et al. 2005). First, for a given node
distribution, the distance between two nodes (usually
multiple hops away) is estimated according to the
length of the shortest path. Second, a number of stable
nodes are selected to serve as landmarks. Every
landmark estimates its distance to other landmarks
exchanging obtained distance information. Once a
landmark has accumulated a full set of distances
between any two landmarks in the network, it may

Figure 9. Schematic representation of AFL mass–spring optimization (Priyantha et al. 2003).
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start establishing the coordinates system by minimizing
an error objective function. This latter is defined as the
difference between the actual distance and the distance
measured in the established coordinates system. Other
nodes in the network calculate their coordinates
by similarly minimizing the error distances from
landmarks.

3.4.1. Network features

AFL is an anchor-free algorithm which applies only to
multi-hop networks. In small single-hop networks,
where all nodes are connected to each other, it fails.
The first phase, based on the hop-count, cannot be
executed. AFL applies to both 2D and 3D networks.

3.4.2. Computational workload

The first phase of AFL is far from being distributed. It
can hardly be implemented without a centralized
network device that handles information from nodes.
The second phase of the algorithm is fully distributed,
but it can be quite slow since multiple iterations are
required (Gotsman and Koren 2004). AFL perfor-
mances have been evaluated by computer simulations,
so it is difficult to provide precise data on the
computational workload. AFL is more time-consum-
ing than pure incremental algorithms, due to the
number of iterations required. During a single iteration
of mass–spring optimization, each node performs O(n)
computations, n being the number of neighbours.

3.4.3. Benefits

AFL is anchor-free and does not require nodes with
pre-configured coordinates. As opposed to incremental
algorithms, AFL performs much better, even for
networks with small connectivity (Priyantha et al.
2003). Furthermore, AFL error propagation is small.

3.4.4. Drawbacks

The authors do not guarantee that the first phase
always succeeds. It may fail for two reasons:

(1) location estimation is extremely rough, espe-
cially if the sensor network is composed of few
nodes;

(2) in single-hop networks, where all nodes are
connected each other, hop-count estimation of
inter-node distances does not work.

In general, simulations and practical experiments have
demonstrated that a pure mass–spring algorithm can
produce networks with incorrect layouts, if initial

position estimates are not good (Priyantha et al. 2003).
The success of the first phase is fundamental for the
whole success of the algorithm. Even if AFL outper-
forms incremental algorithms, there is not a proof of
correctness. AFL may converge to distorted network
node configurations. If measurements are corrupted by
noise, the algorithm can lead to dramatically incorrect
node displacements (Savvides et al. 2003).

3.4.5. Possible improvements

Present and future improvements are focused on
enhancing the first phase. In the actual version, the
algorithm lacks a method to prevent realization
ambiguities and does not fit widespread networks; as
a result it is hardly scalable because of the high
communication costs. Research effort focuses on a
possible way to realize a completely distributed first
phase with such requirements (Gotsman and Koren
2004).

3.5. Moore et al. localization algorithm

Moore et al. (2004) proposed a robust distributed
algorithm for localizing nodes in a WSN in which
measurements are corrupted by noise. In particular,
the authors consider how measurement noise can
cause incorrect realization of node displacement (see
Figure 10). The great benefit of the proposed algorithm
is to prevent this ambiguity, increasing positioning
accuracy compared to a pure incremental algorithm
(Figure 11) (e.g. Savvides et al. algorithm).

Figure 10. An example of ambiguity: node D is
triangulated from the known positions of nodes A, B, and
C. Measured distances dBD and dCD constrain the position of
D to the two intersections of the dashed circles. Knowing
dAD distinguishes between these two positions for D, but a
little noise in dAD (shown as d 0

AD) can lead to a wrong
location of node D. Moore et al. (2004) provide an algorithm
that reduce the probability of such ambiguities.
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The algorithm is anchor-free, fine-grained, and it
has been physically implemented in 2D sensor net-
works (Moore et al. 2004). Before describing the
algorithm, we introduce the concepts of clusters and
robust quadrilaterals. A cluster consists of a node and
its single-hop neighbours. A robust quadrilateral is an
additional constraint that permits localization of only
those nodes that have a high likelihood of unambig-
uous realization. According to Moore et al., localiza-
tion based on robust quadrilaterals attempts to prevent
incorrect realizations of ambiguities.

The algorithm proposed is based on three phases
(see Figure 12). In the first phase each node becomes
the centre of a cluster and estimates the relative
location of neighbours, which can be unambiguously
identified. Therefore nodes with ambiguous locations
are not used for further node localization. The basic
idea of the first phase is that missing localization
information for a few probably ambiguous nodes is
preferential to estimate incorrect information. This
incremental process, called ‘cluster localization’ is
based on trilateration, and ‘robust quadrilaterals’.

The second phase is an optional cluster optimiza-
tion. It refines the position estimates for each cluster
using numerical optimization (such as mass–spring
relaxation) with the full set of measured distance
constraints (see the AFL algorithm). This phase
reduces and redistributes any accumulated error that
results from the incremental approach used in the first
phase. It can be omitted if maximum efficiency is
desired.

The third phase computes transformations between
the local coordinate systems of neighbouring clusters
by finding the set of nodes in common between two
clusters and solving for the rotation, translation and
possible reflection that best aligns the clusters. This
phase is implemented using a ‘cluster stitching’
technique, presented by Horn (1987). When the third

phase is complete, any local cluster coordinate systems
are reconciled into a unique global coordinate system
(Nagpal et al. 2003).

Capkun et al. (2001) presented an analogous
localization method working with clusters. Each node
establishes a local coordinate system for a cluster,
composed of itself and its one-hop neighbours.
Clusters are then stitched together to obtain a
coordinate assignment for all the nodes, within a
general coordinates system. This technique, unlike that
of Moore et al., does not consider how measurement
noise can cause incorrect realization of network
displacement, and does not prevent this sort of
ambiguity (Moore et al. 2004).

3.5.1. Network features

The localization algorithm is anchor-free. It can be
applied to single-hop and multi-hop networks. It is not
easily scalable to large networks due to the need for
centralized computation in cluster ‘stitching’. Until
now, it has been implemented only in 2D networks.

3.5.2. Computational workload

The first phase of the algorithm is based on trilatera-
tion, preceded by non-ambiguity testing. The second
phase is a mass–spring relaxation, analogous to the
AFL, used to refine the localization of clusters. As a
consequence, the algorithm can be quite slow, requir-
ing multiple iterations. These optimizations are per-
formed per cluster and not the network as a whole,
thus allowing concurrent processing.

The third phase can hardly be implemented without
a centralized network device handling information
from clusters that should be stitched together. In this
phase, clusters are stitched using a closed-form
solution for a least-squares problem. Such a problem

Figure 11. In order to prevent ambiguities such as the one described in Figure 10, localization is performed using robust
quadrilaterals. A quadrilateral is defined robust if it is regular enough; the idea is that ambiguity occurs using ‘flat’ quadrilaterals
to solve node position (Moore et al. 2004).
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is relatively complex, with computations required to
solve systems of polynomial equations (Horn 1987).
The third phase has been exclusively evaluated by
computer simulation.

As expected, the computational complexity for each
cluster grows with respect to the number of neighbours.
For each node, the computation depends on the third
power O(n3) of the number of neighbours n.

3.5.3. Benefits

The algorithm significantly reduces the amount of
error propagation over approaches based on basic
trilateration. Simulations show that error on node
positioning using incremental methods is more than
double those using the Moore et al. method.

3.5.4. Drawbacks

The drawback of Moore’s approach is that under
conditions of low node connectivity or high measure-
ment noise, the algorithm may be unable to localize a

useful number of nodes. However, for many applica-
tions, missing localization information for a known set
of nodes is preferential to incorrect information for an
unknown set. In 3D networks, computational com-
plexity and data routing dramatically increase.

3.5.5. Possible improvements

When robust quadrilaterals do not exist or when the
connectivity is poor, the Moore et al. algorithm fails.
To get over these difficulties, the algorithm can be
enhanced by implementing a more effective robustness
test, such as the one proposed by Sottile and Spirito
(2006).

4. Summary of localization algorithms

Section 3 provided a detailed description of five
significant fine-grained localization algorithms. As
discussed earlier, fine-grained algorithms are more
accurate than coarse-grained. They utilize more
accurate inter-node distances, usually obtained

Figure 12. Schematic representation of Moore et al. (2004) algorithm.
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through RSS or ToA techniques. These algorithms are
suitable for applications where nodes are required to
be localized with a fair level of accuracy. In object
tracking, for example, accurate localizations of net-
work nodes lead to accurate locating of objects moving
within the network. On the other hand, coarse-grained
algorithms provide a rougher localization of nodes, but
they are simpler to implement.

In this section, the five localization algorithms are
compared according to the taxonomy presented in
Table 1. Identified criteria can be useful to evaluate
and compare different network localization techniques.
The aim is to provide a reference scheme to select
them, depending on network characteristics (see
Table 2). Considering the actual research issues related
to localization algorithms, there is much room for
improvement. Several researchers are trying to develop
existing algorithms in order to make them work in
non-optimal conditions (for example incomplete con-
nectivity, presence of moving sensors) (Taylor et al.
2005, Sottile and Spirito 2006). Additional effort is
being spent to bridge the gap between simulations and
real-world localization systems by gathering more data
on the real behaviour of sensor nodes, particularly with
respect to physical effects like multipaths, interference
and obstruction (Langendoen and Reijers 2003).
Furthermore, other research groups are studying the
problem of ‘directional localization’, where each net-
work node not only must be aware its position but also
its orientation relative to the network (Akcan et al.
2006).

5. Conclusions

In many applications of WSNs, it is crucial to
determine the physical location of nodes. Automatic
localization of nodes in wireless networks is a key to
enable most of these applications. As an example, we
considered a sensor network deployment within a
warehouse. Making sensors wireless and self-configur-
able reduces the high cost of cabling and makes the
network more manageable and dynamic.

Numerous network localization algorithms have
been recently proposed and developed by many
authors. Similarities are present in each approach
(Langendoen and Reijers 2003, Patwari et al. 2005).
This paper suggests a new taxonomy to help evaluate,
compare and select network localization algorithms,
depending on the network characteristics and the type
of applications.

The paper focused on five fine-grained techniques,
due to their better accuracy and their better chances of
being applied to many contexts (e.g. quality control,
indoor navigation, logistics, warehousing, remote
diagnostics, etc.). Algorithms have been discussed in

detail in order to summarize their characteristics and
peculiarities.

Many algorithms have never been tested in
practice. Additional effort is needed to test algorithms
with practical experiments, and not only through
simulations, in order to assess their performance and
reliability. Various algorithms are in testing on two
specific applications at the industrial metrology and
quality laboratory of DISPEA, Politecnico di Torino:

(1) innovative techniques for taking coordinate
dimensional measurements of objects, using
distributed wireless sensors (Franceschini et al.
2002);

(2) wireless monitoring of systems with changeable
configuration (e.g. cranes, mechanical arms,
automatic gates, etc.) to check their ‘natural’
positions.

Since these applications require a reasonable level of
accuracy in inter-node distance estimates, network
nodes are equipped with ultrasound transceivers
implementing a ToA technique.
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