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We derive a continuum mechanical model to capture the morphological changes occurring at the pre-tumoral
stage of epithelial tissues. The mathematical model, derived from first principles, accounts for the competition
between the bulk elasticity of the epithelium and the surface tension of the apical and basal boundaries.
The variation of the energy functional yields the Euler-Lagrange equations to be numerically integrated. The
numerical results reproduce a variety of morphological shapes, from invagination to evagination, depending
on the ratio between bulk and surface energy at variance of the length of the section. In particular, using

parameters independently measured, we are able to reproduce experimental data reported for a ring partially

made of transformed cells.

1. Introduction

Epithelial tissues are thin, continuous, layers of cells with a small
amount of extracellular matrix. In the simplest case there is only a layer
of cells (a monolayer), connected to each other by molecular forces that
provide continuity to the tissue. Epithelial sheets can then undergo a
number of active (spontaneous) morphological transitions, orchestrated
by the actomyosin machinery, the inner cellular motor able to produce
active stress, mostly located at the periphery of the cells (Hannezo
et al., 2014; Vicente and Diz-Mufioz, 2023).

In this paper we are interested in epithelial tubular ducts: the tubule
is ideally a cylinder, produced by bending a cell monolayer up to
closure, when an internal (basal) and an external (apical) surface can be
devised. In its healthy state, the section of a tubular duct can therefore
be represented as a ring, characterized by a tensional state (a natural
curvature) generated by the cortical myosin activity (myosin belt).

The paper by Messal and co-authors (Messal et al., 2019) reports
three-dimensional imaging of pancreatic ducts subjected to oncogenic
transformation. The images show that the proliferation of malignant
cells is associated, at the organ level, with two types of neoplastic
morphological changes: exophytic and endophytic. Exophytic trans-
formations involve outward expansion from the duct (evagination),
while endophytic transformations manifest as growth inward into the
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duct (invagination). Crucially, the lesion morphology is observed to
depend on the size of the duct: small-radius samples show exophytic
growth, while larger ducts deform endophytically. Such a transition in
morphology takes place at a critical size of the duct, thus suggesting
that the phenomenon is induced by some characteristic length-scale:
since neoplastic transformations are accompanied by overproliferation,
one may argue that such scale could be likely be the size of the grown
tissue. Numerical simulations based on a three-dimensional vertex
model and analysis of an elastic ring model show that the morphology
of epithelial tumors is determined by an interplay between geometry
and the alteration of the apico-basal tension imbalance induced by
cytoskeletal changes. The authors conclude that “tension imbalance and
tissue curvature [are] fundamental determinants of epithelial tumorigene-
sis” (Messal et al., 2019). In particular, the intrinsic length-scale that
determines the critical size at which the transition is observed from exo-
to endo-phytic is the ratio between the bending rigidity (whose physical
dimensions are a force times an area) and the active bending moment
(force times length) resulting from the difference between apical and
basal tension times the width of the monolayer.

The mechanical models of epithelial sheets in the current litera-
ture are mostly based on thin shell theory: the aspect ratio of the
soft structure enforces the possibility to neglect the thickness of the
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tissue (Yin et al., 2021; Borja da Rocha et al., 2022). In a different
vein, the imbalance between apical and basal tension as a key factor
in epithelial morphology dates back to the pioneering work by Lewis
(1947), which emphasizes the critical role of contractile tension in the
surface layers of epithelial cells in driving biological invagination. Odell
and co-workers (Odell et al.,, 1981) elaborate this idea proposing a
model where epithelial folding is coordinated by propagating waves
of cell shape changes induced by contraction at the cell apex due to
actin. Similarly Jones and Chapman (2010) propose a continuum model
based on thin elastic shell theory with embedded, on one of the sides,
a family of contractile fibers. Related works (Krajnc and Ziherl, 2015)
confirm that internal tensions within a single-cell-thick epithelial tissue
can drive the formation of various morphological states.

While the large literature mentioned above emphasizes the im-
portance of apico-basal tension imbalance as a determining factor in
epithelial morphogenesis, the basal side of the epithelium is supported
by a basal membrane and by a substrate, the stroma: their combined
stiffness can have relevant mechanical effects. Several works focus on
the role of the substrate in soft material instabilities such as wrinkling
and periodic doubling. As an example, growing rods on an elastic
foundation exhibit such instabilities (Almet et al., 2018). In the specific
case of epithelial tissues, the recent work in Andrensek and Krajnc
(2025) emphasizes the role of the basal membrane and of the stroma for
an initially flat epithelium. All these examples, however, apply to flat
films on a substrate: a closed, curved duct is a fundamentally different
mechanical system. In particular, the ring’s own curvature increases its
overall geometric rigidity, which provides a significant restoring force
against local buckling. For example, it has been shown in Jia et al.
(2018) that intrinsic curvature delays buckling, and hence it is by itself
a stabilizing factor. Last, but not least, the morphological changes in
inhomogeneous ducts appear to be driven by smooth configurational
transitions, rather than instability.

In this paper, we explore the above illustrated morphogenetic mech-
anism for a quasi-2D duct model: we assume that the organ is long
enough to make the study of a transverse section physically significant.
The duct section is therefore a slender elastic body, represented as a
nonlinear rod with variable cross-section. The aspect ratio of epithelial
sheets of our interest can be about 1/20 (Messal et al., 2019): small
enough to model the object as a thin structure, but not small enough to
neglect strains across the thickness. We study this mechanical system
elaborating a mathematical recently developed by some of us (Fa-
vata et al., 2022), settled on the large-strain framework and possible
thickness distension. This theoretical framework allows us to delve
into the transverse thickening of the epithelium that is pivotal in the
development of these lesions (Messal et al., 2019).

After the statement of a suitable 2D-averaged kinematics, we assume
an energy functional quadratic in the longitudinal strain and linear in
the surface strain. Performing its variation, we get the Euler-Lagrange
equations that are then numerically integrated. At variance of the
total number of cells and imbalance of the surface tension, the results
capture a wide spectrum of possible equilibria, a scenario richer than
the one predicted in simpler linear frameworks.

2. The mathematical model

We model an epithelial monolayer duct as a closed two-dimensional
slender body. Utilizing a kinematic Ansatz drawn from nonlinear rod
theories that allow for thickness extension, by a suitable integration
we condense the transverse features into a one-dimensional model. The
rod is endowed with a bulk and a surface energy on the apical and
basal sides. The two energy terms are inherently competing: while the
former promotes the retention of the undeformed configuration, the
latter prompts bending when there is an imbalance between the apical
and basal tensions. The equilibrium configurations are determined by
the interplay of the previously mentioned energetic terms and general-
izes (Favata et al., 2022,b) by incorporating the initial curvature of the
rod.
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2.1. Kinematics

We work in two space dimensions, under the assumption of plane
strain. Since we are interested in tubular epithelial tissues, we conve-
niently choose as reference configuration % a circular strip of thick-
ness h, possibly position-dependent, whose midline is an arc of circum-
ference of length # and radius R, with 7/R < 1. We assume that the
ring lies on a plane spanned by two orthonormal vectors e, and e,. We
also define e; := e, X e,. The material points of the body are labeled
using the region

X2

B = {(xl,xz) L x, € (0.0), —h(;l) <x, < h(;‘) }

We parametrize the reference configuration through the mapping g, :
B — R defined by

8o (x) =rq (x) +xpdg (x1), @
where

ro(x;) = Rcos(x;/R)e; + Rsin(x;/R)e, and dy(x;) = —ry(x;)/R,

see Fig. 1.
The gradient of g, at the point x of & is
X
Vg0=(1—§2)r6®el+do®e2, (2)
since djy = —r(,/R. The intermediate configuration £ is introduced for

energetic purposes that are discussed below.
We parametrize the deformed configuration & of the ring through
a mapping g : # — D of the form:

&(x) =r(xp) + xpd(xy). 3)

The parametric curve x; ~ r(x,;) describes the deformed configuration
of the midline of the ring. The orientation and the norm of d(x,) define,
respectively, the orientation and the stretch of the transversal fiber x;.
To describe a closed regular ring, we assume r(0) = r(¢), r'(0) = r'(¢),
and d(0) = d(¢). We require that d be perpendicular to r’. Accordingly,
when introducing the local orthonormal basis

/

r
a,=—, and

, a, =ey;Xa, (€)]
7l 2 =e3Xa

we can define the midline longitudinal stretch A and the transversal
stretch y through

r=la,, d=ua,. %)
The vector a;(x,) uniquely identifies an angle 9(x,) € [0,2x) through
a;(x)) =cosI(x))e; +sinI(x,)e,. (6)

In terms of 9, we have a,(x;) = —sind(x,)e; + cos I(x,)e,. The gradient
of g turns out to be

Vg=G=(U—-xud)a, Qe +ua, e, +x,4'a, ey, )

since d = y'a, — uda,. The deformation of the ring is the map
[+ # > 2 defined by

f =goga| TR > D. (8)
By (2) and (7), the deformation gradient F = V f at a point p € &, is
A= xud Xou'
_ -1 _ 2 2
F—Vg(Vgo) = mal ®r6+ma2®r6+ﬂa2®do, 9

where Vg and Vg, are evaluated at x = gal(p).
We next introduce the rotation tensor

R=a,®ry+a,®d,, (10)

which maps the reference basis {ré, d,} onto the current basis {a;,a,}.

Since we have in mind to deduce a rod model, we choose as deforma-

tion measure

!/
XoH

A= x,ud
1-x,/R

D=R"F=
1-x,/R

r,@ry+ dy @ry+ udy ® dy, (€§)
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Fig. 1. Geometry of the strip &, the reference configuration %, and the deformed configuration &. For simplicity, the thickness 4 is depicted as a constant.
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Fig. 2. Cartoon illustrating (from left to right): the average axial stretch, the transverse stretch, the contribution to axial stretch due to the curvature §’, and the

non-uniform shear deformation due to a non-uniform transverse stretch.

that represents the deformation gradient F free from the rigid rotation
of the axis. The first term in Eq. (11) is the sum of two contributions:
the average axial stretch 2 minus the curvature of the longitudinal axis
9, times the product ux,, which is the distance from the axis in
the deformed configuration. Both terms are divided by the Jacobian of
8o, accounting for the curvature of the reference configuration. The
second term represents a non-uniform shear deformation associated to a
possibly non-uniform transverse stretch. The last term on the right-hand
side is the transverse stretch (see Fig. 2).

While defining ¢ = h/R, we take into account that |x,/A| < 1 and
we have

A=xud  R(A/R - u9'x,/R) p) | Xy X,
- =R(Z _puo —) 1+2
1-x,/R 1-x,/R (R "R ( +R+°(€))
_R(A g2 Rt (w2
- R(R '+ )+o(e)_/1 (;419 R) X, + 0(€)
12
and
x i ’
2 = . 13
T—x,/R X+ o(e) 13
Thus, on keeping terms up to order ¢, we arrive at
D = (A— (ud — ixg)xy)ry @ 1y + X4’ dy @ 1y + pdy @ dy, a4

where we have set x, = 1/R.
2.2. Strain energy and active surface tension
In our model, we consider two distinct energetic contributions: a

bulk energy, due to the mechanical (passive) reaction of the cytoplasm,
and a surface energy, which incorporates the contractile (active) tension

arising from the network of actin filaments positioned beneath the cell
membrane.

Strain energy. We can approximate the strain energy by performing a
Taylor expansion up to the second order. This approximation yields:

W,(F) = Wy(D) ~ %DZWb(I)[sym(D —I).sym(D — I). (15)

where D denotes the Fréchet derivative of the energy functional. The
approximation (15) assumes that the circular configuration % (4 =1,
u=1,0" =k is stress free.

The assumption that the bulk energy is isotropic entails that there
exist constants a; and «, (the Lamé moduli) such that

%DZVV,,(I)[sym(D —I),sym(D — I)] = ;| sym(D — I)|? + ay(tr(D — I)).

Hereafter, we assume that the two material parameters «; and a, may
vary with x;, and remain positive and uniformly bounded away from
zero. The bulk strain energy per unit length along the direction x, is

+h(x1)/2

wy(xy) = / W, (D(xy,x3))dx, = Wy(4, u, /4,9 19/),
—h(x1)/2

where

Dy (A’ 8') = h [y (24 1)+ ag(A+ 1) =2 (o) +20) (A + p)]

h3 ) ”/2
+ In [al <(/419’—/1K0) +7

2
+ (/419' - /11(0) ],
up to an additive constant.

Surface energy. Most of the actomyosin material is located at the
boundary of the cells that form the epithelial duct and it is therefore a
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common approach, both in continuum and discrete models, to adopt a
surface energy proportional to the length of the boundary (Krajnc et al.,
2013; Haas and Goldstein, 2019; Favata et al., 2022,b). We consider a
fiber material parallel to e;. The deformation transforms this fiber into

Gey = (A—xu8) a; + x,4 a,.
Accordingly, the specific elongation of the generic fiber is

1Gey| = \/ (4 - xpud) +

Therefore, discarding terms of order higher than ¢, we obtain

(xz;/)z =Ai- xz,u19' + o(e). (16)

|Ge| ~ A —x,ud. a7n

The surface energy is taken proportional to the length of the apical
and basal fibers, represented as x, = Fh/2, respectively. By denoting
with ¢, and o, the tension of the apical and basal fibers, respectively,
Eq. (17) entails the definition of surface energy per unit length in the
following manner:

w, (4w d) =0, (z—gﬂs’)wb (/1+§,419’). 18)

We assume that ¢, and ¢, may depend on the length coordinate x;.
By adding the bulk and surface energies we obtain the total strain
energy:

13
€ =/ (w0p(A, s 1’8" + w04(4, 1, 8"))dx
0
¢
=/ h(alu—1)2+a1(u—1)2+a2(/1+,4—2)2>dx1
0
4 h3 /2
+/ = ((0‘1 +ay) (/419'—11(0) +a1 )dxl
0
¢ ¢
_hy hy
+'/0 O'a(/l 2/419)dx1+/0 0',,(/1+ 2/419)dx1.

In the representation of the energy (19) all the material parameters
might in principle depend on the curvilinear coordinate.

19)

Remark 1. The surface contribution in the energy is actually due to
the active stress generated by the actomyosin cables at the boundary
of the cells. Physically speaking, it is not a strain energy: we are
simply using the mathematical formalism to include the active stress
as the derivative of a term linear in the stretch. In other words, the
surface term is not hyperelastic, there is no energy conservation and
its inclusion in the energy for pure mathematical convenience (Ambrosi
and Pezzuto, 2012).

Transverse incompressibility. Cells within the epithelial monolayer,
which are fluid-filled, exhibit an incompressible nature, as emphasized
by previous studies (Krajnc et al., 2013; Haas and Goldstein, 2019).
Given that each cell extends across the entire thickness of the layer,
it is reasonable to enforce an average incompressibility constraint
throughout the thickness:

+h(x1)/2
— det Fdx, =1, (20)
h(x;) [h(xl)/Z :
where
det F = p(4— (ud — Axg)x,). D

By combining (20) and (21) we obtain:
Au=1. (22)

Accordingly, we can take 9 and u as independent variables for the
energy and, using the condition (22), write

¢ 1 2 q 2
g:/ h[a1<——l> +061(M—1)2+a2<—+/4—2>]dx
0 H H
£ 43 12
+/ L [(al +ay) (1419/ - @> +a1 ] dx (23)
0 12 H 2

‘ 1 “h
+ / (6, +0p)—dx + / =(0, — o,)ud dx,
0 H 0o 2
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up to an additive constant. In the last equation we have set x = x,. We
will keep this notation until the end of the paper.

3. Euler equations, interface and boundary conditions

The presence of transformed cells in a ductal epithelium introduces
not only inhomogeneities into the problem, but may also cause jump
discontinuities in the wall thickness 4, the elastic moduli («,, @,), and
the surface active tensions (c,, 5;,). These discontinuities, in turn, induce
jumps in the kinematical variables that describe the system.

Hereafter, we assume 4, («a;, @), and (o,, 6},) to be piece-wise smooth.
The jump of any quantity will be denoted by [[-]], for instance, the jump
of h at x = s is [[h]](s) = h(sT) — h(s7)

To account for the jump of material parameters across the wild-
transformed interface, it is convenient to write the balance equations
in dimensional form. We consider the augmented functional

14
3:%-/ N-(r'—la1>dx, @4)
0 "

where N is the Lagrange multiplier that enforces the constraint (5);.
The fields r, 9, and u are our kinematically independent variables, that
we assume smooth in s.

In our theory, u, u’, and ¢’ play the role of strain measures and are
indeed invariant under rigid motions. They are related to the position r
by the compatibility equationi (24), which we enforce weakly through
the Lagrange multiplier N. This approach is quite common for Euler’s
Elastica and for some of its variants, such as thin ribbons (Barsotti
et al., 2022; Domokos and Healey, 2005; Moore and Healey, 2019).
From a numerical point of view, such a weak enforcement reduces the
degree of differentiability required for the solution (see the discussion
in Section 5). Furthermore, this weak enforcement has a clear physical
implication: it naturally yields the Euler-Lagrange equation N’ = 0,
thus identifying the multiplier N with the (constant) internal reaction
that preserves compatibility. Alternatively, one may incorporate the
constraint directly into the energy functional, by expressing the energy
in terms of the unknown r, as done in Singh and Hanna (2018). In the
present case, however, the assumption of extensible rod would result
into an awkward expression with intricate boundary conditions.

We exploit the symmetry of the problem restricting the numerical
approximation to half of the rod and we now use the symbol # to denote
half the length of the ring. We impose the following essential conditions

r(0)=0, r (@) =0, (25a)
9(0) =0, ) =, (25b)
[[r]l=0, (811 =0, [[un]] =0, (25¢)

where r, denotes the first component of r. The conditions in (25a)
prescribe the position of the endpoints of the rod; in particular, the
second condition in (25a) follows from the assumed symmetry with
respect to the axis x = 0. Analogous considerations apply to (25b).
The conditions in (25c) enforce the continuity of the position, the
smoothness of the midline of the rod, and the continuity of the top
and bottom boundaries, respectively.

Performing the first variation of the augmented functional (24), we
get the following system of ordinary differential equations, which hold
in the regions where all the fields are smooth:

o -2t (-

- 2ha, (M—l)—2ha2<%+y—2> (1—%) (262)
h3 oc,+0 h

- F(al + az) <,M19 - 7) <19, H2> + aMZ b_ E(O'b —GG)S,
N N

+ —Fcosd+ _2y sind = 0. (26b)
7 1z
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3 4 I N
[h—(al + ay) (/419' - @> M] + [ﬁ(ab - Ua)y] + —=sind
6 u 2 u
Ny
— —cos9=0, (260)
"

N' =0, (26d)

ur' = cos 9e; + sin Je,, (26€)

where N, and N, denote the first and second components of N,
respectively. Eq. (26a) accounts for the balance of linear momentum in
the transverse direction: the elastic strain is balanced by the sum of the
surface tension plus two additional terms that involve the longitudinal
reactive force. Eq. (26b) is the balance of bending moments, which
involves two components, one purely elastic, associated to the bending
stiffness and another active one, which is proportional, through the
thickness, to the difference between surface tensions. More physical
insight is provided in the Appendix, where the equations are discussed
in non dimensional form after suitable scaling.

In addition, we obtain three natural conditions and, at the interface,
three jump conditions:

3
H%(UH +ap)u <M19' - %) + g(ab — aa)y” =0, (27a)
WOy =0, [[RPau']]=0 w@&)=0, (27b)
[[N]]=0, N,(£)=0. (27¢)

In summary, in every region where the fields are smooth, the mathe-

matical problem reduces to two pairs of second-order partial differen-
tial equations and two pairs of first-order differential equations (26),
complemented by the continuity and boundary conditions (25) and
(27).

Remark 2. An insight of Eq. (26c¢) together with the interface condition
(27a) reveals the strong analogy between the roles of the natural
curvature k;, and the apico-basal difference in surface tension: they are
both bending couples. In principle x;, could be measured independently:
the opening angle of a ring of inactive (dead) cells would provide the
natural, relaxed, curvature. In practice this information is not available
and for very soft matter the mechanical role of x; is expected to be
negligible versus the surface tension.

4. Material parameters

Since our main interest is to investigate the role of inhomogeneities
in the morphodynamics of the section of a tubular duct, we now
consider a ring divided in two portions: one where there are wild-type
(healthy) cells and the other composed by transformed (malignant)
cells (see Fig. 1).

To maintain a fair degree of generality in our formulation, we allow
each part of the duct to have its own material parameters, using the
underscores ,, and ,, to distinguish between wild-type and transformed
domains, respectively (see Fig. 3).

Concerning the elastic moduli, the available data across the liter-
ature consist of estimates of the Young’s modulus. We interpret the
available data as referring to wild-type cells, and we list their range
in the first row of Table 1. The Young’s moduli of wild-type and
transformed cells need not coincide; in particular, transformed cells are
reported to be softer than their healthy counterparts (see Favata et al.
(2022b) and references therein). Accordingly, we introduce the stiffness
contrast:

where E,, and E, denote the Young’s moduli of wild-type and trans-
formed cells, respectively. The range of the stiffness contrast is reported
in the second row of Table 1. We make the simplifying assumption that
v; = v,,, and we report their range of values in the third line of Table 1.
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Once the values of the Young’s moduli and Poisson’s ratios for wild-type
and transformed cells are assigned, the corresponding Lamé moduli «;,
and a, can be written as (see Favata et al. (2022b)):

SR S M — L —
2(1 +v) 2(1 +v)(1 =2v)
As to the available measurements of surface tension, we interpret them
as referring to the apical surface tension of wild-type cells. The range
of values from the literature is reported in the last line of Table 1
Basal surface tension in wild-type cells, as well as the apical and
basal surface tensions in transformed cells can be estimated on the basis
of the experimental measures pMLC2 (phosphorylated Myosin Light
Chain) intensity levels (Elliott et al., 2015; Goeckeler and Wysolmerski,
1995) of fluorescence intensity, since surface tension is the result of the
contractive activity of the cell cortex, which correlates with pMLC2.
Following Clark et al. (2014a), Messal et al. (2019), we assume a
proportionality relation between tension and pMLC2:

(28)

6 =pMLC2 X K. (29)

for apical and basal surface tension in wild-type and transformed cells.
The value of the constant K, can be obtained from the knowledge of
64, and pMLC2,,, namely K, = o,,/pMLC2,,,. Values of pMLC2 for
apical and basal surface of wild-type and transformed cells are obtained
from Messal et al. (2019, Fig 2j), and listed in Table 2.

From the above values we can infer also the other values of ¢
required in the model, using (29). Results are shown in Table 3.

As in Messal et al. (2019), we assume that wild-type and trans-
formed cells have the same length L. Then the total length ¢ of the
monolayer depends on the number of cells N = N, + N,, where N,
is the number of wild-type cells and N, is the number of transformed
cells, and on L through the relation £ = N L. The reference values are
shown in Table 4.

The cell length and height have been inferred from Messal et al.
(2019, Fig. 1f). The range for the number N, of wild-type cells is
taken from Messal et al. (2019, Supplementary, Table 1). The number
of N, of transformed cells per cross-section is inferred from the data
in Messal et al. (2019, Supplementary material, p. 5), which report total
clone sizes at 10 and 21 days after the first transformed cell begins
to divide. These numbers are 18 and 57, respectively. Assuming that
the cells are arranged in a square lattice covering the duct wall, the
number of transformed cells in a cross-sectional ring can be estimated
as the square root of this number. This yields approximately N, = 4
and N, = 8 transformed cells per circumferential ring, corresponding,
respectively to 10 and 21 days of lesion development. As already
observed in Remark 2 the natural curvatures of the wild-type and
transformed tissues are not easily measurable. For this reason, we
assume k,,, = kg, = 0.

5. Numerical results

Estimates of the Young’s modulus E,, and the apical surface tension
6,4, Obtained from the literature span wide ranges (see Table 1). This
motivates the use of parametric sweeps to explore the influence of these
quantities on the equilibrium morphology.

For the problem at hand, since we are studying equilibria, the fun-
damental dimensions are length and energy. We can therefore perform
a change of scale for the corresponding units in such a way that both
the Young’s modulus and the height of the cells are rescaled to 1. As a
result of this change of scale, the numerical value of the surface tension
becomes

O

Cav =F (30)

where £, is the reference thickness of the wild-type cells. Consequently,
it is sufficient to perform a parametric sweep over &,, alone, rather
than varying E,, and o,, independently. For the physical parameters

aw
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Fig. 3. Left: Cartoon of a duct containing wild-type cells (blue) and transformed cells (orange). Right: geometric representation of the continuum model. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Reference values for basic bulk and surface parameters.

Parameter Symbol Range Source

Young’s modulus of wild-type cell E, 2-100 kPa Cartagena-Rivera et al. (2017), Song and Janmey (2022)

Stiffness contrast between wild-type and transformed cells Kg 1-2 Favata et al. (2022b)

Poisson’s ratio (wild-type and transformed) 0.45-0.49 Roan et al. (2015)

Surface tension apical, wild-type Cuw 0.1-2.2 nN/pm Cartagena-Rivera et al. (2017), Clark et al. (2014a)
Table 2 ODE’s and they are numerically solved by a finite difference method im-
Values of pMLC2 intensity (source (Messal et al., 2019)). plementing shooting to enforce the right endpoint boundary conditions.

Parameter Symbol Range The convergence of the numerical method is obtained by iteratively

PMLC2 apical, wild-type PMLC2, 2.5-9.0 increasing the inhomogeneity of the ring, starting from the trivial

pMLC2 basal, wild-type pMLC2,, 0.5-3.5 (circular, homogeneous) case until the desired solution is reached.

PMLC2 apical, transformed PMLC2,, 2.0-5.0 Since the formulation involves only first derivatives we can use low-

PMLC2 basal, transformed PMLC2,, 2055 order methods. In this particular case we are taking advantage of the

fact that the morphological change is not an abrupt transition.
;zzlveeg parameters from Eq. (29). Ti}e effect of size. We .begin by investigating the role ,Of the number of
wild-type cells. To this end, we let the number of wild-type cells N,

Parameter Symbol Range . . .

vary in the range 10-50, and we explore values of the non-dimensional

Surface tension basal, wild-type Ot 0.02-0.8 nN/um apical surface tension &,, in the range 0.02-0.04. Simulations have

Surface tension apical, transformed [ 0.08-1.1 nN/pm X h

Surface tension basal, transformed o 0.08-1.2 nN/pm been carried out for two representative cases: N, = 4 and N, = 8

transformed cells. The resulting equilibrium configurations are shown
in Fig. 4.
Table 4 The figure shows the theoretically predicted shapes: ducts with
Geometrical parameters (source (Messal et al., 2019)). smaller diameter remain convex, while ducts with larger diameter

Parameter Symbol Values/Range exhibit an inward bulging (endophytic growth). The transition to en-

Cell length (wild-type and transformed) L 7.0 pm dophytic morphology is observed as N, becomes larger and as o,

Cell height, wild-type hy 6.2 pm increases. The results corroborate the hypothesis that the morphology

Ratio between #, and h,, Ky 1-1.5 of a lesion within a duct is heavily influenced by the diameter of the

Circumferential number of wild-type cells N, 6-50 R X X X K

Circumferential number of transformed cells N, 4,8 duct itself. Fig. 5 shows the detail of the configuration for N, = 4 and

that are specified only in a range of values, we adopt the following
reference values for the parameters related to

vl =047, pMLC2'Y =58,
pMLC2}" =3.5. (1

pMLC2i =2.0, pMLC2I =35,

Moreover, we assume, K;ief = 1.0 and K;lef = 1.0 as reference values
for, respectively, the stiffness contrast and the ratio between 4, and h,,,
respectively.

The Euler-Lagrange equations (26) with boundary and interface
conditions (25) and (27) are solved numerically in MATLAB using the
function bvp4c: equations are rewritten as a system of first order

N, =8.

The smaller becomes the duct, the higher the active bending mo-
ment required to deform it: this provides an intuitive explanation for
the tendency of smaller ducts to remain convex. It is in agreement with
the observation, made in the introduction, that the ratio between bend-
ing stiffness and active moment provides a length-scale. It is also to be
remarked that larger/smaller flexibility are here only of geometrical
nature, being related to the length of the rod: it is not necessary to
invoke inhomogeneity in the material stiffness and thickness.

These theoretical findings confirm a size-dependent mechanism of
morphological regulation in epithelial ducts, potentially relevant in the
early detection and characterization of oncogenic transformations in
tubular epithelia.

Plots of the angle 9(x) versus the curvilinear coordinate is reported
in Fig. 6a, illustrating the induced bending for both N, =4 and N, =8



D. Ambrosi et al.

O O O OO
" O O O O O
wO O OO0
O O O O O
aw O O O O O
WO O O O O

European Journal of Mechanics / A Solids 117 (2026) 105984

O OOV
O OO0
WO OO0
" O O O OO
w O O O O O
O O O O O

Fig. 4. Equilibrium shapes of the epithelial ring with N, = 4 (left) and N, = 8 (right) transformed cells as a function of the number of wild-type cells (x axis) and
the surface tension imbalance parameter (y axis). Each configuration is rescaled by the undeformed ring length so that all shapes are displayed with normalized
dimensions. The elements boxed in red are shown in detail in Fig. 5. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

(@)

(b)

Fig. 5. Morphology of the tubular duct: corresponding to N,, = 50 and o¢,,, = 2.2 nN/pm of Fig. 4a (left) and Fig. 4b (right). The dashed line is the midline of the
rod: in the invagination region the larger bending, the change in curvature and the longitudinal stretch yield a transverse narrowing. For visualization purposes

the thickness has been magnified by a scaled factor of 3.

transformed cells. In agreement with the interface conditions (25), (27),
the angle 9 is continuous across the material interface, but its derivative
undergoes a jump due the jump surface tension difference. Increasing
the number of transformed cells to N, = 8 results in a more pronounced
peak for 9(x), indicating a higher bending; this is in agreement with the
observed correlation between the size of the transformed region and the
induced curvature.

A plot of the transverse stretch u(x) is depicted in Fig. 6b for
N, = 4 and N, = 8 transformed cells. We observe that thickness
changes can be of considerable extent especially in the transformed
region. Based on experience with large-strain structural theories for soft
materials (Lucantonio et al., 2017; Rubin and Tomassetti, 2025) (see in
particular the discussion in Rubin and Tomassetti (2025, Sec. 5.3.4))
we argue that since the material is almost incompressible, a simpler
theory without thickness extension would result in a limitation of axial
extension, and in turn into an overestimate of the extensional stiffness
of the tissue.

It is also interesting to observe that the curvatures in the two regions
(wild-type and transformed) which are given by the slopes of the graphs
of 9(x), are essentially constant. On the other hand, the corresponding
curves are not circles because the axial stretch A = 1/u is not constant.

The effect of heterogeneity. To assess the role of mechanical hetero-
geneity between wild-type and transformed regions, we let the apical
and basal pMLC2 levels of the transformed region, denoted below by
pPMLC2,,,, depend on a transformation parameter § through

pMLC2, ,,(8) = pMLC2"} (32)

e+ 6 (PMLC2Y,

el —PMLC2,,, ).

a/bw
where pMLCZG'L;'bEf are the reference values of the apical and basal
PMLC2 levels in wild-type cells, and pMLCZL’;:f are the corresponding
reference values for fully transformed cells. The transformation param-
eter 6 modulates the contrast between mechanical properties of the
two regions. In particular, for 5 = 0 the epithelium is mechanically
homogeneous, while for § = 1 it exhibits maximum heterogeneity. In
our simulations, we observed that values of § smaller than 0.4 result
in very small deviations from the circular shape. Therefore, we only
show the results of our computations in the range 6 € [0.4,1]. As
in previous figures, the non-dimensional apical surface tension &,,,
defined in (30) is varied in the range 0.04-0.2. The number of wild-type
and transformed cells are taken, respectively, as N,, =30 and N, = 6.
The following observations can be made. First, for low values of &
the tissue is nearly homogeneous, and the ring remains close to circular,
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Fig. 6. Rotation 9 and thickness stretch u for N, =4 (thin lines) and N, = 8 (thick lines). Solid lines correspond to the wild-type region and dashed lines to the

transformed region.
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Fig. 7. Effect of the inhomogeneity, as measured by the transformation
parameter 6 in (32).

even at higher surface tension. As § increases, the mechanical hetero-
geneity becomes more pronounced, and the ring exhibits increasing
deformation, especially at higher 6,,. The transition from convex to
non-convex morphologies becomes evident as both parameters increase
(see Fig. 7).

6. Final remarks

In this paper we have investigated the role of mechanical inho-
mogeneities in determining the morphology of a partially transformed
epithelial duct. We have specifically addressed the role of the imbalance
between apical and basal surface tension and the tensional difference
that characterizes healthy versus tumor cells. The difference in cortical
tension generates a torque that can be effectively represented in a
mathematical model of a rod enriched with a degree of freedom in the
transverse thickness, that has been derived in detail.

The mathematical model rewrites as a couple of nonlinear second
order ordinary differential equations (in strain and curvature) with
boundary and interface conditions. The equations have been numeri-
cally integrated and the results are discussed running the code with

physical parameters set in the range evinced from the biophysical
literature.

The numerical simulations reproduce the experimental evidence
that the lesion morphology is strongly related to size (the number of
cells), with large ducts developing invagination, as opposed to small
ducts. The amount of strain which emerges from these simulations
confirms the necessity of employing a model that accounts for thickness
change, in order not to overestimate the stiffness of the tissue. Our
results also show that the known inhomogeneity in surface tension that
characterizes lesions is in itself sufficient to generate morphodynamics.
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Appendix. Non-dimensional analysis

Although we have found it convenient to work with dimensional
quantities, in this appendix we propose a non-dimensionalized version
of the energy functional and the resulting Euler-Lagrange equations.
The goal is to make the relevant parameters in the physics of the prob-
lem more transparent. We assume that all the physical parameters in
(23) are constant and do not depend on the curvilinear coordinate (the
case when material parameters are piecewise-constant can be handled
by considering separate problems for each part of the epithelial tissue,
combined through appropriate continuity/jump conditions). We are
therefore allowed to introduce the following dimensionless numbers:
b s L s _Fte &G
¢ "“" Eh " En 2 2 h
The dimensionless quantity ¢ = h/# < 1 measures the slenderness of
the rod. The parameters 6, and 6, are the apical and basal surface
tensions normalized with respect to the characteristic longitudinal
elastic stiffness per unit width Eh. Their arithmetic mean ¢ provides an
effective measure of the average active tension acting on the apical and
basal surfaces. The parameter y quantifies the imbalance between basal
and apical normalized tensions, amplified by the geometric factor ¢/h.
In particular, y = 0 corresponds to a perfectly balanced distribution
of surface tensions, whereas large values of |y| indicate a pronounced
asymmetry, which can generate significant bending moments even
when 6, and 6, are individually small.

Rescaling the longitudinal coordinate with #, and using the defini-
tions (28), the total energy can be written in non-dimensional form:

2 2
2(1+v) Y71 ) v 1
=T le= | -1 Z+u-2) |d
£ 5/0 u +(u )+1—2v M+/4 x
3 1 2 12
£ 1+v ;Ko M
£ g-0) +E (g
12 1+2v<” ;4>+2 *

1 1
+e(1+ v)a/ 1 dx+26(1 + v)y/ ud' dx.
0o H 0

£ =

(33)

(34)

With a slight abuse of notation, we retain the same symbols for the
dimensionless quantities, which are the only ones considered in this
section. Inspection of Eq. (34) clarifies the rationale for the distin-
guished scaling (33): both the strain energy and the total surface energy
scale as &, whereas the bending energy scales as &3, mirroring the
scaling of the surface—tension difference.

The first variation of the energy functional with respect to u leads
to

1"
3| @ 1+v ' Ko ', Ko ’
1ty (e -5 (o450 Joa 9
E[12 6(1+2v)<’“ ,4>< +,42> (L+vy ]

2
uw—-1,(1-v 1 1-v c
—el2 — - 2=

s[ 1_2V< e +”2+ P ) (+V)M2] 0, (35)

while the variation with respect to 9 gives
!
[i (M&’—@>M+(1+2v)yﬂ] =0. (36)
12 7

Eq. (35) reveals the competition between bending and stretching,
as indicated by the two groups of terms scaling with &3 and ¢, respec-
tively. In particular, the last of the terms scaling with ¢ represents the
active surface tension that tends to stretch the rod; it is proportional to
the normalized mean surface tension o. The second term scaling with &3
accounts for the coupling between bending and transverse stretching,
independently of . We also observe that the curvature of the rod
enhances the transverse stretch when & > i, /u?, whereas it reduces it
when & < k,/u>. We interpret this behavior as a variant of the Brazier
effect (Antman, 1973, 2005; Podio-Guidugli, 1982).

Eq. (36) represents a moment balance and does not exhibit distinct
scalings in €. Indeed, the term enclosed in square brackets corresponds

European Journal of Mechanics / A Solids 117 (2026) 105984

to the normalized effective bending moment, which must remain con-
stant. It consists of two contributions: a bulk term, reflecting the
coupled effect of transverse stretching u and local curvature &'; if the
rod were unable to change its thickness, this term would reduce to a
moment proportional to 9’ — k, as expected in classical rod theories.
The second contribution is an active moment, proportional to the
imbalance y between the normalized apical and basal surface tensions.
It is also worth noting that, if we keep only terms up to first order
in ¢, Eq. (35) reduces to
2”2_1<1“’+i+l'v>—(1+v)i=0, (37)
-2\ 3 2" u 2
which describes a balance between strain and surface tension, entirely
decoupled from bending. Any continuous solution u(s) of (37) must be
constant (in particular, u(s) = 1 is a solution for ¢ = 0). For these
solutions, (36) reduces to 9" = 0, that is, the rod has constant curvature.
In this latter case, the effect of the surface-tension imbalance, measured
by the parameter y is only through the boundary conditions.
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No data was used for the research described in the article.
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