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Abstract

We study the lift of an elastica adhering to a flat rigid surface induced by a pressure
difference. Adhesion is modelled by a cohesive force that decreases linearly with separa-
tion. Using a non-linear local analysis, we determine the bifurcation diagram that governs
the peeling process under quasi-static conditions. We show that the delamination emerges
through a discontinuous transition: a normal form of the bifurcation diagram allows us to
draw in a simple way the main physical mechanism, elucidating the local validity of the
theory at the transition. We predict that the pressure, as a function of the detachment
length, undergoes an initial drop followed by an approximately constant behaviour, while
the detachment length at the transition is always finite and is roughly proportional to
the elasto-adhesion length. This analysis can be the starting point to understand more
complex related problems which arise in fracture mechanics or in biology, such as testing
of adhesives in a flowfield and the arterial dissection.

keywords: Rod, adhesion, delamination, mechanical instability, bifurcation,
Lyapunov-Schmidt.

1 Introduction

Because of its common occurrence, the mechanics of peeling has been subject of much
scientific interest and investigation [19]. The mechanics of adhesive contacts is relevant
for a variety of practical applications, such as the design of adhesives and coatings, the
fabrication of flexible electronics [15], the design of soft robots [3], the development of
tough medical bandages[29, 30], the analysis of biological attachment devices [1].

From a mathematical and experimental perspective, adhesion phenomena constitute a
challenging area of research. The physics underlying the adhesion crucially depends on the
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properties at the microscale level of the material, the adhesive properties of the surfaces
of the bodies in contact. However, some relatively simple models are able to capture
the essentials of the complex phenomena involved in adhesion. A common strategy is to
assume a membrane-like behaviour for the elastic body and introduce an adhesion energy
proportional to the measure of the detached zone [12, 13, 22, 6, 19]. Exploiting a simple
energy balance argument, it is possible to derive the critical detachment conditions by
comparing the energies involved (bending, stretching, potential energy of the external
force or pressure, and adhesion), and derive, for example, the relationship between the
magnitude of the constant force and the peel angle between the rod and the rigid surface.

The classical peeling model reads as an elastic rod adhering to a adhesive rigid flat
surface: the rod is lifted by a constant force, applied on one boundary of the rod, directed
orthogonally to the basement. Another common mechano-adesive system is the blister
test [5, 27, 16]: an elastomeric membrane adhering to a rigid substrate with a hole is
subject to a pressure difference across the non attached area, so that it forms a noticeable
blister. For increasing pressure, the blister radius is first unchanged, until a threshold
beyond which the crack rapidly increases in size and the stored strain is relaxed. In
general, the pressure at this point in time is not the maximum pressure recorded during
the experiment.

Irrespectively of the specific system at hand, the energy balance approach is simple
and effective in describing the peeling mechanics, but it inherently lacks some physical
information about the adhesion force. An alternative approach is to use a cohesive zonal
model [21, 7, 28], i.e., to introduce a constitutive law for the adhesive force, limited to
a thin cohesive layer close to the substrate. The equilibrium solutions are then obtained
using force and momentum balances, which provide more information about adhesion
process and the stresses involved.

Both for the classical peeling and for the blister problem, a rigorous nonlinear and
analytical study of the unbonding transition is uncommon, even for the simplest cases
where an analytical treatment is possible. This is largely due to the fact that even the
simplest adhesion laws are non-smooth, typically piecewise linear, and therefore make both
analytical and numerical study difficult. In this work, we propose a different approach
to this type of problem. By making a linear extrapolation of the adhesion law in the
region of interest, it is possible to analyse the problem as a classical bifurcation problem
for which many advanced mathematical techniques are available. We show that it is not
enough to study the linearized problem, but that it is necessary to proceed with a weakly
nonlinear analysis in order to correctly interpret the nature of the delamination. This
approach provides a very simple and intuitive representation of delamination, in terms
of normal form and effective potential (equivalent to a Landau potential in the study of
phase transitions) that other approaches do not have.

In particular, we focus on the problem of delamination by pressure: an elastic rod
attached to a rigid surface is lifted by a constant pressure. This system can be seen as
is an intermediate step in representing a rod lifted by a flowfield, like an adhesive tapes
on an aircraft. It can be seen as a mixed problem between peeling and blister, preserving
the challenges of both of them: the driving force is a pressure, but one boundary is free.
This problem cannot solved by using a simple energy balance argument, since the rod has
finite bending stiffness so that the shape of the rod, thus its bending energy, is part of the
problem.

In this work we perform a mathematical analysis of the delamination problem. Our
main aim is to identify the critical threshold in pressure and determine how the geometry
of the detachment depends on the material parameters and applied forces. A relevant
question is to determine whether the transition (the detachment) is continuous (second-
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order) or discontinuous (first-order) versus pressure. It is useful to have an analytical
description of the order of the transition because it is often difficult to assess the differ-
ence between a steep continuous and a discontinuous transition by means of experiments,
numerical simulations, or even closed-form equilibrium solutions. First and second-order
transitions are subject to fundamentally different physical mechanisms: while a continuous
transition is essentially reversible, meaning that it retraces the same family of solutions
if the control parameter is inverted, in a first-order transition it is possible to observe
hysteresis phenomena where the solution traces a different branch of the solution and it
is therefore not possible to return the system to its initial state simply by reversing the
process. Finally, an analytical study also provides a mathematical representation of the
transition in terms of a normal form and an effective potential. This can also foster a
deeper intuitive understanding of the phenomenon.

Motivated by the aforementioned objectives, we perform a non-linear analysis of the
bifurcations occurring in the delamination problem: using a cohesive zonal model we
show how the bifurcated branches depend on the material features of the cohesive forces
(magnitude and slope versus the vertical displacement). We prescribe an adhesive phe-
nomenological constitutive law: adhesion forces act in a cohesive zone of finite thickness.
To model degradation, the force is assumed to be a linear decreasing functions of the
separation distance [21, 7, 26, 25].

The outline of this paper is as follows. In §2, the relevant background notions on
adhesion and the elastic rod theory are introduced, and in Appendix A we perform the
variational derivation of the equilibrium equations for the problem of an elastica in contact
with a sticky rigid surface. Particular attention is also placed on compatibility conditions
which must be satisfied at the edge of the contact region. Section 3 is devoted to the
discussion on the linear stability analysis of the solutions. We show that a bifurcation
occurs at a finite critical detachment length. The precise nature of the bifurcation is
identified in §4: by means of a Lyapunov-Schmidt reduction of the problem, we derive the
normal form of the bifurcation, and we find that the transition to a delaminated solution is
generally first-order. In §5, we discuss the physical implications of our analysis. We show
how the detachment length depends on the applied pressure and other model parameters
such as bending stiffness and cohesive forces.

2 The model

An inextensible one–dimensional rod adheres to a straight wall. An inviscid fluid flow,
ideally represented by a constant pressure normal to the rod, partially lifts the rod. We
mathematically split the mechanical system into two curves in the plane: one describes
the bent, non-attached portion of the rod, the other one the straight, attached part. The
delaminated part is subject to a pressure p and to a vertical adhesive force that tends to
restore the attached configuration. The detachment point is an unknown of the problem.

The position vector of the curve, r(s), is parametrised by the arclength s. We assume
that the detached part of the rod spans s ∈ [0, s̄), while the adhering region is s ∈ [s̄,+∞],
where s̄ is the unknown detachment point. A unit tangent vector t = (cos(θ), sin(θ)) is
uniquely defined in every point of each curve, where θ(s) is the anticlockwise angle between
the tangent vector and the x-axis. We take the unit normal as n = (sin(θ),− cos(θ)) so
that t′ = −θ′ n. In the attachment point the curve is smooth: θ(s̄) = 0 and the tangent
vector is t(s̄) = e1. By contrast, the endpoint of the non-attached portion of the rod,
s = 0, is free.
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Figure 1: Schematic representation of the system geometry. The rod is parametrised by the
archlength s, with origin at the free end and detachment point at s = s̄; θ(s) is the anticlockwise
angle between the tangent vector and the x-axis.

The inextensible rod stores elastic energy only because of bending

w(θ′, s̄) =

∫ s̄

0

k

2
(θ′)2ds, (1)

where k is the bending modulus and only the detached part contributes to the energy.
Then, we introduce a Lagrange multiplier to account for the inextensibility constraint,
and write the total energy of the rod as

W (r, θ,N, s̄) =

∫ s̄

0

(k
2
(θ′)2 −N · (r′ − t)

)
ds (2)

Here N(s) = (Nx(s), Ny(s)) is the (unknown) reaction force in the rod due to the inex-
tensibility constraint.

A pressure difference p and an adhesive vertical force f = fe2 apply to the rod. The
constitutive equation of the adhesive force is illustrated in the next section. We exploit
the non-conservative version of the principle of virtual work, δW = δL, where δL is the
work exerted by the non-conservative active forces

δL =

∫ s̄

0

(
− pn+ fe2

)
· δr ds, (3)

where p is supposed to load the rod in s ∈ [0, s̄), even when y = 0.

2.1 Equilibrium equations

The first variation of the energy functional Eq.(2) is calculated in Appendix A, and it
eventually reads

δW =

∫ s̄

0

(
(−kθ′′ −Nx sin θ +Ny cos θ)δθ − δN · (r′ − t) +N′ · δr

)
ds− k

2
θ′(s̄)2 δs̄. (4)

We rewrite the virtual work (3) as

δL =

∫ s̄

0

(
− p sin θ δx+ (p cos θ + f)δy

)
ds. (5)

Taking into account all the possible variations, including the contact point and integrating
by parts, we can calculate the Euler-Lagrange equations for this system from the principle
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of virtual work, thus obtaining

k θ′′ +Nx sin θ −Ny cos θ = 0, (6a)

N ′
x = −p sin θ, N ′

y = p cos θ + f, (6b)

x′ = cos θ, y′ = sin θ, (6c)

together with the following boundary conditions

θ′(0) = 0, Nx(0) = 0, Ny(0) = 0, (7a)

x(s̄) = 0, y(s̄) = 0, θ(s̄) = 0, θ′(s̄) = 0. (7b)

Among the several possible stress-strain laws [28], we posit the following constitutive
law for the adhesive force [21, 7, 26, 25]

y0
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T0
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y
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Figure 2: (a) Constitutive model for adhesion. When y = 0 and |p| ≤ T0, f is a vertical
reactive force that balances the pressure forces and may attain a maximum value T0. In the
active regions, 0 < y ≤ y0 or −y0 ≤ y < 0, f decreases linearly to zero, vanishing when y ≥ y0
or y ≤ −y0. (b) Regularisation of the cohesive law to be used in the local analysis of Eqs.(12)
to find the onset of bifurcation about p = T0, y = 0.

f =


−p if y = 0 and |p| ≤ T0 (reactive region)

−T0

(
1− y/y0

)
if y ∈ (0, y0] or (y = 0 and p > T0) (active region)

T0

(
1 + y/y0

)
if y ∈ [−y0, 0) or (y = 0 and p < −T0) (active region)

0 otherwise (active region)

(8)
When y = 0 and |p| ≤ T0, f = fe2 is a reactive force that can take any suitable

value to balance the external pressure. In analogy with static and dynamic friction, T0

is the threshold force below which there is no detachment. By contrast, when y > 0 the
adhesion is an active force whose action decreases linearly with distance according to the
law as given in (8) (see Fig.2(a)). This mixed active-reactive nature of f follows from our
assumption that p loads the rod in any spatial configuration, including y(s) = 0, in the
part s ∈ [0, s̄). The pressure p loads the rod in any configuration, including the straight
one: a possible physical interpretation of such a law is that even if a thin layer of fluid
infiltrates under the beam, co-occupying it with the the underlying glue, rod detachment
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may be negligible because the adhesive forces are still able to counteract the effect of the
pressure until it exceeds the critical value T0.

The adhesion force is purely vertical, independent of the horizontal displacement and
the arc parameter. This choice is consistent with a capillarity adhesion model, mediated
by a fluid. Other constitutive laws are of course possible: an example is a glue represented
by linear springs attached to the original location of material points [17].

For mathematical convenience, we study the “dual” problem of equations (6)-(8) in
which we fix the length of the detached part, s̄, i.e., the region where the pressure forces
that tend to detach the beam act, and investigate non-trivial equilibrium solutions, and
corresponding pressure values, for such s̄. In other words, we now suppose to know s̄,
while p is unknown. To this aim, we supplement our system of equations (6) with p′ = 0.
The non-trivial solution will have y(s) > 0 throughout s ∈ [0, s̄), while it will be y(s) = 0
for s ∈ [s̄,+∞).

Since we are interested in the onset of the transition and the determination of detach-
ment condition, we perform a local study of the solutions in a neighbourhood of p = T0.
Hence, it is possible to limit the analysis of cohesive forces in the active region, y > 0,
and use a regular linear form as in Fig.2(b). This simplification implies a local validity
of our analysis, so that our solutions are valid provided they lie in the range 0 ≤ y ≤ y0
and p ≥ 0. As illustrated in Fig.3, the linearised cohesive law depicted in Fig.2(b), intro-
duces two spurious, non-physical solutions, shown in Fig.3(c) and (e), in addition to the
physically acceptable solution presented in Figure 3(a). Solution (c) must be discarded
because a portion of the rod extends beyond the limit of the active region y ≤ y0 where
a repulsive cohesive force shows up. Since our primary focus is on studying the onset of
instability, where we envision y to be small, this solution does not pose a significant con-
cern, particularly for investigating the onset of stability. The case illustrated in Fig.3(e)
presents a different scenario, corresponding to a solution with y < 0. In this situation,
the cohesive forces of the linearised constitutive law are repulsive along the entire length
of the beam and have a magnitude greater than T0.

Although this regularisation of the cohesive law may seem brutal it has the major
advantage of making our problem mathematically tractable. Furthermore, it transforms
it into a bifurcation problem, for which classical and powerful techniques of nonlinear
analysis are available, allowing us to gain an intuitive understanding of the transition.
Fake solutions introduced by the linearization, that have no meaning for the nonlinear
constitutive law, will be discarded a posteriori.

It is now convenient to write the equations in non-dimensional form. To this aim, we
rescale the curvilinear coordinate s = s̄ ξ (so that 0 ≤ ξ ≤ 1, and d

ds = 1
s̄

d
dξ ) and introduce

the following non-dimensional functions and parameters

θ̂(ξ) = θ(s), N̂x(ξ) =
s̄2

k
Nx(s), N̂y(ξ) =

s̄2

k
Ny(s), (9)

x̂(ξ) = x(s)/s̄, ŷ(ξ) = y(s)/s̄, α =
s̄3p

k
, (10)

β0 =

(
s̄

η

)3

β1 =

(
s̄

η

)3 s̄

y0
, (11)

where s = s̄ ξ and we have introduced the elasto-adhesion length η = (k/T0)
1/3. It is

a characteristic length scale that compares the bending stiffness of the rod versus the
strength of the cohesive forces [24]. The control parameter β0 encodes the ratio between
s̄ and η, while β1 also contains information about the decrease rate of the adhesion with
height. They are independent parameters as s̄/y0 can be arbitrarily fixed. Hence, the
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Figure 3: Profiles of possible equilibrium configurations of the rod according to the linearized
adhesion law. Forces acting on the rod are indicated: pressure forces (red), which are orthogonal
to the rod, and adhesive forces (blue), which are vertical. The linear simplification of the
adhesive constitutive law, as shown in Fig.2(b), introduces two kind of fake solutions (c) and
(e) in addition to the one acceptable for the nonlinear model too (a). These unphysical solutions
must be discarded a-posteriori. Panels (b), (d), and (f) schematically relate the regions of the
constitutive law to the corresponding adhesion forces shown in the left panels.
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equilibrium equations, when the adhesion is in its active regime, read

θ̂′′ + N̂x sin θ̂ − N̂y cos θ̂ = 0, (12a)

N̂ ′
x = −α sin θ̂, (12b)

N̂ ′
y = α cos θ̂ − β0 + β1ŷ, (12c)

x̂′ = cos θ̂, ŷ′ = sin θ̂, (12d)

α′ = 0, (12e)

where all fields are non-dimensional, the prime denotes derivation with respect to ξ,
and physically admissible solutions have ŷ ∈ [0, y0/s̄], β0 ≥ 0, and β1 > 0. As will
become clearer later, from a mathematical standpoint, it is also interesting to examine
the scenario β0 = 0. This entails adopting a linear cohesive law where T0 → 0, y0 → 0,
while maintaining a constant ratio of T0/y0. Consequently, it involves employing a linearly
repulsive law for f , which is not of primary interest in our physical context. Within this
limit, the slope of the constitutive law, and hence that of β1, can still be arbitrarily
assigned.

We observe that x̂(ξ) appears only in the first equation in (12d) and it can be deter-
mined a posteriori once we know θ̂. The first equation in (12d) can therefore be neglected
in the following analysis. We remark that we have fixed s̄, so that the dimensionless
pressure, α, is an unknown constant.

3 Linear analysis: critical detachment length

For each fixed value of s̄, there exist an infinity of trivial solutions with y = 0, each one
corresponding to an arbitrary pressure value 0 ≤ p ≤ T0, where the pressure forces exerted
on [0, s̄) are balanced by the adhesion forces.

We are interested in studying whether the system of equations (12) presents a bifur-
cation as the control parameters β0 and β1 vary, the attachment length s̄ being given. By
contrast, the dimensionless pressure α at equilibrium is an unknown of the problem.

Let us now focus on a neighbourhood of the limiting case p ≈ T0, corresponding to
α = β0. There is a principal branch of solutions, i.e., a trivial solution with θ = 0, y = 0,
Nx = 0, Ny = 0 and α = β0, for every value of the parameter β1. We want to investigate
whether there are possible non-trivial equilibrium solutions which are small perturbations
of θ = 0, y = 0, Nx = 0, Ny = 0 and α = β0, for a given finite s̄.

For notational convenience, in the following we drop the “hat” superscript for the
dimensionless quantities and we linearise the equilibrium equations (12) about θ = 0,
y = 0, Nx = 0, Ny = 0 and α = β0,

θ′′ −Ny = 0, (13a)

N ′
x + β0θ = 0, (13b)

N ′
y − α1 − β1 y = 0, (13c)

y′ − θ = 0, (13d)

α′
1 = 0, (13e)

where α1 = α − β0 is the unknown (constant) “extra-pressure” with respect to β0. We
remark that, given our constitutive assumption on f , only the solutions with α1 ≤ 0 (and
y ≥ 0) are acceptable from a physical standpoint. Furthermore, the linear profile of the
cohesive force is valid only until y ≤ y0. For mathematical convenience, however, we
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consider Eq.(12c) to be valid also when α1 > 0, y < 0 or y > y0, and we will discard such
solutions a-posteriori.

The boundary conditions are

Nx(0) = 0, Ny(0) = 0, θ′(0) = 0, (14a)

θ(1) = 0, θ′(1) = 0, y(1) = 0. (14b)

The critical condition is derived by a simple manipulation of the linear equations. Af-
ter differentiation of (13a), (13c) and the substitutions obtained from (13d), (13e), we
eventually get the fourth order differential equation

θiv = β1θ, ( β1 > 0 ) (15)

with general solution

θ(ξ) = c1 e
β
1/4
1 ξ + c2 e

−β
1/4
1 ξ + c3 cos(β

1/4
1 ξ) + c4 sin(β

1/4
1 ξ). (16)

The solution has to satisfy the boundary conditions

θ′(0) = 0, θ(1) = 0, θ′(1) = 0, θ′′(0) = 0, (17)

where this last boundary condition is derived from (13a), with Ny(0) = 0. As shown in
Appendix B, non-trivial linear solutions compatible with the boundary conditions (17)
can be obtained for

β1 = (nπ)4, n ∈ Z \ {0}. (18)

We consider the first buckling mode and set n = 1 in the following: the critical condition
becomes β1 = π4. Hence, we have found a second branch of solutions with the linear
approximation of θ(ξ) expressed as

θ(ξ) = A

(
eπξ + eπ−πξ

2 (eπ − 1)π3
+

sin(πξ)

2π3
+

(1 + eπ) cos(πξ)

2 (eπ − 1)π3

)
, (19)

where A is an arbitrary constant to be determined by solving the fully nonlinear prob-
lem. The presence of multiple solution branches at β1 = π4 for the linear problem is an
indication of a bifurcation in the nonlinear equations (12).

In terms of the physical parameters T0, y0, and k, the condition β1 = π4 can be
interpreted as giving a “critical detachment length”. From Eq.(11), we get

s̄c = π 4
√

η3y0 = π
(ky0
T0

)1/4
. (20)

When β0 = 0 the transition to a detached solution is smooth and the linear analysis
provides the detachment length (20). However, as we shall see in the next section, when
β0 ̸= 0, the transition turns out to be first-order (so that α1 is discontinuous) and no
conclusion can be drawn on the detachment length at the transition on the basis of the
linear analysis only. Hence, in order to analyse the transition in more details and gather
a more precise description of the bifurcation diagram, we need to perform a nonlinear
analysis, described in the next section.
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4 Lyapunov-Schmidt reduction

In an abstract setting we can rewrite Eq.(12) as F (U, ν) = 0 where U = (θ,Nx, Ny, y, α1),
ν = (β0, β1) and we introduce a smooth mapping F : X × R2 → Y , between Banach
spaces X, Y . We can typically choose X = C2

0 [0, 1]× (C1
0 [0, 1])

4 and Y = (C0
0 [0, 1])

5. We
recall that we use α1 = α−β0 to shift the trivial solution in the origin, so that F (0, ν) = 0
for any value of the parameters ν. We now want to explore the possible bifurcations from
the trivial solution.

A necessary condition for a bifurcation to occur at νcr = (β0, π
4) is that the linear

operator L, defined as the Fréchet derivative L := FU (0, νcr), is not invertible. In our
problem the linear operator L is defined by the linearized equations (13), with boundary
conditions (14), when β1 has the critical vale β1 = π4. The critical condition depends
only on the parameter β1, so that strictly speaking the operator L is a function of β0:
L = L(β0). For ease of reading, we will omit the explicit dependence of L on β0 in the
following. Explicitly, we have

LU = L
(
θ, Nx, Ny, y, α1

)
=

(
θ′′ −Ny, N ′

x + β0θ, N ′
y − α1 − π4 y, y′ − θ, α′

1

)
, (21)

plus the boundary conditions (14) that contribute to the definition of the space X. After
some algebra, we find that K := ker(L), namely, the subspace of solutions of (13), (14)
with β1 = π4, is generated by u0 = (θ0, N0

x , N
0
y , y

0, α0
1), where

θ0(ξ) =
eπξ + eπ−πξ

2 (eπ − 1)π3
+

sin(πξ)

2π3
+

(1 + eπ) cos(πξ)

2 (eπ − 1)π3
(22a)

N0
x(ξ) =

β0
(
−eπξ + eπ−πξ + 2− 2eπ

)
2 (eπ − 1)π4

− (1 + eπ)β0 sin(πξ)

2 (eπ − 1)π4
+

β0 cos(πξ)

2π4
(22b)

N0
y (ξ) = −eπξ + eπ−πξ

2π − 2eππ
− sin(πξ)

2π
+

(1 + eπ) cos(πξ)

2π − 2eππ
(22c)

y0(ξ) =
eπξ − eπ−πξ + 2− 2eπ

2 (eπ − 1)π4
+

(1 + eπ) sin(πξ)

2 (eπ − 1)π4
− cos(πξ)

2π4
(22d)

α0
1(ξ) = 1 (22e)

In other words, the solutions of the linearised problem LU = 0 are of the form U = Au0,
where A is an arbitrary constant. Hence, K is a one dimensional subspace of X and A
determines the amplitude of the bifurcation mode (more precisely, Kβ0 ⊂ X is a family
of one-dimensional vector spaces, depending on the parameter β0). According to the
normalization we chose, the arbitrary amplitude A coincides with the extra-pressure α1.

In order to obtain a more precise picture of the bifurcation diagram, we now perform a
nonlinear analysis of the bifurcation. A standard method in this context is the Lyapunov-
Schmidt reduction [23, 9, 10]. This technique allows us to rewrite the problem (12), (14) as
a nonlinear locally well-posed infinite dimensional one plus a finite-dimensional bifurcation
equation that are easier to analyse than the original infinite-dimensional problem.

It is possible to show that L is a Fredholm operator, so that we can split the Banach
spacesX and Y into the direct productsX = K⊕K⊥ and Y = R⊕R⊥, whereK = ker(L),
R = range(L), dim(K) = 1, codim(R) < +∞, and we have implicitly used the L2-scalar
product ⟨·, ·⟩ to define the orthogonal complements K⊥ and R⊥. Every U ∈ X can be
decomposed into the sum U = u + w, with u ∈ K and w ∈ K⊥. Likewise, our problem
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F (U, ν) = 0 can be split into an equivalent pair of equations,

QF (u+ w, ν) = 0, (23a)

(I −Q)F (u+ w, ν) = 0, (23b)

where Q is the orthogonal projector onto R and I is the identity. Eq.(23a), allows us
to derive w as a function of u and ν (in a neighbourhood of νcr), while Eq.(23b), once
we substitute w = w(u, ν), is a finite-dimensional equation that yields a complete, albeit
local, picture of the bifurcation. Finally, we recall that, in our functional setting, it is
often convenient to use the identity R⊥ = ker(L†), where L† is the adjoint operator, to
calculate R and R⊥.

The adjoint operator L† : Y → X is such that ⟨LU,Φ⟩Y = ⟨U,L†Φ⟩X , where Φ =
(ϕ1, ϕ2, ϕ3, ϕ4, ϕ5). An explicit computation of the formal adjoint yields

ϕ′′
1 + β0ϕ2 − ϕ4 = 0, (24a)

−ϕ′
2 = 0, (24b)

−ϕ′
3 − ϕ1 = 0, (24c)

−ϕ′
4 − π4ϕ3 = 0, (24d)

−ϕ′
5 − ϕ3 = 0, (24e)

with boundary conditions ϕ′
1(0) = 0, ϕ2(1) = 0, ϕ3(1) = 0, ϕ4(0) = 0, ϕ5(0) = 0 and

ϕ5(1) = 0. From these equations we can calculate the kernel of L† which turns out to be
generated by the vector

v0 =
(
sinh[π(12 − ξ)] + sinh

(
π
2

)
cos(πξ) + cosh

(
π
2

)
sin(πξ), 0,

1

π

(
cosh[π(12 − ξ)]− sinh

(
π
2

)
sin(πξ) + cosh

(
π
2

)
cos(πξ)

)
,

π2
(
sinh[π(12 − ξ)]− sinh

(
π
2

)
cos(πξ)− cosh

(
π
2

)
sin(πξ)

)
,

1

π2

(
sinh[π(12 − ξ)]− sinh

(
π
2

)
cos(πξ)− cosh

(
π
2

)
sin(πξ)

))
. (25)

We notice that ker(L†) does not depend on β0. This is evident from Eqs.(24) because
from (24b) and the boundary condition ϕ2(1) = 0, and from (24a), it follows immediately
that β0 does not enter into the calculation of ker(L†).

We can now construct the two projectors, P : X → K and Q : Y → R = ker(L†)⊥

given explicitly by

Px = ⟨u0, x⟩
u0

∥u0∥2
, x ∈ X, (26)

Qy = y − ⟨v0, y⟩
v0

∥v0∥2
, y ∈ Y. (27)

4.1 Numerical Lyapunov-Schmidt

The analytical solution of the nonlinear problem in w(u, ν) as given in (23a), with Q
as given in (27), is very cumbersome, even with the aid of a symbolic algebra system.
However, as we shall see, the determination of the exact solution is not strictly necessary:
we look for an approximate numerical Lyapunov-Schmidt reduction to identify the normal
form of the bifurcation and fit the unknown coefficients to the numerical solution. To this
aim, we employ the iterative method described in [2] to solve numerically (23a) and then
(23b). Specifically, Eq.(23a) can be written as

F (u+ w, ν)− ⟨v0, F (u+ w, ν)⟩ v0
∥v0∥2

= 0 (28)
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where u ∈ K = kerL; w ∈ K⊥; v0 ∈ kerL†. Next, we define the nonlinear (higher order)
part of F as B(u + w, ν) := F (u + w, ν) − L(u + w), where L is given as in Eq.(21).
Explicitly, we find,

B
(
(θ,Nx, Ny, y, α1), ν

)
=

(
Nx sin(θ) +Ny(1− cos(θ)), β0(sin(θ)− θ) + α1 sin(θ),

(β0 + α1)(1− cos(θ))− λy, θ − sin(θ), 0
)
, (29)

where we have substituted β1 = π4 + λ, i.e., λ measures the deviation of β1 from the
critical value β1,cr = π4.

Since F (u + w, ν) = Lu + Lw + B(u + w, ν) = Lw + B(u + w, ν), and ⟨Lw, v0⟩ =
⟨w,L†v0⟩ = 0, we write (28) in the equivalent form

Lw +B(u+ w, ν) = ⟨v0, B(u+ w, ν)⟩ v0
∥v0∥2

(30)

This is a convenient form for (23a) since B is a higher order remainder (i.e., it is at least
quadratic in A, λ and their product) and it does not contain derivatives (see Eq.(29)).
We have seen that the solutions to the linear problem are of the form u = Au0, with u0
as given in (22) and A an arbitrary amplitude, to be determined by the solution to the
nonlinear problem. If we now fix the amplitude A, i.e., the linear solution u = Au0, and
the parameters ν = (β0, λ), then the nonlinear correction w(A, ν) is found by solving (30).
This suggests the following iterative scheme to approximate (30) [2]

w0 = 0, (31a)

solve Lw̃k+1 = ⟨v0, B(u+ wk, ν)⟩
v0

∥v0∥2
−B(u+ wk, ν), (k ∈ N) (31b)

wk+1 = Pw̃k+1. (31c)

We iterate with k until convergence. Convergence properties are discussed in [2].
Once we have obtained w = w(A, ν), we can solve the bifurcation equation (23b)

to obtain the relationship between the amplitude A and the parameters β0 and λ, thus
obtaining a precise, albeit local, description of the bifurcation. In practice, we define the
reduced function

g(A, β0, λ) =
〈
v0, F

(
Au0 + w(A, ν); ν

)〉
(32)

and interpolate g over a square grid in the (λ,A) plane, for a given value of β0. The solution
to the bifurcation equation Eq.(23b) corresponds to the zero-level set g(A, β0, λ) = 0.

Finally it is worth pointing out that the transversality condition for the bifurcation,
as given for instance in [4, 14], is verified. In our case, this conditions requires that
FU β1(0, νcr)[u0] /∈ R. Since FU β1(0, νcr)[u0] = (0, 0,−y0(ξ), 0, 0), the transversality con-
dition is satisfied as Q(0, 0,−y0(ξ), 0, 0) ̸= (0, 0,−y0(ξ), 0, 0) as can be easily verified by
direct computation.

In conclusion, the numerical Lyapunov-Schmidt reduction of our problem yields the
bifurcation diagram shown in Fig.4, for β0 = 0 and β0 = 4, where λ = β1 − π4.

4.2 Analysis of the bifurcation

When β0 = 0 we observe a supercritical pitchfork bifurcation at λ = 0, corresponding
to the critical value as given in Eq.(18) (or Eq. (20)), identified in §3. However, from a
physical standpoint, it is natural to require β0 > 0. In this case (orange line in Fig. 4),
a fold appears at λ = λF < 0. This fold creates two new equilibrium solutions, not

12



Figure 4: Bifurcation diagram obtained from the equation g(A, β0, λ) = 0, for β0 = 0 (blue
line), β0 = 2 (orange line), and β0 = 4 (green line). We recall that the normalization constant
of vector u0 ensures its last component equals 1. Consequently, α1 = A (see Eq.(22e)). The
horizontal (blue) line α1 = 0 is the trivial solution, which exists for all values of λ and β0.

obtainable from the linear analysis. Hence, in the range (λF, 0) it is possible to observe a
discontinuous transition to a new, detached solution, with finite detachment length and
lower pressure with respect to the limit value β0, in agreement with the numerical results
in [18]. At λ = 0 (identified by point ‘T’ in Fig. 4) we have a transcritical bifurcation
where the trivial solution becomes unstable. The different nature of the bifurcations with
β0 = 0 or β0 > 0 can be explained by symmetry arguments. The repulsive law with β0 = 0
is odd-symmetric with respect to the exchange y 7→ −y, therefore inducing a symmetric
bifurcation, namely a pitchfork. By contrast, when β0 > 0 the symmetry is broken.

Therefore, the diagram in Fig.4 reveals that the normal form of the bifurcation is of
the type

α3
1 + a2β0α

2
1 + a1α1λ = 0 (33)

where the numerical coefficients can be found by fitting the diagram in Fig.4. We find:
a2 ≈ 0.696 and a1 ≈ −7.29. Eq.(33) yields a power-law behaviour of α1, close enough to
the transition.
To validate our weakly nonlinear analysis, we numerically solve the fully nonlinear equilib-
rium equations (12) and find an excellent agreement between the numerical values found
for the dimensionless extra-pressure α1 and those deduced from the normal form (33),
as shown in Fig.5 and in Fig.6. The direct numerical integration is obtained with the
Matlab® solver bvp4c, by using a continuation method running backward from λ ≈ 1.
Equilibrium solutions of the lower and upper branches are obtained solving the full nonlin-
ear boundary value problem starting with a guess near equilibrium, and then decreasing
stepwise the value of the control parameter λ. By this simple and intuitive approach we
not able to educate the algorithm to capture numerically some bifurcation branches that
have been determined using the weakly nonlinear problem (no bullets in the figure 5b).
More sophisticated numerical techniques would be required to this aim [11, 20].
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(a) (b)

Figure 5: Dimensionless extra-pressure α1 against λ. Gray and blue circles represent the
numerical solution to the nonlinear Eqs.(12), obtained with a continuation method along the
upper and lower branches, respectively, with (a) β0 = 0 and (b) β0 = 4. Red solid lines show
the extra-pressure as obtained from the normal form Eq.(33). The numerical boundary-value
problem solver, namely bvp4c solver in Matlab®, loses accuracy near the transition. Insets
show the rod profiles with λ = 0.25.

From the normal form (33) we find that the fold F is located at

λF =
a22β

2
0

4a1
, α1,F = −a2β0

2
. (34)

An easy way to describe the key features of the bifurcation diagram is to introduce an
effective potential

Ue(α1;β0, λ) =
1

4
α4
1 +

1

3
a2 β0 α

3
1 +

1

2
a1 λα2

1 (35)

so that ∂Ue/∂α1 = 0 coincides with (33) and we are induced to study how the position
and nature of the critical points of the effective potential (35) vary as far as the material
parameters λ, β0 are changed. This is shown in Fig.7 for some characteristic values of
the parameters. As λ increases, the shape of the effective potential changes. The global
minimum, in which the system is supposed to be, can become only a metastable local
minimum and eventually vanish. More precisely, a new minimum and a new maximum
appear at the fold F, corresponding to the coordinate given in (34). Physically, when
λ ≥ λF the system may jump to a new, non adhering, configuration. When the actual
jump occurs is the subject of two commonly applied conventions. If we adopt the delay
convention, the transition happens when the local minimum becomes unstable. In our
case, this means that the adhered solution remains until λ = 0. Another common choice
is to use the so-called Maxwell convention: the system state is the one that globally
minimizes the potential. The value at which the two minima take the same value is found
by eliminating α1 among the two equations Ue = 0 and ∂Ue/∂α1 = 0, yielding

λM =
2(a2β0)

2

9a1
, α1,M = −2a2β0

3
. (36)

It is important to remark that the point at which the system leaves a metastable equi-
librium and moves to a new equilibrium depends on the interplay between the noise level
in the system and the potential barrier. It is a modelling choice that cannot be answered
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Figure 6: Like in Fig.5, but with β0 = 10.
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Figure 7: Effective potential, as given in (35), with β0 = 4, for λ = −0.4, λF , λM ,−0.1. When
β0 = 4, Eqs.(34),(36) yield λF ≈ −0.2658 and λM ≈ −0.2363.

in general, but depends on the particular physical system under study. For the sake of
definitiveness, we will assume in the following discussion that the transition occurs at
λ = λM (Maxwell convention).

5 Discussion

The normal form (33) can be interpreted as an equation of state that relates the applied
pressure, the detachment length and the physical characteristics of the rod and adhesive
force. In order to better explore its physical significance, it is convenient to write it in
dimensional form. After some algebra, Eq.(33) rewrites as

(p− T0)
3 + a2T0(p− T0)

2 + a1

(
η3

s̄2y0
− π4η6

s̄6

)
T 2
0 (p− T0) = 0, (37)

where we have used the elasto-adhesion length η = (k/T0)
1/3.
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The lower branch of the solution, corresponding to α1 ≤ α1,F, is given by the equation

p/T0 = 1− a2
2

− a2
2

√
1 +

4a1
a22

(
π4η6

s̄6
− η3

s̄2y0

)
(38)

which yields the pressure profile as a function of the detachment length s̄, the elasto-
adhesion length η and the adhesion threshold length y0. In Fig.8 we report the pressure
profile as a function of the detachment length s̄ for various values of the ratio η/y0. We

Figure 8: Pressure profile against detachment length s̄, with η/y0 = 0.1, 0.2, 0.5, 1, 2, as given
by (38).

observe that there are in practice two different behaviours: at the transition there is a
sudden drop of the applied pressure followed by a region of nearly constant pressure. To
quantify this effect, we calculate the pressure at the fold F :

pF = T0 (1− a2/2) ≈ 0.65T0, (39)

while the pressure at the Maxwell point is found to be

pM = T0 (1− 2a2/3) ≈ 0.54T0. (40)

When η/y0 is sufficiently small, the pressure, after an initial drop, is nearly constant in
practice as a function of the detachment length s̄ and tends to a value p = p∞. The
limiting value of the pressure as s̄/y0 → +∞ is given by

p∞ = T0 (1− a2) ≈ 0.30T0 (41)

At the transition, the detachment length is finite. In other words, it is not possible to
observe a delaminated solution with arbitrary small s̄, while s̄ = 0 in the reactive region
until p ≤ T0. This can be seen by evaluating the critical detachment length, defined as
the length at the Maxwell point, which is obtained from the value of λM , as given in
Eq.(36a). In terms of dimensional variables, we find

s̄4

η3y0
− π4 =

2

9a1

(
a2s̄

3

η3

)2

(42)
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whose solution yields the critical s̄M as a function of η, shown in Fig.9. For the limited
range considered in Fig.9, the critical detachment length s̄ is well approximated by a simple
linear equation s̄M/y0 ∝ η/y0, so that s̄M turns out to be largely independent of y0 and
approximately proportional to the elasto-adhesion length, namely, s̄M ∝ (k/T0)

1/3. This
implies that a large detachment at the transition can occur for essentially two reasons: a
stiffening of the rod or a deterioration of the cohesive strength. By contrast, the cohesive
depth, y0, does not seem to play a key role.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

η/y0

s M
/y
0

Figure 9: Detachment length at the transition (Maxwell convention), s̄M , as a function of the
elasto-adhesion length, η = (k/T0)

1/3, as deduced from (42).

Fig.8 also shows that, for some values of p, it is possible to have two equilibrium config-
urations with the same pressure but different detachment length and material parameters.
Two paradigmatic solutions with the same pressure, are shown in Fig.10. Strictly speak-
ing, these solutions are valid only when y ≤ y0, because when y > y0 our analysis, that
uses a linear approximation of the adhesive forces, as shown in Fig.2b, breaks down. How-
ever, when the solutions are very near to y = y0, we can at least trust their qualitative
features. We therefore distinguish an “unfolded” solution for small detachment lengths
and a “folded” solution for large values of s̄, where the pressure forces acting on the hor-
izontal part do not actually tend to detach the beam but work in accordance with the
adhesion forces.
Two values of s̄, derived from Eq.(38), that correspond to the same pressure p = 0.25T0

with η = 0.566 y0 are s̄(1) ≈ 2.128 y0 and s̄(2) ≈ 5.664 y0, corresponding, respectively, to

β
(1)
0 = 53.16, β

(1)
1 = 113.1, and β

(2)
0 = 1001.6, β

(2)
1 = 5670.6. The rod shapes are shown in

Fig.10. These solutions are not close to the transition, hence it is not expected that the
normal form (33) (or (37)) yields accurate results. However, we obtain fairly correct values
of α: Eq.(33) of our approximate analysis yield α(1) = 13.29 and α(2) = 250.4 for cases
(a) and (b) of Fig.10, while the fully nonlinear numerical solution gives α(1) = 14.86 and
α(2) = 297.6, respectively. We remark that the solutions are obtained using the linearised
cohesive law in a range of large detachment.
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Figure 10: Rod shape for two values of s̄ sharing the same pressure p/T0 = 0.25, with η/y0 =
0.566, as calculated from Eq.(38). (a) s̄ = 2.128 y0, β0 = 53.16, β1 = 113.1. (b) s̄ = 5.664 y0,
β0 = 1001.6, β1 = 5670.6. The corresponding values of α, calculated from the normal form
(33), are 13.29 and 250.4, by contrast those obtained from the numerical simulations are 14.86
and 297.6. The dashed part identifies the portion with y(s) > y0, where the cohesive forces
vanish, so that our simplification of a linear decreasing f , as shown in Fig.2(b), breaks down.
However, in our simulations, y(s) only slightly exceeds y0 so that f is only weakly repulsive in
the dashed region.

6 Conclusions

In this paper we have studied the detachment of an elastica adhering on a flat surface,
induced by the lift force generated by a constant pressure difference. We rewrite the
problem in terms of determination of the pressure corresponding to a given detachment
length. The analysis shows that when the cohesive law is regularized and treated as an
affine function across its entire range, a bifurcation occurs at a finite critical detachment
length.

We first perform a linear stability analysis of the solutions and then we study the
nature of the bifurcation. By means of a Lyapunov-Schmidt reduction of the problem, we
derive the normal form of the bifurcation, and we find that the transition to a delaminated
solution is generally first-order.

Through numerical simulations we analyze the pressure profile as a function of the
detachment length for different values of the elasto-adhesion length. We observe that there
are essentially two different behaviours: at the transition there is a sudden drop of the
applied pressure, with a finite detachment length, followed by a region of nearly constant
pressure. Therefore it is not possible to have a delaminated solution with arbitrary small
s̄, while it holds s̄ = 0 for pressures lower that T0. Moreover it is possible to have
two equilibrium configurations with the same pressure but different detachment length
for some range of the control parameters. From the numerical simulations of the fully
nonlinear problem we can distinguish between an “unfolded” solution (for small s̄) and
a “folded” one (for larger detachment length), where the pressure acting on the folded
part works in accordance with the adhesion forces. Finally the analysis of the detachment
length at the transition as a function of the elasto-adhesion length, suggests the existence
of a linear relationship between the two. This indicates that a large detachment at the
transition can occur for two reasons: a stiffening of the rod or a deterioration of the
cohesive strength.

This paper should be considered as a first step towards understanding the lift of an
elastica induced by a pressure difference. The model can be further refined in several
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ways, motivating future work. For example, instead of a purely vertical adhesion force,
one could consider incorporating shear resistance, introducing a horizontal component
to the force. Additionally, exploring alternative constitutive models for adhesion would
be beneficial. The solution obtained with a smooth nonlinear adhesion law defined in a
thin layer could be studied in the limit of vanishing width, thus comparing the results
with the approach discussed in this work. Furthermore, changing the geometry of the
adhering surface to a more biomimetic shape, such as a circular geometry resembling an
artery, could be a valuable improvement for describing phenomena like arterial dissection.
Finally, investigating the effects of a pressure difference that varies along the arc length,
possibly inspired by elementary solutions for fluid flow near a wall, or including skin
friction drag, would be interesting avenues for future research.
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A Variational derivation

The first variation of the energy (2) is

δW =

∫ s̄

0

(
kθ′δθ′ − δN · (r′ − t)−N · (δr′ − δt)

)
ds+

[k
2
θ′2 −N · (r′ − t)

]
s=s̄

δs̄, (43)

where, we recall, N = Nxe1 +Nye2 and t = cos θ e1 + sin θ e2. Integrating by parts and
using δt = (− sin θ e1 + cos θ e2)δθ, we get

δW =

∫ s̄

0

(
(−kθ′′ −Nx sin θ +Ny cos θ)δθ − δN · (r′ − t) +N′ · δr

)
ds (44)

+
[k
2
θ′2 −N · (r′ − t)

]
s=s̄

δs̄+
[
kθ′δθ −N · δr

]s̄
0
. (45)

At the free end, s = 0, we have Nx(0) = 0, Ny(0) = 0, θ′(0) = 0, therefore the second
boundary term simplifies to kθ′(s̄)δθ(s̄) − N(s̄) · δr(s̄). Furthermore, in the variational
derivation with variable end-points [8], we need to relate δr(s̄), δθ(s̄) with the true varia-
tions at the end-point, namely δr̄ and δθ̄

δr̄ := r(s̄+ δs̄) + δr(s̄+ δs̄)− r(s̄) ∼ r′(s̄)δs̄+ δr(s̄), (46a)

δθ̄ := θ(s̄+ δs̄) + δθ(s̄+ δs̄)− θ(s̄) ∼ θ′(s̄)δs̄+ δθ(s̄). (46b)

At the detachment point, s = s̄, we posit the Dirichlet conditions θ(s̄) = 0, y(s̄) = 0.
Therefore, we only consider variations of the end-point with δr̄ = δs̄ e1 and δθ̄ = 0. From
Eq.(46) we get δr(s̄) = δs̄ e1 − r′(s̄)δs̄ and δθ(s̄) = −θ′(s̄)δs̄. Hence, the first variation
finally reads

δW =

∫ s̄

0

(
(−kθ′′ −Nx sin θ +Ny cos θ)δθ − δN · (r′ − t) +N′ · δr

)
ds

+
[k
2
θ′2 −N · (r′ − t)

]
s=s̄

δs̄− kθ′(s̄)2δs̄−Nx(s̄) δs̄+N(s̄) · r′(s̄)δs̄

=

∫ s̄

0

(
(−kθ′′ −Nx sin θ +Ny cos θ)δθ − δN · (r′ − t) +N′ · δr

)
ds− k

2
θ′(s̄)2 δs̄.

(47)
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The virtual work of the external forces is given in (3), which we rewrite as

δL =

∫ s̄

0

(
− p sin θ δx+ (p cos θ + f)δy

)
ds (48)

Therefore, from the principle of virtual working, δW = δL, we derive Eq.(6) and the
Weierstrass-Erdmann condition

θ′(s̄)2 = 0 (49)

which allows us to determine the unknown detachment length s̄, and yields the boundary
condition (7b)4. To close the problem, we get rid of the degeneracy due to the translational
invariance along x by fixing the origin of the coordinate system in s = s̄ and posit x(s̄) = 0.

B Critical condition

When we insert the solution (16) into the boundary conditions (17), we obtain a system
of linear equations in the unknowns c1, c2, c3, and c4 with associated coefficient matrix

A =


γ −γ 0 γ
eγ e−γ cos(γ) sin(γ)
eγγ −e−γγ −γ sin(γ) γ cos(γ)
γ2 γ2 −γ2 0

 , (50)

with γ = β
1/4
1 . The determinant of A is,

det(A) = −4γ4 sin(γ) sinh(γ). (51)

Hence, a non-zero solution is found when det(A) = 0, from which we derive the critical
condition (18).
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