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Abstract

Many soft tissues, and arteries in primis, exhibit residual stress after unloading, a
characteristic related to the ability to self–organize their own constituents (cells and ex-
tracellular matrix proteins). This behavior can be theoretically predicted in a continuum
mechanics framework assuming that the body self–remodels toward a homeostatic stress
state. Open questions concern the characteristics of a stationary grown state, as dictated
by the mechanical properties of the material and by the specific external load. In this pa-
per we illustrate a mathematical framework and we perform numerical simulations for the
remodelling of a two dimensional (axisymmetric) nonlinear elastic cylinder. In particular,
we address the stress–modulated remodelling of the cylinder wall when local variations
in the mechanical properties of the material occur. Our main result is that, as in one
spatial dimension, the tendency of the system to homeostasis generates, thanks to the
remodelling process, a residual stress that homogenizes the tension in the body under
load. Possible physiological implications of this result are discussed in the final section.

Introduction

When observed on a sufficiently long time scale, biological systems are always open systems:
they exchange mass and energy with the external environment. This characteristic makes
the mathematical analysis of biological systems inherently more complex than that of purely
mechanical ones, for which an assumption of a closed system is possible. The mechanics of
soft tissues is a specific example of problems that must include external actions (e.g. nutrients
and mass inflow) when considered on a time scale longer than a few days. The arterial wall
mechanics, among this class of problems, is particularly interesting for two reasons. On one
hand, its clinical interest is self-evident. On the other hand, in spite of numerous experimental
works on the topic, the inner mechanisms of growth and residual stress creation are not yet
well understood.

A related specific aspect of the complexity of biological systems is that their relationship
with the surrounding environment forces them into a continuous evolutionary process so as
to attain a steady state, generally known as homeostasis. Derived from the Greek (similar)
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+ (to stand), homeostasis denotes the natural tendency of a living organism to maintain
equilibrium. In order to maintain homeostasis, biological tissues undergo changes in mass as
well as structural and functional adaptation to their environment. The present work focuses
specifically on how the mechanical environment influences living tissues and, in particular,
the category of biological tissues called soft tissues, which are characterized by large elastic
deformations under typical physiologic loads. A basic hypothesis used in the present model
is that the gradual remodelling of soft biological tissues, through growth or resorption of
cells and extracellular components, is directly linked to the stress within the tissue and that
remodelling proceeds toward stress homeostasis.

Despite the long-standing literature on the subject, a proper mathematical framework to
describe the volumetric growth of an elastic continuum body has been formulated only quite
recently. The seminal paper in this respect is due to Rodriguez et al. [25], who first introduced
the decoupling of the tensor gradient of deformation into two multiplicative contributions: one
accounting for growth and the other describing the mechanical behavior resulting from the
relaxed (grown) configuration. This key idea has provided a correct kinematic framework
within which it is now possible to account for volumetric growth in soft tissues and their
elastic response from a stress-free state, in which possible residual stresses also vanish. The
evolution of the growth tensor (or, in other words, the evolution of the local stress-free ref-
erence configuration) calls for a supplementary constitutive relation that drives the mass
increment/reduction in the body.

The mathematical literature dealing with growth mechanics is quite recent. One ques-
tion regards stability and has been recently investigated by Ben Ammar and Goriely [5].
They analyze the stability of a grown neo-Hookean incompressible spherical shell under ex-
ternal pressure. The importance of residual stress is established by showing that under large
anisotropic growth a spherical shell can become spontaneously unstable without any external
loading.

Another key point is the definition of a growth law of a the soft tissue, the growth dynamics.
In general, this will depend on many chemo-mechanical factors, including the availability
of nutrients. To date, few heuristic laws for understanding growth based on experimental
observations have been devised, and they are in essence based on the theory of homeostatic
stress. The most relevant contribution is due to Taber and Eggers [30], who assume that the
growth of an artery, schematically represented by a homogeneous elastic annulus of Fung-like
material, is ruled by the achievement of a radially constant equilibrium circumferential stress
(the Cauchy one) and that this drives the system toward the associated residual tensional
state.

Thermodynamically admissible growth laws have been devised in the mixture framework,
where mass production is duly represented as phase exchange between components [13, 19].
In a one–component framework, one analysis of the admissible growth laws on the basis
of thermodynamic arguments is due to DiCarlo and Quiligotti [8]. They state an a priori
dissipative principle, involving standard forces and accretive forces, that has to be satisfied for
any growth process. The exploitation of this inequality yields constitutive relationships that
provide a direct coupling between stress and growth in terms of an Eshelby-like tensor. This
approach has been further investigated by Ambrosi and Guana [1], who show that suitable
assumptions on the general model lead back to the one proposed by Taber and Eggers as a
small strain limit.

Numerical experiments prove the effectiveness of growth laws under one–dimensional (ra-
dially symmetric) assumptions. In the specific case of non–homogeneous mechanical prop-
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erties, purely radial growth has been considered by Taber and Humphrey [31]; their model
reproduces the dependence of the circumferential stress of an annulus on the radial coordinate.

The aim of our study was to investigate, by numerical simulation, the role of the remod-
elling process in a non-homogeneous axisymmetric thick-walled cylinder, mimicking an aortic
vessel under some geometrical simplifications. The mathematical model was proposed by
Ambrosi and Guana in [1]; here the equations are extended to a 2D axisymmetric geometry.
The vessel wall is made of non-linear orthotropic hyperelastic material. The wall is supposed
to be stiffer in some part, an assumption that recalls the typical changes observed in an ab-
dominal aortic aneurysm [14] and intracranial fusiform aneurysms [27], and is in agreement
with the observed regional stiffening of the aorta with age [32]. The system evolves towards
a homeostatic state, assumed to be independent of possible local variations in the elastic
properties. The results of the numerical simulations elucidate the role of stress homeostasis
in more than one dimension, as will be discussed in the final remarks.

1 General theory of growth

Residual stress is a fundamental feature in the study of soft biological tissues such as arteries.
Its existence in blood vessels has been revealed by Fung [12] via a simple experiment in
which an unloaded arterial ring is cut along the radial direction and subsequently opens up,
relieving internal stresses. For some time, the configuration generated by a radial cut of this
type, namely the opened-up configuration, was thought to be a very good approximation of
the stress-free state of an artery, since subsequent radial cuts did not reveal the presence
of significant additional residual stresses. However, a few years later, Vossoughi et al. [33]
provided us with an additional insightful experiment in which arteries were cut along the
midline of the open sector which had been obtained by a previous radial cut. They found the
inner segment to open further, while the outer one closed considerably. This experimental
result unveiled the fact that the opened-up configuration was not entirely free of stresses and
that a proper approximation of the geometry of the stress–free state in an arterial ring, may
be more difficult to obtain than it had been initially thought. In fact, nowadays, it is often
assumed that such a stress–free configuration for arteries might be unreachable in reality, as
it has proven impossible to release all residual stresses within an arterial soft tissue.
The overall distribution of residual stresses throughout an arterial wall may be, very generally,
described as follows. First, as noted by Fung [12], residual stresses cannot be uniformly
distributed across the wall. Moreover, the residual circumferential stresses are known to be
compressive in the inner part of the arterial wall, while tensile in the outer part (see, for
example, [12] or [16]). At this point, one might reasonably ask what is the purpose of residual
stresses in arteries. A possible explanation for their existence as been postulated by [12]. As
observed by Fung, the circumferential stress distribution of a hypothetical residual stress–
free vessel would experience, in normal working conditions, a high stress gradient near the
inner boundary of the vessel. Biologically, this implies that without the presence of residual
stress the blood vessel would be less resistent to changes in loads. By contrast, once residual
stresses were included in the calculation of the circumferential stress in vivo, circumferential
stress was found to be almost uniform throughout the arterial wall. Finally, let us note that,
residual stresses are generated in the artery by non–uniform growth and remodelling, as noted
by Skalak et al. [28]. Furthermore, the uniformity of the circumferential stress in vivo will
prove crucial herein, as it is one of the main concept on which the growth law used in the
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present analysis was based.

Kinematics

Let us consider a body which, at an initial time t0, is in the stress-free configuration B0.
A material point in this configuration is characterized by its coordinates X. The body is
subsequently subjected to some external loads and is assumed to encounter volumetric growth.
At a time t, the loaded grown body occupies the region Bt, in which a material point is
represented by the position vector x. The deformation from B0 to Bt is characterized by a
one-to-one mapping, denoted by χ, such that x = χ(X, t) for all X in B0, and the deformation
gradient from B0 to Bt is then defined by F = ∂x/∂X. Following [25], we assume that the
deformation gradient F may be theoretically decomposed into a growth part, represented by
a so-called growth stretch tensor G, and an elastic part, represented by an elastic tensor Fr

(see Figure 1). The growth stretch tensor G can be thought of as characterizing the addition
or removal of material at a point and the orientation of its deposition. In other words,
G models the change in the local stress-free state of the body due to the growth and the
grown stress-free configuration at time t is denoted by Br. The elastic tensor Fr, ensures the
continuity of the body as a whole by potentially giving rise to internal stresses, since growth
is not, in general, geometrically compatible. The dashed line of Figure 1 points out that, in
general, Br is not a possible real configuration of the body; a complete stress relaxation is not
possible, not even by breaking the body into a finite number of pieces. Let us note that Fr

also contains information about the applied loads. The multiplicative decomposition of the
total deformation gradient provides the relation F = FrG.

FG
r

F
BB

B

t0

r

Figure 1: Schematic representation of the multiplicative decomposition of the tensor gradient
of deformation F = FrG. B0 is the initial stress-free state, while Br and Bt are, respectively,
the grown stress-free state and loaded grown state of the body at time t (modified from [25]).
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Dynamics

Since the aim of the present work was to model the mechanical behavior of the aortic wall, we
assume the body to be made of nonlinear, hyperelastic, incompressible and non-homogeneous
material. The active mechanical response of the material out of the grown stress-free con-
figuration Br is represented by a strain-energy function referred to as ψ = ψ(Fr,X). Note
that, in the following, the aortic wall will be assumed as being piecewise homogeneous and
the dependence of the strain energy on the reference position X will be relaxed for notational
simplicity.
The incompressibility constraint yields detFr = 1 and thus we have

detF = detG := J. (1.1)

The Gateaux derivative of the strain energy is the stress tensor in the stress-free (grown)
configuration Br. The standard Piola tensor of the active forces in Bt relative to the initial
stress-free configuration B0 is denoted by P and is defined as P = JTF−T , where T is the
Cauchy stress tensor in Bt.
Since the growth tensor G is not, in general, the gradient of a deformation, no global change
of coordinates exists between B0 and Br and no differential form for the balance equations
can be stated in Br. However, a local stress balance exists in Br and tangent vectors can be
pulled back from Br to B0, where compatibility allows differential equations to be written.
By exploiting multiplicative decomposition, together with the fact that the Cauchy stress is
independent of the choice of a reference configuration, we obtain a relation for the active part
of the Piola tensor P̂, namely

P̂ = J
∂ψ

∂Fr

G−T . (1.2)

Moreover, the soft tissue is assumed to be incompressible and the stress tensor must therefore
include a pressure term in order to accommodate such a constraint, i.e.

P = J
∂ψ

∂Fr
G−T − JpF−T

r G−T , (1.3)

and the Cauchy stress is given by

T =
∂ψ

∂Fr
FT

r − p I. (1.4)

In addition, the Piola tensor P in Bt relative to B0 must satisfy, in the absence of body forces,
the equilibrium equation

Div P = 0. (1.5)

Growth rate

Subsequent to the multiplicative decomposition of the total deformation gradient tensor, the
standard balance of forces (1.5) must be supplemented by a new equation, which accounts
for the time evolution of the growth tensor. In this paper we assumed that the growth
tensor evolves according to the equation proposed by Ambrosi and Guana on the basis of
thermodynamical arguments [1, 8], namely

Ġ = −K (E − E0)G, (1.6)
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where E = FT
r TF−T

r − ψI is the Eshelby tensor, while K and E0 are, in the simplest case,
constant matrices. The quantity E0 represents the homeostatic value of the Eshelby tensor,
i.e. the equilibrium value in the system of ordinary differential equations (1.6). It is worth
observing that, in general, the matrix multiplication of the relationship (1.6) intrinsically
relates every component of the growth tensor to every component of the stress tensor. The
decoupled growth law proposed by Taber and Eggers [30] can be recovered from the growth
law (1.6) in the limit of small deformations. The Eshelby tensor as a tensorial function of
the stress is duly frame–indifferent (it does not change for rotations of the reference frame),
while its linearized counterpart, the Cauchy stress, does not.

The introduction of equation (1.6) in the theory can be accepted not only if suitable
thermodynamic inequalities are satisfied, but also if the parameters involved in the equation
can be identified by independent measures. In the specific case of Equation (1.6), how can
one measure E0? At this stage, it is worth recalling a particular feature that arterial tissues
in vivo are known to exhibit. Biologically, the homeostatic state of an artery refers to the
state of equilibrium encountered by a young healthy mature artery in vivo and is generally
associated with a so-called homeostatic pressure. Among other researchers, Liu and Fung [20]
[21] experimentally noticed that the circumferential stress throughout the wall of an artery
in this particular state is, in fact, uniform. This uniform circumferential stress is thus often
referred to as the homeostatic stress. Moreover, the growth generated by a rise of the internal
pressure in rat arteries has been obsevred to be accompanied by a return of the circumferential
stress to a uniform value, so that, at the end of the growth, the mean hoop stress was nearly
the same as that before the growth. Furthermore, Humphrey [16] recently pointed out that
arterial growth is accompanied by the return of the axial stress near a uniform homeostatic
value. These experimental results unveiled the fact that, in arteries, growth happens in
parallel with the return of the circumferential and axial stresses to homeostatic levels. These
important findings became a basis for the creation of a large amount of stress-related growth
models for arteries (see Taber [29] or Rachev et al. [24], for example), and were also used in
the present study. In other words, in the following, the equilibrium value E0 of the Eshelby
tensor mentioned above will be explicitly related to the state of the circumferential and axial
stresses in the homeostatic state, which therefore dictate the pattern of the growth.

2 Constitutive assumptions and geometrical modeling

The arterial wall response relative to Br is assumed to obey the exponential strain energy
constitutive equation proposed by Fung [11]

ψ =
C

2
exp

(

a1E
2
rr + a2E

2
zz + a3E

2
θθ + a4E

2
rz + a5E

2
rθ + a6E

2
zθ

)

, (2.1)

where C, a1, ..., a6 are material parameters, E = 1
2

(

FT
r Fr − I

)

corresponds to the Green
strain tensor and I represents the identity tensor.
The aorta, which is assumed to be made of non-homogeneous material, undergoes axis-
symmetric displacement only. That is, the displacement vector, denoted by u, is postulated
to have the form u = (ur, uz , 0). Moreover, all the fields involved in the analysis are indepen-
dent on the circumferential coordinate (i.e. ∂/∂Θ = 0 for any field).
On one hand, the displacement gradient, which is defined by H := Gradu, is related to the
total deformation gradient through the formula F = H+I, and has the following components
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in cylindrical coordinates

H =





∂ur

∂R
∂ur

∂Z
0

∂uz

∂R
∂uz

∂Z
0

0 0 ur

R





(r,z,θ)

(2.2)

On the other hand, we assume the growth stretch tensor G to be of diagonal form in cylindrical
coordinates, i.e. we write G = diag(gr, gz, gθ). This simplification could be further extended to
the case of a spherical form for the growth tensor: G = gI. However, we retain the possibility
that growth occurs at different rates along different directions, since biological observations
suggest that arteries grow, in general, in a non–uniform manner. For example, it is now well
established that, in response to a persistent hypertensive pressure, an artery will grow in
thickness, while encountering no change in its lumen radius, if its internal blood flow remains
unchanged. By contrast, an increase in the internal blood flow of an artery, with no change
in its internal pressure, is known to generate an increase in the artery internal radius, while
preserving its thickness (see [22], for example). Let us note briefly that an explanation for
these experimental results lies in the internal organization, at the cellular level, of the arterial
wall. That is, on one hand, the organization of smooth muscle cells, for example, within an
artery is such that they are disposed along the circumferential or axial directions. On the
other hand, at maturity, cells are known to grow primarily through hypertrophic processes
(i.e. cell enlargement), either by encountering changes in their diameter or changes in their
length. Thus, non–uniform growth seems to prevail in arteries, with radial growth occurring
as cells grow in diameters, a phenomenon that might be linked to possible changes in the
internal pressure of an artery. If cells encounter growth in their length, the artery is then
subject to circumferential or axial growth, a process that seems to be linked to hypothetical
changes in blood flow. In order to provide expressions for the components of the Green strain
E, in the chosen system of coordinates, the tensor E is rewritten in terms of the displacement
gradient H and the growth stretch tensor G, namely

E =
1

2

(

G−T (H + I)T (H + I)G−1 − I
)

. (2.3)

Thus, after some basic calculations, which are detailed in the separate Appendix, the com-
ponents of the Green strain may be expressed as



















































Err = 1
2g2

r

[

(

∂ur

∂R
+ 1

)2
+

(

∂uz

∂R

)2 − g2
r

]

,

Ezz = 1
2g2

z

[

(

∂uz

∂Z
+ 1

)2
+

(

∂ur

∂Z

)2 − g2
z

]

,

Eθθ = 1
2g2

θ

[

(

ur

R
+ 1

)2 − g2
θ

]

,

Erz = Ezr = 1
2grgz

[

∂ur

∂Z

(

∂ur

∂R
+ 1

)

+ ∂uz

∂R

(

∂uz

∂Z
+ 1

)]

,

Erθ = Eθz = Ezθ = Eθz = 0.

(2.4)

Finally, by using equations (2.4) and (2.1) in (1.3), expressions for the components of the
Piola stress may be found (see relations (A.12)).

In the cylindrical system of coordinates considered here, and when the symmetries involved
in the problem are taken into account, the equilibrium equations (1.5) generates two non-
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Figure 2: Sketch of the physical problem (a) and two–dimensional computational domain (b)
in a material (Lagrangian) frame of reference. The conditions imposed at the boundaries are
shown.

trivially solved equations, one in the radial direction and one in the axial direction:

∂Prr

∂R
+
∂Pzr

∂Z
+
Prr − Pθθ

R
= 0, (2.5)

∂Prz

∂R
+
Prz

R
+
∂Pzz

∂Z
= 0. (2.6)

This system is subject to the boundary conditions

PN =
√

N · C−1N τ , on ∂Ωin,

PN = 0, on ∂Ωext,

PN ·N⊥ = 0,u · N = 0, on ∂Ωw,

where C := FTF is the right Cauchy-Green tensor, while N and N⊥ are, respectively, the
normal and tangential unit vectors to the boundary of the body in the stress-free state B0.
The tension τ accounts for the load at the internal wall due to the blood fluid. In general
τ includes normal and shear stresses. However, in the numerical simulations illustrated in
the next section, we restrict our attention to the case of null shear stress. Let us note also
that the external wall ∂Ωext is free of loads. Furthermore, the aortic specimen is supposed
to displace freely in the radial direction and is subject to a null displacement condition along
the z–axis on the boundary ∂Ωw.
Moreover, let us recall that the force balance equations are to be supplemented by the incom-
pressibility constraint

detFr = 1. (2.7)
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Finally, the material and geometrical parameters used in the present work are taken from
values obtained for the rat aorta [31] (in non–dimensional form)

C =400 (a1, a2, a3, a4, a5, a6) = (0.01, 0.09, 0.17, .01, 0.001, 0.02) ,

R1 =0.8, R2 = 1, E0,θθ = −5 E0,zz = −1.

The applied load at the internal wall is a pure pressure corresponding to 8 kPa.

3 Numerical simulation

3.1 Biomedical motivations

One possible application of the present study is to provide a proper 2D numerical framework to
simulate the evolution of a axisymmetric fusiform aneurysm in the aorta. It is therefore worth
mentioning briefly some relevant works dealing with mathematical modelling of aneurysmal
tissues.
Aneurysms and, in particular, abdominal aortic aneurysms (AAA) are thought to form as a
result of degradation of the Elastin (probably initially due to an injury in the tissue) and,
more specifically, of degradation of the elastin laminae, as observed by Anidjar et al. [3]. As
mentioned by Humphrey [15], the fact that the abdominal aorta is exposed to a large pulse
pressure and the presence of bifurcations nearby (which induce additional pressure waves
in the blood flow), may partly explain why this specific location seems to be a preferential
site for aneurysms formation. Furthermore, an important observation, which motivates the
present study, is that the overall mechanical properties of aneurysmal tissue differ from the
properties of healthy arterial tissues. That is, AAA have been reported to be less extensible
and stiffer than control ones (see He and Roach [14], for example). The observed stiffening
of the aortic tissue appears to pre-exist the formation of an aneurysm, as demonstrated by
Vande Geest et al. [32], who showed that the aortic tissue mechanical properties change from
a high extensibility for young tissue to a much stiffer response and lower areal strain for older
tissue. Interestingly the study also found that the abdominal section of the aorta appears
to stiffen first, temporally, than the thoracic segments of the aorta. A closer look at the
histology of aneurysmal tissue may partly explain the changes observed in the macroscopic
mechanical behavior of this particular diseased tissue. In fact, the proportion of elastin and
smooth muscle cells in AAA is dramatically lowered and the remaining elastin is, in general,
fragmented and damaged. In contrast, the proportion of collagen and ground matrix increases
considerably, which might explain the increase in stiffness encountered with this type of lesion.
Although collagen is often held responsible for the strength of healthy arterial tissue, it is
worth emphasizing that the collagen in the lesion is usually disorganized and not fully cross
linked (see Freestone et al. [10]), making the wall weaker, although stiffer, in the presence of
an aneurysm.
Most theoretical frameworks under which aneurysmal tissues are studied are based on the
nonlinear theory of elastic membranes, such as in the work of Elger et al. [9] and Sacks et al.
[26]. Although their work provides good insights on the mechanical behaviour of aneurysms,
membrane theories implies to approximate the aneurysm as a thin-walled structure. In the
present work, we consider the aneurysm to be thick-walled, thereby enabling the non-negligible
effects of residual stresses in the tissue to be accounted for. Let us note briefly that another
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excellent recent work on aneurysms, which deserves to be mentioned here, is the one by Baek
et al. [4], in which they presented a constraint mixture theory framework for the study of
thin-walled intracranial fusiform aneurysms.

3.2 Methods

In the numerical simulations the growth tensor is supposed to be of diagonal form and, in ad-
dition, we assume that only circumferential and axial growth occurs, i.e. G = diag (1, gz , gθ).
The adoption of the multiplicative decomposition of the deformation tensor in an orthotropic
nonlinear elasticity framework using a material frame of reference gives rise to quite a complex
form for the final equations, as illustrated in the Appendix. Even more relevant is the high
nonlinearity of the components of the Piola tensor (A.12).
The equations are discretized in time by a backward Euler finite difference discretization. The
solution, evaluated at a time t = n∆t, is denoted by (un

r , u
n
z , p

n, gn), so that, at every time
step, the linearized components of the Piola stress tensor can be expressed as























































Pn+1
rr = gn a1

[

∂un
r

∂R
∂un+1

r

∂R
+ 2∂un+1

r

∂R
+ ∂un

z

∂R
∂un+1

z

∂R

]

ψn − pn+1 gn

Kn

(

1 + un
r

R
+ ∂un

z

∂Z
+ un

r

R
∂un

z

∂Z

)

,

Pn+1
zz = gn a2

[

∂un
z

∂Z
∂un+1

z

∂Z
+ 2∂un+1

z

∂Z
+ ∂un

r

∂Z
∂un+1

r

∂Z

]

ψn − pn+1 gn

Kn

(

1 + un
r

R
+ ∂un

r

∂R
+ un

r

R
∂un

r

∂R

)

,

Pn+1
θθ = 1

(gn)2
a3

[

un
r

R
un+1

r

R
+ 2un+1

r

R
+ 1 − (gn)2

]

ψn − pn+1 gn
(

R
R+un

r

)

,

Pn+1
rz = gn a4

[

∂un+1
r

∂Z

(

∂un
r

∂R
+ 1

)

+ ∂un+1
z

∂R

(

∂un
z

∂Z
+ 1

)]

ψn + pn+1 gn

Kn

∂un
z

∂R
(1 + un

r

R
),

Pn+1
zr = gn a4

[

∂un+1
r

∂Z

(

∂un
r

∂R
+ 1

)

+ ∂un+1
z

∂R

(

∂un
z

∂Z
+ 1

)]

ψn + pn+1 gn

Kn

∂un
r

∂Z
(1 + un

r

R
),

(3.1)

where Kn =
(

1 + un
r

R

)(

1 + ∂un
r

∂R
+ ∂un

z

∂Z
+ ∂un

r

∂R
∂un

z

∂Z
− ∂un

r

∂Z
∂un

z

∂R

)

and ψn = ψ(un
r , u

n
z , g

n).

We observe that the incompressibility constraint (2.7) can be expanded in terms of Hr as

1 =det(Fr) = det(I + Hr) = 1 + trace(Hr) + o(||Hr||), (3.2)

=1 +
1

gr

∂ur

∂R
+

1

gz

∂uz

∂Z
+

1

gθ

ur

R
+ o(||Hr||).

In the present context, we restrict our attention to the incompressibility constraint being
numerically satisfied to first order in Hr, thus requiring that

1

gn
r

∂un+1
r

∂R
+

1

gn
z

∂un+1
z

∂Z
+

1

gn
θ

un+1
r

R
= 0. (3.3)

The constraint (3.3) makes the global problem a saddle point one to the solution for the
force balance equation (2.5)-(2.6). All fields are here represented by linear finite elements
on a triangular unstructured mesh, thus requiring a suitable stabilization method that we
implement by a penalty approach [6]. Standard details on finite element implementation are
omitted. We just note that, thanks to the weak formulation, no further derivation of the
nonlinear components of the Piola stress (3.1) has to be carried out. The resulting linear
system is solved by a BI-CGSTAB solver.
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3.3 Results

The numerical results illustrated in the present section are represented in a system of coor-
dinates fixed in space (Bt of Figure 1) and the stress components refer to the Cauchy stress
tensor (1.4).
Let us first consider a vessel with homogeneous mechanical properties. In such a case, axial
displacement vanishes too, and the solution does not depend on the axial coordinate. We
therefore recover the one-dimensional (radial) solutions, already discussed in several past ar-
ticles [1, 30].
Figure 3(a) illustrates the hoop stress field in the loaded cylinder in its steady state after

the remodelling process. The peak values differ significantly from the ones obtained in the
same body before the reorganization machinery starts up (not shown; ranging between 23.4
and 34.8). The radial plot of the residual stress (Figure 3(b)) reproduces qualitatively the
behavior theoretically predicted by Ogden [23] and this test is actually used as an indirect
way to fix the value of the parameters E0,θθ and E0,zz.

Following [31], material inhomogeneity is introduced in the cylinder supposing that the wall
is twice stiffer in the middle region (C = 800) than in the upper and lower ones (C = 400).
Note that, as mentioned in the introduction, the present choice of a stiffer region for modelling
the lesion is motivated by experimental observations made on aneurysmal tissues, such as the
ones by He and Roach [14], as well as by the observation by Vande Geest et a. [32]. The
coefficient varies linearly between these two values in narrow transition layers (width equal
to 0.1 ) centered in 0.65 and 0.35.
Figure 4(b) shows the map of the determinant of G, after remodelling, in the inhomogeneous
loaded cylinder. Basically, this graph measures the mass addition/resorption that has been
produced during the growth in order to achieve the final configuration. It is important to
emphasize that the numerical values obtained here are not to be taken as absolute values.
That is, one should keep in mind that the initial conditions are given in an abstract configu-
ration and not in a real biological state, since, development of soft tissues and residual stress
production occur contiguously in vivo, so that no intact stress–free artery can be observed
in nature. The idea that lies behind this model, and which has been used in several existing
growth models, is that residual stresses in mature vessels may be produced as a mean to
reach a homeostatic stress state. In the present model, the homeostatic stress state is mathe-
matically represented by a steady state solution of the system of equations (1.6), irrespective
of the initial state. The values of the determinant of G detail here the pattern of mass re–
organization that generates the residual stress.
Figures 4(a) and 5(a) show the hoop stress, in the non–homogeneous vessel, before and after
remodelling, respectively. Despite its physiological irrelevance, in se, their comparison reveals
essential characteristics of the remodelling process. Growth in the aorta mostly occurs in the
stiffer region, as illustrated by the value of the determinant of the growth tensor (Figure
4(b)). The thickening of the stiffer part of the body causes the hoop stress field to be strongly
smoothed by growth, as the range of values obtained for the hoop stress goes from (19,47.5)
to (28.9,32.5). The tension in the softer region is very close to the values obtained in the ho-
mogeneous case presented in 3(a), The maximum value tension in the remodelled wall occurs
in the transition layer between different values of C, while in the non–remodelled one it is
maximum at the internal wall.
A more biologically noteworthy comparison can be obtained facing Figures 4(a) and 5(b).
The latter plot represents the hoop stress field in the wall of a non–homogeneous axisym-
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Figure 3: Hoop stress under load (a) and residual hoop stress (b) in a homogeneous ax-
isymmetric cylinder, at the end of the remodelling process. The solution of this problem is
independent of the z coordinate. The material organization in the loaded body homogenizes
the stress inside a small interval (28.7, 29.7). The behavior of the residual stress is dictated
by the value of E0.
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Figure 4: Hoop stress (a) and determinant of the growth tensor (b) in a non–homogeneous
arterial wall after remodelling.
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Figure 5: Hoop stress in a non–homogeneous arterial wall before remodelling (a) or after
remodelling occurred on the basis of a homogeneous stress field (b), under load. Note that
the greyscales of the two figures (and Figure 4(a)) are different.
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Figure 6: Residual hoop (a) and axial (b) stress field in a non–homogeneous arterial wall after
remodelling.
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metric cylinder that has previously undergone a remodelling process driven by homogeneous
mechanical properties. In other words, it is the hoop stress in a body that first has grown
in response to a given stress field like the ones of Figures 4 and then changes its mechanical
characteristics in a time much shorter than the remodelling one. The stress range is here
somewhat intermediate between the previous ones, with higher values on the external wall.
The components of the residual stress in the unloaded body can be computed by solving the
force balance equations after remodelling. Figures 5(a) and 5(b) reveal that, according to the
present model, residual hoop stress in a non-homogeneous vessel can be locally compressive,
which is in accordance with previous experimental observations (see [12], for example). The
same remark, although less evident, holds for the form of the axial residual stress distribu-
tion: both tension and compression are locally observed but the integral value provides the
expected tensional state. Note that boundary conditions along the z-axis prescribe null dis-
placement only: in the present framework all residual stress in the body must arise from the
remodelling process.

Final remarks

This paper discusses the results of two–dimensional numerical simulations for the mathe-
matical modeling of volumetric growth in an elastic body. The equations of the system are
the standard force balance supplemented by an equation coupling stress and growth; as a
specific target, the equations are applied to a two–dimensional axisymmetric case with non–
homogeneous mechanical characteristics.

The adopted growth–law is a simple example of constitutive equation satisfying a dissi-
pation principle. The model is able to predict the formation of both hoop and axial residual
stresses in the body, by stress–modulated growth.

The introduction of a multiplicative decomposition of the tensor gradient of deformation
originates a number of algebraic complications. However, the calculations detailed in the
Appendix show that the model is kept to a reasonable feasibility.

The illustrated mathematical model does not involve tunable parameters; in principle,
any parameter appearing in the equations can be fixed on the basis of direct or indirect
comparison with experiments. A direct measure can provide the parameters of the stress–
strain relationship, while stress homogenization arguments can provide the homeostatic stress
value E0 [23].

The numerical simulations suggest that the theory of stress–modulated remodelling can
be an effective tool to study two dimensional (axisymmetric) problems. The results show
that, at least in some range of parameters, when one considers a cylinder wall with local
stiffening, the residual stress field homogenizes the stress around an average value dictated
by homeostasis, which is the same behavior predicted in one dimension. We remark that this
is not a self–evident statement, because stress and growth are here tensorial quantities and it
is not clear a priori how the components are to be coupled. In this paper it was assumed that
only two components of the growth tensor evolve, (gz , gθ), and their dynamics depend on the
components of the strain tensor via the Eshelby tensor. Several other possibilities remain to
be explored.

The content of this paper is mainly methodological. Some aspects of the model do not
satisfy yet a full biomechanical applicability: the material is homogeneous and the boundary
conditions do not correspond to a physiological pressure ( 16 KPa). The latter issue involves
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questions of numerical stability that remain to be explored [18]. However the numerical sim-
ulations are carried out for a geometry, material properties, and loads that are close to the
physiological conditions encountered by rat arteries. Questions about possible physiological
relevance of the results naturally arise. The results obtained are preliminary and no quantita-
tive prediction can be expected yet. However, the simulations corroborate the conjecture that
a correct functioning of stress homeostasis should stabilize the vessel wall under local changes
of the mechanical properties. A major disease of the artery is the formation of an aneurysm,
which arises from degeneration of the artery’s connective tissue. The aortic wall has been
observed to become increasingly stiffer with age, and that the process is heterogeneous, start-
ing earlier in the life of the patient for the abdominal portion of the aorta [32]. One may
wonder if this observed change in material properties may elicit the formation of aneurysm.
These early simulations suggest that, at least in the small range of parameters considered up
to now, healthy homeostasis goes towards a re-equilibration of the vessel system and should
not be accounted among the possible factors producing the growth of an aneurysm. On the
other hand, if the stress–driven remodelling for some reason does not work properly, larger
stresses can be produced. This kind of qualitative speculations goes in the same direction
of the arguments provided by Humphrey and Canham [17], who discriminate among several
possible mechanisms for the rupture of cerebral aneurysms and finally point the attention on
the remodelling process. We believe that a framework like the one presented in this paper
can provide useful advancements in this direction.

A Equations in cylindrical coordinates

The Green strain tensor can be written as

E =
1

2

(

FT
r Fr − I

)

=
1

2

(

G−TFTFG−1 − I
)

=
1

2

(

G−T (H + I)T (H + I)G−1 − I
)

, (A.1)

where I is the identity tensor, G corresponds to the growth stretch tensor and H = Gradu
denotes the gradient of the displacement u, which is assumed to have the form u = (ur, uz , 0).
Moreover, in our problem, we considered no dependence on the coordinate Θ and the com-
ponents of the tensors G and H in cylindrical coordinates are given by

G = diag(gr, gz, gθ), H =





∂ur

∂R
∂ur

∂Z
0

∂uz

∂R
∂uz

∂Z
0

0 0 ur

R



 . (A.2)

Let us add briefly that, throughout the whole appendix, cylindrical components are provided
in the form (r, z, θ).
On one hand, we have

G
−T (H + I)T =





1/gr 0 0
0 1/gz 0
0 0 1/gθ









Hrr + 1 Hzr 0
Hrz Hzz + 1 0
0 0 Hθθ + 1



 ,

=







Hrr+1
gr

Hzr

gr
0

Hrz

gr

Hzz+1
gz

0

0 0 Hθθ+1
gθ






. (A.3)
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Similarly, on the other hand, we have

(H + I)G−1 =





Hrr + 1 Hrz 0
Hzr Hzz + 1 0
0 0 Hθθ + 1









1/gr 0 0
0 1/gz 0
0 0 1/gθ



 ,

=







Hrr+1
gr

Hrz

gr
0

Hzr

gr

Hzz+1
gz

0

0 0 Hθθ+1
gθ






. (A.4)

So, we obtain

G
−T (H+ I)T (H+ I)G−1









(Hrr+1)2+H2
zr

g2
r

Hrz(Hrr+1)+Hzr(Hzz+1)
grgz

0
Hrz(Hrr+1)+Hzr(Hzz+1)

grgz

(Hzz+1)2+H2
rz

g2
z

0

0 0 (Hθθ+1)2

g2
θ









. (A.5)

The use of equation (A.5) and equation (A.2)2 in equation (A.1) therefore yields, for the
problem considered, expressions for the components of the Green strain tensor in cylindrical
coordinates, namely



















































Err = 1
2g2

r

[

(

∂ur

∂R
+ 1

)2
+

(

∂uz

∂R

)2 − g2
r

]

,

Ezz = 1
2g2

z

[

(

∂uz

∂Z
+ 1

)2
+

(

∂ur

∂Z

)2 − g2
z

]

,

Eθθ = 1
2g2

θ

[

(

ur

R
+ 1

)2 − g2
θ

]

,

Erz = Ezr = 1
2grgz

[

∂ur

∂Z

(

∂ur

∂R
+ 1

)

+ ∂uz

∂R

(

∂uz

∂Z
+ 1

)]

,

Erθ = Eθz = Ezθ = Eθz = 0.

(A.6)

The strain-energy function used for modelling the response of the material out of the
grown stress-free state Br is of Fung exponential type, namely

ψ =
C

2
exp

(

a1E
2
rr + a2E

2
zz + a3E

2
θθ + a4E

2
rz + a5E

2
rθ + a6E

2
zθ

)

, (A.7)

with C, a1, ..., a6 denoting material parameters. The Piola stress, in the incompressible case,
is provided by the relation

P = J
∂ψ(Fr)

∂Fr
G−T − JpF−T

r G−T , (A.8)

where p corresponds to a Lagrange multiplier associated with the incompressibility constraint.
This can be rewritten as

P = J
∂ψ(Fr)

∂Fr

G−T − Jp (H + I)−T . (A.9)

The quantity (H + I)−T has the following component, in cylindrical coordinates,

(H + I)−T







1+Hθθ+Hzz+HθθHzz

K

−Hzr(1+Hθθ)

K
0

−Hrz(1+Hθθ)

K
1+Hθθ+Hrr+HθθHrr

K
0

0 0 1
1+Hθθ






, (A.10)
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where K = (1 +Hθθ)(1 +Hrr +Hzz +HrrHzz −HrzHzr). Thus the cylindrical components
of the Piola stress P are written as







































































Prr = 2gθgza1Errψ − p grgθgz

(

1+Hθθ+Hzz+HθθHzz

K

)

,

Pzz = 2grgθa2Ezzψ − p grgθgz

(

1+Hθθ+Hrr+HθθHrr

K

)

,

Pθθ = 2grgza3Eθθψ − p grgθgz

(

1
1+Hθθ

)

,

Prz = 2grgθgza4Erzψ + p grgθgz

(

Hzr(1+Hθθ)
K

)

,

Pzr = 2grgθgza4Erzψ + p grgθgz

(

Hrz(1+Hθθ)
K

)

,

Prθ = Pθr = Pzθ = Pθz = 0.

(A.11)

By using equation (A.6), this may be rewritten as
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
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















Prr = gθgz

g2
r

a1

[

(

∂ur

∂R
+ 1

)2
+

(

∂uz

∂R

)2 − g2
r

]

ψ − p grgθgz

K

(

1 + ur

R
+ ∂uz

∂Z
+ ur

R
∂uz

∂Z

)

,

Pzz = grgθ

g2
z

a2

[

(

∂uz

∂Z
+ 1

)2
+

(

∂ur

∂Z

)2 − g2
z

]

ψ − p grgθgz

K

(

1 + ur

R
+ ∂ur

∂R
+ ur

R
∂ur

∂R

)

,

Pθθ = grgz

g2
θ

a3

[

(

ur

R
+ 1

)2 − g2
θ

]

ψ − p grgθgz

(

R
R+ur

)

,

Prz = gθ a4

[

∂ur

∂Z

(

∂ur

∂R
+ 1

)

+ ∂uz

∂R

(

∂uz

∂Z
+ 1

)]

ψ + p grgθgz

K
∂uz

∂R
(1 + ur

R
),

Pzr = gθ a4

[

∂ur

∂Z

(

∂ur

∂R
+ 1

)

+ ∂uz

∂R

(

∂uz

∂Z
+ 1

)]

ψ + p grgθgz

K
∂ur

∂Z
(1 + ur

R
),

Prθ = Pθr = Pzθ = Pθz = 0,

(A.12)

where K =
(

1 + ur

R

) (

1 + ∂ur

∂R
+ ∂uz

∂Z
+ ∂ur

∂R
∂uz

∂Z
− ∂ur

∂Z
∂uz

∂R

)

.

The equilibrium equations are given by the relation Div P = 0. In cylindrical coordinates,
this provides equations in the radial, circumferential and axial directions, namely

0 =
1

R

∂(RPrr)

∂R
+

1

R

∂Pθr

∂Θ
+
∂Pzr

∂Z
− Pθθ

R
, (A.13)

0 =
1

R

∂(RPrz)

∂R
+

1

R

∂Pθz

∂Θ
+
∂Pzz

∂Z
, (A.14)

0 =
1

R

∂(RPrθ)

∂R
+

1

R

∂Pθθ

∂Θ
+
∂Pzθ

∂Z
+
Pθr

R
. (A.15)

The solution of the circumferential equation (A.15) is trivial, while the radial equation (A.13)
and the axial equation (A.14) may be rewritten as

0 =
1

R

∂(RPrr)

∂R
+
∂Pzr

∂Z
− Pθθ

R
, (A.16)

0 =
1

R

∂(RPrz)

∂R
+
∂Pzz

∂Z
, (A.17)

where the specific forms for Prr, Pzr, Pθθ, Prz and Pzz are provided by equation (A.12).
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In addition, the Eshelby tensor is provided by the relation E = FT
r (∂ψ/∂Fr) − ψI. The

components of the elastic tensor Fr, in cylindrical coordinates, may be written as

F
T
r = G

−T
F

T = G
−T (H + I)T =





1/gr 0 0
0 1/gz 0
0 0 1/gθ









Hrr + 1 Hzr 0
Hrz Hzz + 1 0
0 0 Hθθ + 1



 ,

=







Hrr+1
gr

Hzr

gr
0

Hrz

gr

Hzz+1
gz

0

0 0 Hθθ+1
gθ






, (A.18)

while the functional derivative ∂ψ(Fr)/∂Fr, when written in terms of the Fung exponential
strain energy function, takes the form

2ψ





a1Err a4Erz 0
a4Ezr a2Ezz 0

0 0 a3Eθθ



 . (A.19)

We therefore obtain
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(
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(
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.

Finally, the cylindrical components of the Eshelby tensor may be expressed as
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(
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Erθ = Eθr = Ezθ = Eθz = 0.

(A.20)

It is worth expressing as well the components of the Cauchy stress for the problem
considered here. Recalling that, in the incompressible case, the Cauchy stress is given by
T = (∂ψ/∂Fr)F

T
r − pI, the components of the Cauchy stress in cylindrical coordinates can
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be written as
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(
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(
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(A.21)
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