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 A B S T R A C T

We derive a continuum mechanical model to capture the morphological changes occurring at the pre-tumoral 
stage of epithelial tissues. The mathematical model, derived from first principles, accounts for the competition 
between the bulk elasticity of the epithelium and the surface tension of the apical and basal boundaries. 
The variation of the energy functional yields the Euler–Lagrange equations to be numerically integrated. The 
numerical results reproduce a variety of morphological shapes, from invagination to evagination, depending 
on the ratio between bulk and surface energy at variance of the length of the section. In particular, using 
parameters independently measured, we are able to reproduce experimental data reported for a ring partially 
made of transformed cells.
1. Introduction

Epithelial tissues are thin, continuous, layers of cells with a small 
amount of extracellular matrix. In the simplest case there is only a layer 
of cells (a monolayer), connected to each other by molecular forces that 
provide continuity to the tissue. Epithelial sheets can then undergo a 
number of active (spontaneous) morphological transitions, orchestrated 
by the actomyosin machinery, the inner cellular motor able to produce 
active stress, mostly located at the periphery of the cells (Hannezo 
et al., 2014; Vicente and Diz-Muñoz, 2023).

In this paper we are interested in epithelial tubular ducts: the tubule 
is ideally a cylinder, produced by bending a cell monolayer up to 
closure, when an internal (basal) and an external (apical) surface can be 
devised. In its healthy state, the section of a tubular duct can therefore 
be represented as a ring, characterized by a tensional state (a natural 
curvature) generated by the cortical myosin activity (myosin belt).

The paper by Messal and co-authors (Messal et al., 2019) reports 
three-dimensional imaging of pancreatic ducts subjected to oncogenic 
transformation. The images show that the proliferation of malignant 
cells is associated, at the organ level, with two types of neoplastic 
morphological changes: exophytic and endophytic. Exophytic trans-
formations involve outward expansion from the duct (evagination), 
while endophytic transformations manifest as growth inward into the 
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duct (invagination). Crucially, the lesion morphology is observed to 
depend on the size of the duct: small-radius samples show exophytic 
growth, while larger ducts deform endophytically. Such a transition in 
morphology takes place at a critical size of the duct, thus suggesting 
that the phenomenon is induced by some characteristic length-scale: 
since neoplastic transformations are accompanied by overproliferation, 
one may argue that such scale could be likely be the size of the grown 
tissue. Numerical simulations based on a three-dimensional vertex 
model and analysis of an elastic ring model show that the morphology 
of epithelial tumors is determined by an interplay between geometry 
and the alteration of the apico-basal tension imbalance induced by 
cytoskeletal changes. The authors conclude that ‘‘tension imbalance and 
tissue curvature [are] fundamental determinants of epithelial tumorigene-
sis’’ (Messal et al., 2019). In particular, the intrinsic length-scale that 
determines the critical size at which the transition is observed from exo- 
to endo-phytic is the ratio between the bending rigidity (whose physical 
dimensions are a force times an area) and the active bending moment 
(force times length) resulting from the difference between apical and 
basal tension times the width of the monolayer.

The mechanical models of epithelial sheets in the current litera-
ture are mostly based on thin shell theory: the aspect ratio of the 
soft structure enforces the possibility to neglect the thickness of the 
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tissue (Yin et al., 2021; Borja da Rocha et al., 2022).  In a different 
vein, the imbalance between apical and basal tension as a key factor 
in epithelial morphology dates back to the pioneering work by Lewis 
(1947), which emphasizes the critical role of contractile tension in the 
surface layers of epithelial cells in driving biological invagination. Odell 
and co-workers (Odell et al., 1981) elaborate this idea proposing a 
model where epithelial folding is coordinated by propagating waves 
of cell shape changes induced by contraction at the cell apex due to 
actin. Similarly Jones and Chapman (2010) propose a continuum model 
based on thin elastic shell theory with embedded, on one of the sides, 
a family of contractile fibers. Related works (Krajnc and Ziherl, 2015) 
confirm that internal tensions within a single-cell-thick epithelial tissue 
can drive the formation of various morphological states.

While the large literature mentioned above emphasizes the im-
portance of apico-basal tension imbalance as a determining factor in 
epithelial morphogenesis, the basal side of the epithelium is supported 
by a basal membrane and by a substrate, the stroma: their combined 
stiffness can have relevant mechanical effects. Several works focus on 
the role of the substrate in soft material instabilities such as wrinkling 
and periodic doubling. As an example, growing rods on an elastic 
foundation exhibit such instabilities (Almet et al., 2018). In the specific 
case of epithelial tissues, the recent work in Andrenšek and Krajnc 
(2025) emphasizes the role of the basal membrane and of the stroma for 
an initially flat epithelium. All these examples, however, apply to flat 
films on a substrate: a closed, curved duct is a fundamentally different 
mechanical system. In particular, the ring’s own curvature increases its 
overall geometric rigidity, which provides a significant restoring force 
against local buckling. For example, it has been shown in Jia et al. 
(2018) that intrinsic curvature delays buckling, and hence it is by itself 
a stabilizing factor. Last, but not least, the morphological changes in 
inhomogeneous ducts appear to be driven by smooth configurational 
transitions, rather than instability. 

In this paper, we explore the above illustrated morphogenetic mech-
anism for a quasi-2D duct model: we assume that the organ is long 
enough to make the study of a transverse section physically significant. 
The duct section is therefore a slender elastic body, represented as a 
nonlinear rod with variable cross-section. The aspect ratio of epithelial 
sheets of our interest  can be about 1/20 (Messal et al., 2019): small 
enough to model the object as a thin structure, but not small enough  to 
neglect strains across the thickness. We study this mechanical system 
elaborating a mathematical recently developed by some of us (Fa-
vata et al., 2022), settled on the large-strain framework and possible 
thickness distension.  This theoretical framework allows us to delve 
into the transverse thickening of the epithelium that is pivotal in the 
development of these lesions (Messal et al., 2019).

After the statement of a suitable 2D-averaged kinematics, we assume 
an energy functional quadratic in the longitudinal strain and linear in 
the surface strain. Performing its variation, we get the Euler–Lagrange 
equations that are then numerically integrated. At variance of the 
total number of cells and imbalance of the surface tension, the results 
capture a wide spectrum of possible equilibria, a scenario richer than 
the one predicted in simpler linear frameworks.

2. The mathematical model

We model an epithelial monolayer duct as a closed two-dimensional 
slender body. Utilizing a kinematic Ansatz drawn from nonlinear rod 
theories that allow for thickness extension, by a suitable integration 
we condense the transverse features into a one-dimensional model. The 
rod is endowed with a bulk and a surface energy on the apical and 
basal sides. The two energy terms are inherently competing: while the 
former promotes the retention of the undeformed configuration, the 
latter prompts bending when there is an imbalance between the apical 
and basal tensions. The equilibrium configurations are determined by 
the interplay of the previously mentioned energetic terms and general-
izes (Favata et al., 2022,b) by incorporating the initial curvature of the 
rod.
2 
2.1. Kinematics

We work in two space dimensions, under the assumption of plane 
strain. Since we are interested in tubular epithelial tissues, we conve-
niently choose as reference configuration ℛ a circular strip of thick-
ness ℎ, possibly position-dependent, whose midline is an arc of circum-
ference of length 𝓁  and radius 𝑅, with ℎ∕𝑅 ≪ 1. We assume that the 
ring lies on a plane spanned by two orthonormal vectors 𝒆1 and 𝒆2. We 
also define 𝒆3 ∶= 𝒆1 × 𝒆2. The material points of the body are labeled 
using the region

ℬ =
{

(𝑥1, 𝑥2) ∶ 𝑥1 ∈ (0,𝓁), −
ℎ(𝑥1)
2

< 𝑥2 <
ℎ(𝑥1)
2

}

.

We parametrize the reference configuration through the mapping 𝒈0 ∶
ℬ → ℛ defined by 
𝒈0 (𝒙) = 𝒓0

(

𝑥1
)

+ 𝑥2𝒅0
(

𝑥1
)

, (1)

where

𝒓0(𝑥1) = 𝑅 cos(𝑥1∕𝑅)𝒆1 + 𝑅 sin(𝑥1∕𝑅)𝒆2 and 𝒅0(𝑥1) = −𝒓0(𝑥1)∕𝑅,

see Fig.  1.
The gradient of 𝒈0 at the point 𝒙 of ℬ is 

∇𝒈0 =
(

1 −
𝑥2
𝑅

)

𝒓′0 ⊗ 𝒆1 + 𝒅0 ⊗ 𝒆2, (2)

since 𝒅′
0 = −𝒓′0∕𝑅. The intermediate configuration ℛ is introduced for 

energetic purposes that are discussed below. 
We parametrize the deformed configuration 𝒟  of the ring through 

a mapping 𝒈 ∶ ℬ → 𝒟  of the form: 
𝒈(𝒙) = 𝒓(𝑥1) + 𝑥2𝒅(𝑥1). (3)

The parametric curve 𝑥1 ↦ 𝒓(𝑥1) describes the deformed configuration 
of the midline of the ring. The orientation and the norm of 𝒅(𝑥1) define, 
respectively, the orientation and the stretch of the transversal fiber 𝑥1. 
To describe a closed regular ring, we assume 𝒓(0) = 𝒓(𝓁), 𝒓′(0) = 𝒓′(𝓁), 
and 𝒅(0) = 𝒅(𝓁). We require that 𝒅 be perpendicular to 𝒓′. Accordingly, 
when introducing the local orthonormal basis 

𝒂1 =
𝒓′
|𝒓′|

,  and 𝒂2 = 𝒆3 × 𝒂1, (4)

we can define the midline longitudinal stretch 𝜆 and the transversal 
stretch 𝜇 through 
𝒓′ = 𝜆𝒂1, 𝒅 = 𝜇𝒂2. (5)

The vector 𝒂1(𝑥1) uniquely identifies an angle 𝜗(𝑥1) ∈ [0, 2𝜋) through 
𝒂1(𝑥1) = cos 𝜗(𝑥1)𝒆1 + sin 𝜗(𝑥1)𝒆2. (6)

In terms of 𝜗, we have 𝒂2(𝑥1) = − sin 𝜗(𝑥1)𝒆1 + cos 𝜗(𝑥1)𝒆2. The gradient 
of 𝒈 turns out to be 
∇𝒈 = 𝑮 = (𝜆 − 𝑥2𝜇𝜗

′)𝒂1 ⊗ 𝒆1 + 𝜇𝒂2 ⊗ 𝒆2 + 𝑥2𝜇
′𝒂2 ⊗ 𝒆1, (7)

since 𝒅′ = 𝜇′𝒂2 − 𝜇𝜗′𝒂1. The deformation of the ring is the map 
𝒇 ∶ ℛ → 𝒟  defined by 
𝒇 = 𝒈◦𝒈−10 ∶ ℛ → 𝒟 . (8)

By (2) and (7), the deformation gradient 𝑭 = ∇𝒇 at a point 𝒑 ∈ ℛ, is 

𝑭 = ∇𝒈(∇𝒈𝟎)−1 =
𝜆 − 𝑥2𝜇𝜗′

1 − 𝑥2∕𝑅
𝒂1 ⊗ 𝐫′0 +

𝑥2𝜇′

1 − 𝑥2∕𝑅
𝒂2 ⊗ 𝐫′0 + 𝜇𝒂2 ⊗ 𝒅0, (9)

where ∇𝒈 and ∇𝒈0 are evaluated at 𝒙 = 𝒈−10 (𝒑).
We next introduce the rotation tensor 

𝑹 = 𝒂1 ⊗ 𝒓′0 + 𝒂2 ⊗ 𝒅0, (10)

which maps the reference basis {𝒓′0,𝒅0} onto the current basis {𝒂1,𝒂2}. 
Since we have in mind to deduce a rod model, we choose as deforma-
tion measure 

𝑫 = 𝑹⊤𝑭 =
𝜆 − 𝑥2𝜇𝜗′ 𝒓′ ⊗ 𝒓′ +

𝑥2𝜇′
𝒅0 ⊗ 𝒓′ + 𝜇𝒅0 ⊗ 𝒅0, (11)
1 − 𝑥2∕𝑅 0 0 1 − 𝑥2∕𝑅 0
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Fig. 1. Geometry of the strip ℬ, the reference configuration ℛ, and the deformed configuration 𝒟 . For simplicity, the thickness ℎ is depicted as a constant.
Fig. 2. Cartoon illustrating (from left to right): the average axial stretch, the transverse stretch, the contribution to axial stretch due to the curvature 𝜗′, and the 
non-uniform shear deformation due to a non-uniform transverse stretch.
that represents the deformation gradient 𝑭  free from the rigid rotation 
of the axis. The first term in Eq.  (11) is the sum of two contributions: 
the average axial stretch 𝜆 minus the curvature of the longitudinal axis 
𝜗′, times the product 𝜇𝑥2, which is the distance from the axis in 
the deformed configuration. Both terms are divided by the Jacobian of 
𝒈0, accounting for the curvature of the reference configuration. The 
second term represents a non-uniform shear deformation associated to a 
possibly non-uniform transverse stretch. The last term on the right-hand 
side is the transverse stretch (see Fig.  2).

While defining 𝜖 = ℎ∕𝑅, we take into account that |𝑥2∕ℎ| ≤ 1 and 
we have 
𝜆 − 𝑥2𝜇𝜗′

1 − 𝑥2∕𝑅
=

𝑅(𝜆∕𝑅 − 𝜇𝜗′𝑥2∕𝑅)
1 − 𝑥2∕𝑅

= 𝑅
( 𝜆
𝑅

− 𝜇𝜗′
𝑥2
𝑅

)(

1 +
𝑥2
𝑅

+ 𝑜(𝜖)
)

= 𝑅
( 𝜆
𝑅

− 𝜇𝜗′
𝑥2
𝑅

+
𝑥2𝜆
𝑅2

)

+ 𝑜(𝜖) = 𝜆 −
(

𝜇𝜗′ − 𝜆
𝑅

)

𝑥2 + 𝑜(𝜖)

(12)

and 
𝑥2𝜇′

1 − 𝑥2∕𝑅
= 𝑥2𝜇

′ + 𝑜(𝜖). (13)

Thus, on keeping terms up to order 𝜖, we arrive at 
𝑫 ≃

(

𝜆 − (𝜇𝜗′ − 𝜆𝜅0)𝑥2
)

𝒓′0 ⊗ 𝒓′0 + 𝑥2𝜇
′𝒅0 ⊗ 𝒓′0 + 𝜇𝒅0 ⊗ 𝒅0, (14)

where we have set 𝜅0 = 1∕𝑅.

2.2. Strain energy and active surface tension

In our model, we consider two distinct energetic contributions: a
bulk energy, due to the mechanical (passive) reaction of the cytoplasm, 
and a surface energy, which incorporates the contractile (active) tension 
3 
arising from the network of actin filaments positioned beneath the cell 
membrane.

Strain energy. We can approximate the strain energy by performing a 
Taylor expansion up to the second order. This approximation yields: 

𝑊𝑏(𝑭 ) = 𝑊𝑏(𝑫) ≃ 1
2
𝐷2𝑊𝑏(𝑰)[sym(𝑫 − 𝑰), sym(𝑫 − 𝑰)]. (15)

where 𝐷 denotes the Fréchet derivative of the energy functional.  The 
approximation (15) assumes that the circular configuration ℛ (𝜆 = 1, 
𝜇 = 1, 𝜃′ = 𝜅0) is stress free.

The assumption that the bulk energy is isotropic entails that there 
exist constants 𝛼1 and 𝛼2 (the Lamé moduli) such that
1
2
𝐷2𝑊𝑏(𝑰)[sym(𝑫 − 𝑰), sym(𝑫 − 𝑰)] = 𝛼1| sym(𝑫 − 𝑰)|2 + 𝛼2(tr(𝑫 − 𝑰))2.

Hereafter, we assume that the two material parameters 𝛼1 and 𝛼2 may 
vary with 𝑥1, and remain positive and uniformly bounded away from 
zero. The bulk strain energy per unit length along the direction 𝑥1 is

𝑤𝑏(𝑥1) = ∫

+ℎ(𝑥1)∕2

−ℎ(𝑥1)∕2
𝑊𝑏(𝑫(𝑥1, 𝑥2))d𝑥2 = 𝑤̂𝑏(𝜆, 𝜇, 𝜇′, 𝜗′),

where
𝑤̂𝑏

(

𝜆, 𝜇, 𝜇′, 𝜗′
)

= ℎ
[

𝛼1
(

𝜆2 + 𝜇2)+ 𝛼2(𝜆 + 𝜇)2 − 2
(

𝛼1 + 2𝛼2
)

(𝜆 + 𝜇)
]

+ ℎ3

12

[

𝛼1

(

(

𝜇𝜗′ − 𝜆𝜅0
)2 +

𝜇′2

2

)

+ 𝛼2
(

𝜇𝜗′ − 𝜆𝜅0
)2

]

,

up to an additive constant.
Surface energy. Most of the actomyosin material is located at the 
boundary of the cells that form the epithelial duct and it is therefore a 
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common approach, both in continuum and discrete models, to adopt a 
surface energy proportional to the length of the boundary (Krajnc et al., 
2013; Haas and Goldstein, 2019; Favata et al., 2022,b). We consider a 
fiber material parallel to 𝒆1. The deformation transforms this fiber into
𝑮𝒆1 =

(

𝜆 − 𝑥2𝜇𝜗
′)𝒂1 + 𝑥2𝜇

′𝒂2.

Accordingly, the specific elongation of the generic fiber is 
|

|

𝑮𝒆1|| =
√

(

𝜆 − 𝑥2𝜇𝜗′
)2 +

(

𝑥2𝜇′
)2 = 𝜆 − 𝑥2𝜇𝜗

′ + 𝑜(𝜖). (16)

Therefore, discarding terms of order higher than 𝜖, we obtain 
|𝑮𝒆1| ≃ 𝜆 − 𝑥2𝜇𝜗

′. (17)

The surface energy is taken proportional to the length of the apical 
and basal fibers, represented as 𝑥2 = ∓ℎ∕2, respectively. By denoting 
with 𝜎𝑎 and 𝜎𝑏 the tension of the apical and basal fibers, respectively, 
Eq. (17) entails the definition of surface energy per unit length in the 
following manner: 
𝑤𝑠

(

𝜆, 𝜇, 𝜗′
)

= 𝜎𝑎
(

𝜆 − ℎ
2
𝜇𝜗′

)

+ 𝜎𝑏
(

𝜆 + ℎ
2
𝜇𝜗′

)

. (18)

We assume that 𝜎𝑎 and 𝜎𝑏 may depend on the length coordinate 𝑥1.
By adding the bulk and surface energies we obtain the total strain 

energy: 

ℰ = ∫

𝓁

0

(

𝑤𝑏(𝜆, 𝜇, 𝜇′, 𝜗′) +𝑤𝑠(𝜆, 𝜇, 𝜗′)
)

d𝑥1

= ∫

𝓁

0
ℎ
(

𝛼1 (𝜆 − 1)2 + 𝛼1(𝜇 − 1)2 + 𝛼2(𝜆 + 𝜇 − 2)2
)

d𝑥1

+ ∫

𝓁

0

ℎ3

12

(

(

𝛼1 + 𝛼2
) (

𝜇𝜗′ − 𝜆𝜅0
)2 + 𝛼1

𝜇′2

2

)

d𝑥1

+ ∫

𝓁

0
𝜎𝑎

(

𝜆 − ℎ
2
𝜇𝜗′

)

d𝑥1 + ∫

𝓁

0
𝜎𝑏

(

𝜆 + ℎ
2
𝜇𝜗′

)

d𝑥1.

(19)

In the representation of the energy (19) all the material parameters 
might in principle depend on the curvilinear coordinate.

Remark 1. The surface contribution in the energy is actually due to 
the active stress generated by the actomyosin cables at the boundary 
of the cells. Physically speaking, it is not a strain energy: we are 
simply using the mathematical formalism to include the active stress 
as the derivative of a term linear in the stretch. In other words, the 
surface term is not hyperelastic, there is no energy conservation and 
its inclusion in the energy for pure mathematical convenience (Ambrosi 
and Pezzuto, 2012).
Transverse incompressibility. Cells within the epithelial monolayer,
which are fluid-filled, exhibit an incompressible nature, as emphasized 
by previous studies (Krajnc et al., 2013; Haas and Goldstein, 2019). 
Given that each cell extends across the entire thickness of the layer, 
it is reasonable to enforce an average incompressibility constraint 
throughout the thickness: 

1
ℎ(𝑥1) ∫

+ℎ(𝑥1)∕2

−ℎ(𝑥1)∕2
det 𝑭 d𝑥2 = 1, (20)

where 
det 𝑭 = 𝜇

(

𝜆 − (𝜇𝜗′ − 𝜆𝜅0)𝑥2
)

. (21)

By combining (20) and (21) we obtain: 
𝜆𝜇 = 1. (22)

Accordingly, we can take 𝜗 and 𝜇 as independent variables for the 
energy and, using the condition (22), write 

ℰ = ∫

𝓁

0
ℎ

[

𝛼1

(

1
𝜇
− 1

)2
+ 𝛼1 (𝜇 − 1)2 + 𝛼2

(

1
𝜇
+ 𝜇 − 2

)2
]

d𝑥

+ ∫

𝓁

0

ℎ3

12

[

(𝛼1 + 𝛼2)
(

𝜇𝜗′ −
𝜅0
𝜇

)2
+ 𝛼1

𝜇′2

2

]

d𝑥

+
𝓁

(𝜎𝑎 + 𝜎𝑏)
1 d𝑥 +

𝓁 ℎ (𝜎𝑏 − 𝜎𝑎)𝜇𝜗′d𝑥,

(23)
∫0 𝜇 ∫0 2

4 
up to an additive constant. In the last equation we have set 𝑥 = 𝑥1. We 
will keep this notation until the end of the paper.

3. Euler equations, interface and boundary conditions

The presence of transformed cells in a ductal epithelium introduces 
not only inhomogeneities into the problem, but may also cause jump 
discontinuities in the wall thickness ℎ, the elastic moduli (𝛼1, 𝛼2), and 
the surface active tensions (𝜎𝑎, 𝜎𝑏). These discontinuities, in turn, induce 
jumps in the kinematical variables that describe the system.

Hereafter, we assume ℎ, (𝛼1, 𝛼2), and (𝜎𝑎, 𝜎𝑏) to be piece-wise smooth.
The jump of any quantity will be denoted by [[⋅]], for instance, the jump 
of ℎ at 𝑥 = 𝑠 is [[ℎ]] (𝑠) = ℎ(𝑠+) − ℎ(𝑠−).

To account for the jump of material parameters across the wild-
transformed interface, it is convenient to write the balance equations 
in dimensional form. We consider the augmented functional 

ℒ = ℰ − ∫

𝓁

0
𝑵 ⋅

(

𝒓′ − 1
𝜇
𝒂1

)

d𝑥, (24)

where 𝑵 is the Lagrange multiplier that enforces the constraint (5)1. 
The fields 𝒓, 𝜗, and 𝜇 are our kinematically independent variables, that 
we assume smooth in 𝑠.

In our theory, 𝜇, 𝜇′, and 𝜃′ play the role of strain measures and are 
indeed invariant under rigid motions. They are related to the position 𝒓
by the compatibility equationi (24), which we enforce weakly through 
the Lagrange multiplier 𝑵 . This approach is quite common for Euler’s 
Elastica and for some of its variants, such as thin ribbons (Barsotti 
et al., 2022; Domokos and Healey, 2005; Moore and Healey, 2019). 
From a numerical point of view, such a weak enforcement reduces the 
degree of differentiability required for the solution (see the discussion 
in Section 5). Furthermore, this weak enforcement has a clear physical 
implication: it naturally yields the Euler–Lagrange equation 𝑵 ′ = 𝟎, 
thus identifying the multiplier 𝑵 with the (constant) internal reaction 
that preserves compatibility. Alternatively, one may incorporate the 
constraint directly into the energy functional, by expressing the energy 
in terms of the unknown 𝒓, as done in Singh and Hanna (2018). In the 
present case, however, the assumption of extensible rod would result 
into an awkward expression with intricate boundary conditions. 

We exploit the symmetry of the problem restricting the numerical 
approximation to half of the rod and we now use the symbol 𝓁 to denote 
half the length of the ring. We impose the following essential conditions

𝒓(0) = 𝟎, 𝑟𝑥(𝓁) = 0, (25a)

𝜗(0) = 0, 𝜗(𝓁) = 𝜋, (25b)

[[𝒓]] = 0, [[𝜗]] = 0, [[𝜇ℎ]] = 0, (25c)

where 𝑟𝑥 denotes the first component of 𝒓. The conditions in (25a) 
prescribe the position of the endpoints of the rod; in particular, the 
second condition in (25a) follows from the assumed symmetry with 
respect to the axis 𝑥 = 0. Analogous considerations apply to (25b). 
The conditions in (25c) enforce the continuity of the position, the 
smoothness of the midline of the rod, and the continuity of the top 
and bottom boundaries, respectively.

Performing the first variation of the augmented functional (24), we 
get the following system of ordinary differential equations, which hold 
in the regions where all the fields are smooth: 
[

ℎ3

12
𝛼1𝜇

′
]′

− 2ℎ𝛼1
1
𝜇2

(

1 − 1
𝜇

)

− 2ℎ𝛼1 (𝜇 − 1)−2ℎ𝛼2

(

1
𝜇
+ 𝜇 − 2

)(

1 − 1
𝜇2

)

(26a)

− ℎ3

6
(𝛼1 + 𝛼2)

(

𝜇𝜗′ −
𝜅0
𝜇

)(

𝜗′ +
𝜅0
𝜇2

)

+
𝜎𝑎 + 𝜎𝑏

𝜇2
− ℎ

2
(𝜎𝑏 − 𝜎𝑎)𝜗′

+
𝑁𝑥 cos 𝜗 +

𝑁𝑦 sin 𝜗 = 0. (26b)

𝜇2 𝜇2
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[

ℎ3

6
(𝛼1 + 𝛼2)

(

𝜇𝜗′ −
𝜅0
𝜇

)

𝜇
]′

+
[ℎ
2
(𝜎𝑏 − 𝜎𝑎)𝜇

]′
+

𝑁𝑥
𝜇

sin 𝜗

−
𝑁𝑦

𝜇
cos 𝜗 = 0, (26c)

𝑵 ′ = 𝟎, (26d)

𝜇𝒓′ = cos 𝜗𝒆1 + sin 𝜗𝒆2, (26e)

where 𝑁𝑥 and 𝑁𝑦 denote the first and second components of 𝑵 , 
respectively.  Eq. (26a) accounts for the balance of linear momentum in 
the transverse direction: the elastic strain is balanced by the sum of the 
surface tension plus two additional terms that involve the longitudinal 
reactive force. Eq. (26b) is the balance of bending moments, which 
involves two components, one purely elastic, associated to the bending 
stiffness and another active one, which is proportional, through the 
thickness, to the difference between surface tensions. More physical 
insight is provided in the Appendix, where the equations are discussed 
in non dimensional form after suitable scaling.

In addition, we obtain three natural conditions and, at the interface, 
three jump conditions: 
[[

ℎ3

6
(𝛼1 + 𝛼2)𝜇

(

𝜇𝜗′ −
𝜅0
𝜇

)

+ ℎ
2
(𝜎𝑏 − 𝜎𝑎)𝜇

]]

= 0, (27a)

𝜇′(0) = 0,
[[

ℎ3𝛼1𝜇
′]] = 0, 𝜇′(𝓁) = 0, (27b)

[[𝑵]] = 𝟎, 𝑁𝑦(𝓁) = 0. (27c)

 In summary, in every region where the fields are smooth, the mathe-
matical problem reduces to two pairs of second-order partial differen-
tial equations and two pairs of first-order differential equations (26), 
complemented by the continuity and boundary conditions (25) and 
(27).

Remark 2. An insight of Eq.  (26c) together with the interface condition 
(27a) reveals the strong analogy between the roles of the natural 
curvature 𝜅0 and the apico-basal difference in surface tension: they are 
both bending couples. In principle 𝜅0 could be measured independently: 
the opening angle of a ring of inactive (dead) cells would provide the 
natural, relaxed, curvature. In practice this information is not available 
and for very soft matter the mechanical role of 𝜅0 is expected to be 
negligible versus the surface tension.

4. Material parameters

Since our main interest is to investigate the role of inhomogeneities 
in the morphodynamics of the section of a tubular duct, we now 
consider a ring divided in two portions: one where there are wild-type 
(healthy) cells and the other composed by transformed (malignant) 
cells (see Fig.  1).

To maintain a fair degree of generality in our formulation, we allow 
each part of the duct to have its own material parameters, using the 
underscores 𝑤 and 𝑡, to distinguish between wild-type and transformed 
domains, respectively (see Fig.  3).

Concerning the elastic moduli, the available data across the liter-
ature consist of estimates of the Young’s modulus. We interpret the 
available data as referring to wild-type cells, and we list their range 
in the first row of Table  1. The Young’s moduli of wild-type and 
transformed cells need not coincide; in particular, transformed cells are 
reported to be softer than their healthy counterparts (see Favata et al. 
(2022b) and references therein). Accordingly, we introduce the stiffness 
contrast:

𝐾𝐸 =
𝐸𝑤
𝐸𝑡

,

where 𝐸𝑤 and 𝐸𝑡 denote the Young’s moduli of wild-type and trans-
formed cells, respectively. The range of the stiffness contrast is reported 
in the second row of Table  1. We make the simplifying assumption that 
𝜈 = 𝜈 , and we report their range of values in the third line of Table  1. 
𝑡 𝑤

5 
Once the values of the Young’s moduli and Poisson’s ratios for wild-type 
and transformed cells are assigned, the corresponding Lamé moduli 𝛼1
and 𝛼2 can be written as (see Favata et al. (2022b)): 

𝛼1 =
𝐸

2(1 + 𝜈)
, 𝛼2 =

𝐸𝜈
2(1 + 𝜈)(1 − 2𝜈)

. (28)

As to the available measurements of surface tension, we interpret them 
as referring to the apical surface tension of wild-type cells. The range 
of values from the literature is reported in the last line of Table  1

Basal surface tension in wild-type cells, as well as the apical and 
basal surface tensions in transformed cells can be estimated on the basis 
of the experimental measures pMLC2 (phosphorylated Myosin Light 
Chain) intensity levels (Elliott et al., 2015; Goeckeler and Wysolmerski, 
1995) of fluorescence intensity, since surface tension is the result of the 
contractive activity of the cell cortex, which correlates with pMLC2. 
Following Clark et al. (2014a), Messal et al. (2019), we assume a 
proportionality relation between tension and pMLC2: 
𝜎 = pMLC2 ×𝐾𝑠𝑝. (29)

for apical and basal surface tension in wild-type and transformed cells. 
The value of the constant 𝐾𝑠𝑝 can be obtained from the knowledge of 
𝜎𝑎𝑤 and pMLC2𝑎𝑤, namely 𝐾𝑠𝑝 = 𝜎𝑎𝑤∕pMLC2𝑎𝑤. Values of pMLC2 for 
apical and basal surface of wild-type and transformed cells are obtained 
from Messal et al. (2019, Fig 2j), and listed in Table  2.

From the above values we can infer also the other values of 𝜎
required in the model, using (29). Results are shown in Table  3.

As in Messal et al. (2019), we assume that wild-type and trans-
formed cells have the same length 𝐿. Then the total length 𝓁 of the 
monolayer depends on the number of cells 𝑁 = 𝑁𝑤 + 𝑁𝑡, where 𝑁𝑤
is the number of wild-type cells and 𝑁𝑡 is the number of transformed 
cells, and on 𝐿 through the relation 𝓁 = 𝑁𝐿. The reference values are 
shown in Table  4.

The cell length and height have been inferred from Messal et al. 
(2019, Fig. 1f). The range for the number 𝑁𝑤 of wild-type cells is 
taken from Messal et al. (2019, Supplementary, Table 1). The number 
of 𝑁𝑡 of transformed cells per cross-section is inferred from the data 
in Messal et al. (2019, Supplementary material, p. 5), which report total 
clone sizes at 10 and 21 days after the first transformed cell begins 
to divide. These numbers are 18 and 57, respectively. Assuming that 
the cells are arranged in a square lattice covering the duct wall, the 
number of transformed cells in a cross-sectional ring can be estimated 
as the square root of this number. This yields approximately 𝑁𝑡 = 4
and 𝑁𝑡 = 8 transformed cells per circumferential ring, corresponding, 
respectively to 10 and 21 days of lesion development.  As already 
observed in Remark 2 the natural curvatures of the wild-type and 
transformed tissues are not easily measurable. For this reason, we 
assume 𝜅0𝑤 = 𝜅0𝑡 = 0.

5. Numerical results

Estimates of the Young’s modulus 𝐸𝑤 and the apical surface tension 
𝜎𝑎𝑤 obtained from the literature span wide ranges (see Table  1). This 
motivates the use of parametric sweeps to explore the influence of these 
quantities on the equilibrium morphology.

For the problem at hand, since we are studying equilibria, the fun-
damental dimensions are length and energy. We can therefore perform 
a change of scale for the corresponding units in such a way that both 
the Young’s modulus and the height of the cells are rescaled to 1. As a 
result of this change of scale, the numerical value of the surface tension 
becomes 
𝜎̄𝑎𝑤 =

𝜎𝑎𝑤
𝐸𝑤ℎ𝑤

, (30)

where ℎ𝑤 is the reference thickness of the wild-type cells. Consequently, 
it is sufficient to perform a parametric sweep over 𝜎̄𝑎𝑤 alone, rather 
than varying 𝐸  and 𝜎  independently. For the physical parameters 
𝑤 𝑎𝑤



D. Ambrosi et al. European Journal of Mechanics / A Solids 117 (2026) 105984 
Fig. 3. Left: Cartoon of a duct containing wild-type cells (blue) and transformed cells (orange). Right: geometric representation of the continuum model. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 1
Reference values for basic bulk and surface parameters.
 Parameter Symbol Range Source  
 Young’s modulus of wild-type cell 𝐸𝑤 2–100 kPa Cartagena-Rivera et al. (2017), Song and Janmey (2022) 
 Stiffness contrast between wild-type and transformed cells 𝐾𝐸 1–2 Favata et al. (2022b)  
 Poisson’s ratio (wild-type and transformed) 𝜈 0.45–0.49 Roan et al. (2015)  
 Surface tension apical, wild-type 𝜎𝑎𝑤 0.1–2.2 nN/μm Cartagena-Rivera et al. (2017), Clark et al. (2014a)  
Table 2
Values of pMLC2 intensity (source (Messal et al., 2019)).
 Parameter Symbol Range  
 pMLC2 apical, wild-type pMLC2aw 2.5–9.0 
 pMLC2 basal, wild-type pMLC2bw 0.5–3.5 
 pMLC2 apical, transformed pMLC2a t 2.0–5.0 
 pMLC2 basal, transformed pMLC2bt 2.0–5.5 

Table 3
Derived parameters from Eq. (29).
 Parameter Symbol Range  
 Surface tension basal, wild-type 𝜎𝑏𝑤 0.02–0.8 nN/μm 
 Surface tension apical, transformed 𝜎𝑎𝑡 0.08–1.1 nN/μm 
 Surface tension basal, transformed 𝜎𝑏𝑡 0.08–1.2 nN/μm 

Table 4
Geometrical parameters (source (Messal et al., 2019)).
 Parameter Symbol Values/Range 
 Cell length (wild-type and transformed) 𝐿 7.0 μm  
 Cell height, wild-type ℎ𝑤 6.2 μm  
 Ratio between ℎ𝑡 and ℎ𝑤 𝐾ℎ 1–1.5  
 Circumferential number of wild-type cells 𝑁𝑤 6–50  
 Circumferential number of transformed cells 𝑁𝑡 4, 8  

that are specified only in a range of values, we adopt the following 
reference values for the parameters related to

𝜈ref = 0.47, pMLC2ref𝑎𝑤 = 5.8, pMLC2ref𝑏𝑤 = 2.0, pMLC2ref𝑎𝑡 = 3.5,

pMLC2ref𝑏𝑡 = 3.5. (31)

 Moreover, we assume, 𝐾 ref
𝐸 = 1.0 and 𝐾 ref

ℎ = 1.0 as reference values 
for, respectively, the stiffness contrast and the ratio between ℎ𝑡 and ℎ𝑤, 
respectively.

The Euler–Lagrange equations (26) with boundary and interface 
conditions (25) and (27) are solved numerically in MATLAB using the 
function bvp4c: equations are rewritten as a system of first order 
6 
ODE’s and they are numerically solved by a finite difference method im-
plementing shooting to enforce the right endpoint boundary conditions. 
The convergence of the numerical method is obtained by iteratively 
increasing the inhomogeneity of the ring, starting from the trivial 
(circular, homogeneous) case until the desired solution is reached. 
Since the formulation involves only first derivatives we can use low-
order methods. In this particular case we are taking advantage of the 
fact that the morphological change is not an abrupt transition. 
The effect of size. We begin by investigating the role of the number of 
wild-type cells. To this end, we let the number of wild-type cells 𝑁𝑤
vary in the range 10–50, and we explore values of the non-dimensional 
apical surface tension 𝜎̄𝑎𝑤 in the range 0.02–0.04. Simulations have 
been carried out for two representative cases: 𝑁𝑡 = 4 and 𝑁𝑡 = 8
transformed cells. The resulting equilibrium configurations are shown 
in Fig.  4.

The figure shows the theoretically predicted shapes: ducts with 
smaller diameter remain convex, while ducts with larger diameter 
exhibit an inward bulging (endophytic growth). The transition to en-
dophytic morphology is observed as 𝑁𝑤 becomes larger and as 𝜎𝑎𝑤
increases. The results corroborate the hypothesis that the morphology 
of a lesion within a duct is heavily influenced by the diameter of the 
duct itself. Fig.  5 shows the detail of the configuration for 𝑁𝑤 = 4 and 
𝑁𝑡 = 8.

The smaller becomes the duct, the higher the active bending mo-
ment required to deform it: this provides an intuitive explanation for 
the tendency of smaller ducts to remain convex. It is in agreement with 
the observation, made in the introduction, that the ratio between bend-
ing stiffness and active moment provides a length-scale.  It is also to be 
remarked that larger/smaller flexibility are here only of geometrical 
nature, being related to the length of the rod: it is not necessary to 
invoke inhomogeneity in the material stiffness and thickness.

These theoretical findings confirm a size-dependent mechanism of 
morphological regulation in epithelial ducts, potentially relevant in the 
early detection and characterization of oncogenic transformations in 
tubular epithelia.

Plots of the angle 𝜗(𝑥) versus the curvilinear coordinate is reported 
in Fig.  6a, illustrating the induced bending for both 𝑁 = 4 and 𝑁 = 8
𝑡 𝑡
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(a) 

  
(b) 

 

Fig. 4. Equilibrium shapes of the epithelial ring with 𝑁𝑡 = 4 (left) and 𝑁𝑡 = 8 (right) transformed cells as a function of the number of wild-type cells (𝑥 axis) and 
the surface tension imbalance parameter (𝑦 axis). Each configuration is rescaled by the undeformed ring length so that all shapes are displayed with normalized 
dimensions.  The elements boxed in red are shown in detail in Fig.  5. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)
 
(a) 

  
(b) 

 

Fig. 5. Morphology of the tubular duct: corresponding to 𝑁𝑤 = 50 and 𝜎𝑎𝑤 = 2.2 nN/μm of Fig.  4a (left) and Fig.  4b (right). The dashed line is the midline of the 
rod: in the invagination region the larger bending, the change in curvature and the longitudinal stretch yield a transverse narrowing. For visualization purposes 
the thickness has been magnified by a scaled factor of 3.
transformed cells. In agreement with the interface conditions (25), (27), 
the angle 𝜗 is continuous across the material interface, but its derivative 
undergoes a jump due the jump surface tension difference. Increasing 
the number of transformed cells to 𝑁𝑡 = 8 results in a more pronounced 
peak for 𝜗(𝑥), indicating a higher bending; this is in agreement with the 
observed correlation between the size of the transformed region and the 
induced curvature.

A plot of the transverse stretch 𝜇(𝑥) is depicted in Fig.  6b for 
𝑁𝑡 = 4 and 𝑁𝑡 = 8 transformed cells. We observe that thickness 
changes can be of considerable extent especially in the transformed 
region. Based on experience with large-strain structural theories for soft 
materials (Lucantonio et al., 2017; Rubin and Tomassetti, 2025) (see in 
particular the discussion in Rubin and Tomassetti (2025, Sec. 5.3.4)) 
we argue that since the material is almost incompressible, a simpler 
theory without thickness extension would result in a limitation of axial 
extension, and in turn into an overestimate of the extensional stiffness 
of the tissue.

It is also interesting to observe that the curvatures in the two regions 
(wild-type and transformed) which are given by the slopes of the graphs 
of 𝜗(𝑥), are essentially constant. On the other hand, the corresponding 
curves are not circles because the axial stretch 𝜆 = 1∕𝜇 is not constant.
7 
The effect of heterogeneity. To assess the role of mechanical hetero-
geneity between wild-type and transformed regions, we let the apical 
and basal pMLC2 levels of the transformed region, denoted below by 
pMLC2𝑎∕𝑏 𝑡, depend on a transformation parameter 𝛿 through 

pMLC2𝑎∕𝑏 𝑡(𝛿) = pMLC2ref𝑎∕𝑏𝑤 + 𝛿
(

pMLC2ref𝑎∕𝑏 𝑡 − pMLC2ref𝑎∕𝑏𝑤

)

, (32)

where pMLC2𝑤,ref
𝑎∕𝑏  are the reference values of the apical and basal 

pMLC2 levels in wild-type cells, and pMLC2𝑡,ref𝑎∕𝑏  are the corresponding 
reference values for fully transformed cells. The transformation param-
eter 𝛿 modulates the contrast between mechanical properties of the 
two regions. In particular, for 𝛿 = 0 the epithelium is mechanically 
homogeneous, while for 𝛿 = 1 it exhibits maximum heterogeneity. In 
our simulations, we observed that values of 𝛿 smaller than 0.4 result 
in very small deviations from the circular shape. Therefore, we only 
show the results of our computations in the range 𝛿 ∈ [0.4, 1]. As 
in previous figures, the non-dimensional apical surface tension 𝜎̄𝑎𝑤
defined in (30) is varied in the range 0.04–0.2. The number of wild-type 
and transformed cells are taken, respectively, as 𝑁𝑤 = 30 and 𝑁𝑡 = 6.

The following observations can be made. First, for low values of 𝛿
the tissue is nearly homogeneous, and the ring remains close to circular, 
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(a) 

  
(b) 

 

Fig. 6. Rotation 𝜗 and thickness stretch 𝜇 for 𝑁𝑡 = 4 (thin lines) and 𝑁𝑡 = 8 (thick lines). Solid lines correspond to the wild-type region and dashed lines to the 
transformed region.
Fig. 7. Effect of the inhomogeneity, as measured by the transformation 
parameter 𝛿 in (32).

even at higher surface tension. As 𝛿 increases, the mechanical hetero-
geneity becomes more pronounced, and the ring exhibits increasing 
deformation, especially at higher 𝜎̄𝑎𝑤. The transition from convex to 
non-convex morphologies becomes evident as both parameters increase 
(see Fig.  7).

6. Final remarks

In this paper we have investigated the role of mechanical inho-
mogeneities in determining the morphology of a partially transformed 
epithelial duct. We have specifically addressed the role of the imbalance 
between apical and basal surface tension and the tensional difference 
that characterizes healthy versus tumor cells. The difference in cortical 
tension generates a torque that can be effectively represented in a 
mathematical model of a rod enriched with a degree of freedom in the 
transverse thickness, that has been derived in detail.

The mathematical model rewrites as a couple of nonlinear second 
order ordinary differential equations (in strain and curvature) with 
boundary and interface conditions. The equations have been numeri-
cally integrated and the results are discussed running the code with 
8 
physical parameters set in the range evinced from the biophysical 
literature.

The numerical simulations reproduce the experimental evidence 
that the lesion morphology is strongly related to size (the number of 
cells), with large ducts developing invagination, as opposed to small 
ducts. The amount of strain which emerges from these simulations 
confirms the necessity of employing a model that accounts for thickness 
change, in order not to overestimate the stiffness of the tissue. Our 
results also show that the known inhomogeneity in surface tension that 
characterizes lesions is in itself sufficient to generate morphodynamics.
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Appendix. Non-dimensional analysis

Although we have found it convenient to work with dimensional 
quantities, in this appendix we propose a non-dimensionalized version 
of the energy functional and the resulting Euler–Lagrange equations. 
The goal is to make the relevant parameters in the physics of the prob-
lem more transparent. We assume that all the physical parameters in 
(23) are constant and do not depend on the curvilinear coordinate (the 
case when material parameters are piecewise-constant can be handled 
by considering separate problems for each part of the epithelial tissue, 
combined through appropriate continuity/jump conditions). We are 
therefore allowed to introduce the following dimensionless numbers:

𝜀 = ℎ
𝓁
, 𝜎̄𝑎 =

𝜎𝑎
𝐸ℎ

, 𝜎̄𝑏 =
𝜎𝑏
𝐸ℎ

, 𝜎 =
𝜎̄𝑎 + 𝜎̄𝑏

2
, 𝛾 =

𝜎̄𝑏 − 𝜎̄𝑎
2

𝓁
ℎ
. (33)

The dimensionless quantity 𝜀 = ℎ∕𝓁 ≪ 1 measures the slenderness of 
the rod. The parameters 𝜎̄𝑎 and 𝜎̄𝑏 are the apical and basal surface 
tensions normalized with respect to the characteristic longitudinal 
elastic stiffness per unit width 𝐸ℎ. Their arithmetic mean 𝜎 provides an 
effective measure of the average active tension acting on the apical and 
basal surfaces. The parameter 𝛾 quantifies the imbalance between basal 
and apical normalized tensions, amplified by the geometric factor 𝓁∕ℎ. 
In particular, 𝛾 = 0 corresponds to a perfectly balanced distribution 
of surface tensions, whereas large values of |𝛾| indicate a pronounced 
asymmetry, which can generate significant bending moments even 
when 𝜎̄𝑎 and 𝜎̄𝑏 are individually small.

Rescaling the longitudinal coordinate with 𝓁, and using the defini-
tions (28), the total energy can be written in non-dimensional form:

2(1 + 𝜈)
𝐸 𝓁2

ℰ =𝜀∫

1

0

[

(

1
𝜇
− 1

)2
+ (𝜇 − 1)2 + 𝜈

1 − 2𝜈

(

1
𝜇
+ 𝜇 − 2

)2
]

d𝑥

+ 𝜀3

12 ∫

1

0

[

1 + 𝜈
1 + 2𝜈

(

𝜇𝜗′ −
𝜅0
𝜇

)2
+

𝜇′2

2

]

d𝑥

+ 𝜀(1 + 𝜈) 𝜎 ∫

1

0

1
𝜇
d𝑥 + 2𝜀3(1 + 𝜈)𝛾 ∫

1

0
𝜇𝜗′d𝑥.

(34)

With a slight abuse of notation, we retain the same symbols for the 
dimensionless quantities, which are the only ones considered in this 
section. Inspection of Eq.  (34) clarifies the rationale for the distin-
guished scaling (33): both the strain energy and the total surface energy 
scale as 𝜀, whereas the bending energy scales as 𝜀3, mirroring the 
scaling of the surface–tension difference.

The first variation of the energy functional with respect to 𝜇 leads 
to

𝜀3
[

𝜇′′

12
− 1 + 𝜈

6(1 + 2𝜈)

(

𝜇𝜗′ −
𝜅0
𝜇

)(

𝜗′ +
𝜅0
𝜇2

)

− 2(1 + 𝜈)𝛾 𝜗′
]

− 𝜀
[

2
𝜇2 − 1
1 − 2𝜈

(

1 − 𝜈
𝜇3

+ 1
𝜇2

+ 1 − 𝜈
𝜇

)

− (1 + 𝜈) 𝜎
𝜇2

]

= 0, (35)

while the variation with respect to 𝜗 gives 
[

1
12

(

𝜇𝜗′ −
𝜅0
𝜇

)

𝜇 + (1 + 2𝜈)𝛾 𝜇
]′

= 0. (36)

Eq.  (35)  reveals  the  competition between bending and stretching, 
as indicated by the two groups of terms scaling with 𝜀3 and 𝜀, respec-
tively. In particular, the last of the terms scaling with 𝜀 represents the 
active surface tension that tends to stretch the rod; it is proportional to 
the normalized mean surface tension 𝜎. The second term scaling with 𝜀3
accounts for the coupling between bending and transverse stretching, 
independently of 𝜎. We also observe that the curvature of the rod 
enhances the transverse stretch when 𝜗′ > 𝜅0∕𝜇2, whereas it reduces it 
when 𝜗′ < 𝜅0∕𝜇2. We interpret this behavior as a variant of the Brazier 
effect (Antman, 1973, 2005; Podio-Guidugli, 1982).

Eq.  (36) represents a moment balance and does not exhibit distinct 
scalings in 𝜀. Indeed, the term enclosed in square brackets corresponds 
9 
to the normalized effective bending moment, which must remain con-
stant. It consists of two contributions: a bulk term, reflecting the 
coupled effect of transverse stretching 𝜇 and local curvature 𝜗′; if the 
rod were unable to change its thickness, this term would reduce to a 
moment proportional to 𝜗′ − 𝜅0, as expected in classical rod theories. 
The second contribution is an active moment, proportional to the 
imbalance 𝛾 between the normalized apical and basal surface tensions.

It is also worth noting that, if we keep only terms up to first order 
in 𝜀, Eq. (35) reduces to 

2
𝜇2 − 1
1 − 2𝜈

(

1 − 𝜈
𝜇3

+ 1
𝜇2

+ 1 − 𝜈
𝜇

)

− (1 + 𝜈) 𝜎
𝜇2

= 0, (37)

 which describes a balance between strain and surface tension, entirely 
decoupled from bending. Any continuous solution 𝜇(𝑠) of (37) must be 
constant (in particular, 𝜇(𝑠) = 1 is a solution for 𝜎 = 0). For these 
solutions, (36) reduces to 𝜗′′ = 0, that is, the rod has constant curvature. 
In this latter case, the effect of the surface-tension imbalance, measured 
by the parameter 𝛾 is only through the boundary conditions.

Data availability

No data was used for the research described in the article.
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