NUMERICAL SIMULATION OF UNSTEADY FLOW AT PO RIVER DELTA

By D. Ambrosi,' S. Corti,> V. Pennati,’ and F. Saleri*

ABSTRACT: This paper describes a numerical simulation of the flow at the delta of the Po River, the main
Italian river. We take into account a portion of the river that is 20 km long, characterized by a complex geometry
consisting of narrow bends and strong gradients in the profile of the riverbed. To account for the presence of
tidal effects, a nonstationary solution is sought. The considered model consists in the classical two-dimensional
(2D) Saint-Venant equations, written in conservation form. This system of partial differential equations is dis-
cretized by a finite-element scheme that has some particularly attractive features for river flow. The accuracy of
the scheme is verified on a few test cases, then a numerical simulation of the flow of the Po over three days is
implemented. The numerical results are then compared with the experimental measures and discussed in the
light of the assumptions made in the construction of the model.

INTRODUCTION

The Po River is both the longest Italian River and the one
with largest discharge, so that the study and, possibly, predic-
tion of its flow is an obvious major goal. The Italian Energy
Supply Comission (ENEL) has always had an interest in the
simulation of flows in rivers and basins. In particular, the pres-
ence of a power station in the vicinity of the delta of the Po
River makes the simulation of the flow in this region desirable.
ENEL has carried out, over many years, a large number of
experimental measures for this purpose.

To carry out a numerical simulation of the flow at the Po
delta, in the present work, we consider the classical shallow-
water model (SWE) and its integration by a finite-element
scheme. The finite-element method, although not as popular
as finite differences, has already been used for the numerical
integration of the shallow-water equations by several research-
ers; some of the approaches are described in Lynch and Gray
(1979), Di Monaco and Molinaro (1988), and Leclerc et al.
(1990). These approaches differ mainly in the choice of a time-
advancing scheme ranging from a Newton-Raphson lineari-
zation of the whole system to a reformulation of the differ-
ential problem in terms of a generalized wave equation that
replaces the continuity equation. The time-advancing method
adopted here is of fractional step type and closely resembles
the scheme proposed by Benque et al. (1982), using the finite-
difference technique. Here it is revisited in a finite-element
framework. The main idea underlying this formulation is the
splitting, at every time step, of the equations of the differential
system to decouple the physical contributions. In particular,
the wave traveling at speed \/g_h, which is the most restrictive
with respect to the maximum time step allowed in this kind
of problem, is treated implicitly with a low computational cost.
In the discussion of the numerical results, it will be shown that
this method, coupled with a Lagrangian treatment of the con-
vective terms, totally avoids the oscillations for the velocity
that are known to plague the finite-element approximations of
the shallow-water equations written in primitive form (Wes-
terink et al. 1994; Walters 1983).

One of the aims of the present work is to check the degree
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of confidence one can have in a two-dimensional (2D) model
for the simulation of a real unsteady river flow with a complex
delta and riverbed profile. This geometry of the Po River is
well known and measures for the bottom depth, elevation, and
unit-width discharge are available. The limitations of the shal-
low-water model in this particular simulation are well known,
such as the poor resolution of the dynamics of the bottom
friction. However, the practical efficiency of this model has
been highlighted by the good correspondence obtained be-
tween numerical and experimental results. This is achieved by
using a robust time-advancing scheme in the numerical model.
An additional motivation for the study of a 2D model is the
evident savings in computational cost; in particular, a three-
dimensional (3D) code expected to solve a real unsteady flow
on a parallel architecture relies on a 2D model, which can run
efficiently on a workstation in a few hours. In the final section,
we will discuss the computational efficiency of this approach.

SHALLOW-WATER EQUATIONS

SWE in conservative differential form reads (Cunge et al.
1981)
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where q(x, y, ) = (g, ¢,)" = unit-width discharge; & = elevation
over a reference plane; h = total depth of the water; . = dis-
persion coefficient; g = gravity acceleration; {) = angular ve-
locity of the earth; and K = Strickler coefficient. A schematic
representation of some of these quantities may be seen in
Fig. 1.

According to the theory of characteristics, if p = 0 and the
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FIG. 1. Elevation and Depth
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flow is subcritical, two boundary conditions are to be pre-
scribed at the inflow and one at the outflow. However, when
considering the case p # 0, the presence of the diffusion term
in system (1) and (2) requires the imposition of a proper
boundary condition for the unit-width discharge on the whole
boundary and, moreover, as p is usually very small in the
applications, it is natural to require that these boundary con-
ditions recall the inviscid case as the viscosity coefficient tends
to zero. Therefore, the boundary conditions applied here are
as follows: prescribe as many Dirichlet conditions as are re-
quired by the characteristic theory, plus one Neumann bound-
ary condition for each component of the unit-width discharge
where its value is not yet imposed (Oliger and Sundstrom
1978). Note that the weak Neumann condition on q arises
naturally in the integration by parts of the diffusive term, when
considering the weak form of (1).

NUMERICAL SCHEME

The main idea behind the adopted time-advancing scheme
is to split the equations at every time step to decouple the
physical contributions. The discretization in time of the system
(1) and (2) leads to the following equations to be solved:

Step 1
vn = q"/h", vn+1/3 - vn O x (3)
Step 2
n+2/3| n+1/3
Q" = VTR @+ Arg q hlh!/?KZ | = q
+ At[V'(qu"+l/3) — m X qn+113] (4)

Step 3

n+2/3

qn+l — qn+2/3 + Atgth§n+l _ qhn (§n+l _ gn) =0 (5)

§n+1 — gn + AtV'q"+l =0 (6)

The symbol v* O X indicates the value of the velocity ob-
tained by a Lagrangian integration, using the method discussed
in the following section. At the third step, (5) and (6) are
decoupled by subtracting the divergence of (5) from (6). One
then solves the following Helmholtz-type equation:

n+2/3

§n+l - (A:)’-V-(ghnvgnﬂ) + AV (_‘_IT n+l) =g

qn+2/3
n+2/3

AV - + AV (—-—h,, ) (7)
This new elevation is then used to solve (5).

The spatial discretization of (4)—(6) is based on the Galer-
kin finite-element method; the basic theory of the Galerkin
approach may be found, for example, in Zienkiewikz and Tay-
lor (1989), Quarteroni and Valli (1994) and, particularly re-
ferring to SWE, in Agoshkov et al. (1993). The weak for-
mulation of (3)~(6) is accomplished in a standard way and is
not shown here. An important aspect of the spatial discreti-
zation of (4)—(7) is that two different spaces of representation
have been used for the unknowns: the elevation is interpolated
by P1 functions, and the unit-width discharge is interpolated
by P2 functions. As usual, P1 is the set of piecewise linear
functions on triangles; P2 is the set of piecewise quadratic
functions on triangles. The choice of these interpolation
spaces, first suggested in Walters (1983), eliminates the spu-
rious oscillations that arise in the elevation field when a P1-
P1 representation is used. To our knowledge, no theoretical
explanation of incompatibility between spaces of representa-
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tion of the unknowns has yet been stated theoretically for
SWE.

The main advantage of this fractional-step procedure is that
the wave traveling at speed \/E}; is decoupled in the equations
and treated implicitly. Therefore, the Courant-Friedrichs-Lewy
condition due to the celerity is cheaply circumvented. More-
over, as the Lagrangian integration is unconditionally stable
and all the terms appearing in (4) are discretized implicitly,
the resulting scheme is unconditionally stable.

A drawback of a fractional-step scheme, as the one adopted
here, is that this scheme is only first-order accurate in time.
However, this is not an actual disadvantage as the model deals
with tidal phenomena that vary slowly in time. From a math-
ematical point of view, in this fractional-step framework, one
requires, a priori, that the boundary conditions to be satisfied
by the collection of fractional steps coincide with the boundary
conditions to be satisfied by the original differential system,
as described previously. Unfortunately, at step 3 the solution
of the elliptic in (7) requires the imposition of proper boundary
conditions for the elevation on the whole boundary and, in the
practical applications, this may not be the case. To overcome
this difficulty, we relax the original requirement, and at this
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FIG. 3. Jet Circulation in Reservoir——Velocity Field



step we impose a Neumann condition on the part of the bound-
ary where the value of the elevation is not originally given. In
the test cases, one can observe that this procedure works well
in practice.

In the integration of the weak formulation of (4) and (5),
the lumping technique has been adopted for the mass matrices
of q. By the term ‘‘mass lumping,’”’ we intend the use of a
low-order quadrature formula for the evaluation of the inte-
grals involving the nondifferential terms, yielding a diagonal
stiffness mass matrix. It is well known that for P2 elements a
nontrivial diagonalization has to be performed (as may be the
case of P1); otherwise a singular matrix is recovered [see Ap-
pendix 8 in Zienkiewikz and Taylor (1989)]. This difficulty
has been overcome in the following way. Each triangle of the
mesh is divided into four parts by connecting the midpoints
of the sides; it is then possible to use the three vertex-points
rule on each subtriangle. The total integral is then the sum of
the subintegrals and automatically leads to a diagonal mass
matrix.

A possible objection to this approach is that the mass-lump-
ing technique is known to produce large phase errors for un-
steady problems, which are precisely the ones we are inter-
ested in. However, at step 2 no wave-type phenomena are
involved, and the dissipation coefficient is usually so small
that the diffusive term can be treated explicitly without re-
sulting in any additional unphysical constraints. On the other
hand, when considering (5) for given £*', the equation is ex-
plicit.

The computational effort required by this scheme for the
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FIG. 4. Detail of Regular Mesh Used in Test Case 2
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solution of algebraic systems therefore consists of the inver-
sion of one symmetric matrix, with size coinciding with the
number of P1 nodes.

Lagrangian Scheme for Convective Terms

At step 1, the advective part of the momentum equation is
integrated by a Lagrangian scheme (Benque et al. 1982; Pi-
ronneau 1982). Rewriting the convective terms of (1) in La-
grangian form results in the solution of two, coupled, ordinary
differential equations

av[X(@), f)/dt = 0 ®)
dX/dt = v[X(@), 1] €)]

The curve X(#) is the characteristic line, and its slope is the
velocity itself so that, at this stage, it coincides with the path-
line. The velocity field plays a double role: it is the unknown
to be determined as well as the slope of the characteristic
curve. As we are interested in computing the solution at the
nodes of the mesh, let us consider the node with coordinates
y. The initial condition associated with (9) must be

x(trH-l) = y

To integrate (9), we need to know the slope of the charac-
teristic curve at y at time £"*', which is unfortunately the un-
known velocity itself. Therefore, the slope of the characteristic
line has to be approximated in some way, for instance by a
zero-order extrapolation in time. Assuming the use of a sec-
ond-order Runge-Kutta scheme to integrate (9), the algorithm
is as follows:

(10)

A
K=y -3 v (an
X =y — Av'(X) (12)
and (8) immediately gives
vn+1/3(y) - v[x(tn-H)’ tn+1] = V[X(tn), tn] (13)

As the Lagrangian integration requires the primitive form
of the equations, the fourth term that appears on the left side
of (5) has been added to ensure consistency with (1), which
is written in conservation form. We note that, apart from this

(b)

4.040

4.020

é

3.980

3.960
0.0

100.0 200.0

x (m)

FIG. 5. Water Elevation and Unit-Width Discharge for 1D Test Case
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term, the discrete counterpart of (3)—(6) requires the inversion
of symmetric matrices only. However, this consistency term is
of minor relevance in all the flows in which the typical time
scale is much larger than the time step (as is the case of tides).
Therefore, the usual conjugate gradient algorithm can be con-
fidently used in this kind of simulation.

The Lagrangian discretization of the transport terms has
many attractive features: it avoids spurious oscillations arising
due to the centered treatment without the inclusion of any
nonphysical viscosity coefficients and it eliminates any restric-
tions on the time step. However, when using unstructured
grids, the pathline reconstruction requires the knowledge of
the element in which the foot of the pathline falls. This re-
search consists of a greater algorithmic effort than that on
structured grids. In practice, this difficulty has been overcome
in the code by defining an ordered list containing all the ele-
ments that are adjacent to a node or to a given element. In
this way, the search for the element in which the pathline foot
falls is restricted to clusters of elements. To avoid that the foot
of the reconstructed pathline falls outside of the domain, the
rigid boundary of the domain is always assumed to be a stream
line.

It is worthwhile to remark that the quadratic representation
of velocities, that has been adopted for compatibility reasons,
fully satisfies the accuracy requirements recommended for the
reconstruction of the pathline (Benque et al. 1982).

TEST CASES

To validate the code, we consider two typical situations that
occur in river flow. These tests have been specifically designed
to test the discretization of the nonlinear terms in the equations
and the mass-conservation property of the numerical scheme.
In addition, they are used to test for the presence of spurious
oscillations arising due to the boundary conditions.

The first test is the simulation of a steady jet in a circular
reservoir; the details of this classical test case as well as the
experimental results can be found in Falconer (1980). The ge-
ometry of the boundary and the computational grid are shown
in Fig. 2. We use an eddy coefficient p. = 2.5 10™* m%s and
a time step of 2 s. The computed velocity field is shown in
Fig. 3. The solution slightly differs from the one shown in
Benque et al. (1982) and Faiconer (1980); the location of the
gyre centers is again sufficiently well described, but the max-
imum computed velocities in the gyres here fit better with the
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FIG. 6. Contour of Po River Delta
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experimental ones. In particular, the cited references show an
underestimation of the velocity in the region near the inflow,
which is not present here. The reason of this is probably two-
fold: the quadratic representation of the discharge yields to a
more accurate computation of the velocities and, above all, the
use of an unstructured grid avoids the staircase boundary typ-
ical of finite-difference applications, so that the free-slip
boundary conditions at the wall can be fulfilled here.

The second test case that we consider is the steady one-
dimensional (1D) flow in a prismatic channel, without diffu-
sion and bottom friction effects. Under these hypotheses SWE
reduces to

q=(Q,0); h=hx (14)
(< dh_ o, 9
dx<h)+ghdx—ghdx (15)

where Q = (constant) unit-width discharge. If the bottom field
is defined as

- _gfr 1
hox) = H + yx = 3 [H, o yx),] (16)
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0.4 m/s

FIG. 8. Velocity Fleld in Areas G and F Computed on Coarse Mesh

where H and vy = constant values, it can be easily verified that
(15) has the following exact solution:

h(x)=H + vyx; qx)=0Q an

This test case allows for the verification of the accuracy of the
scheme when a strong gradient is present in the bathymetry,
as often occurs in rivers.

The computation for this test has been carried out using an
inflow depth H = 4, an inflow unit-width discharge Q = 4, and
a bottom slope vy = 0.06. Although this test is essentially 1D,
an analogous case for the 2D code has been run on a channel
300 m long and 4 m wide. The computational mesh is almost
regular; it is composed by 580 elements, and a detail of it may
be seen in Fig. 4.

For the boundary conditions, the value of Q has been im-
posed at the inflow, and the value of § has been imposed at
the outflow. Fig. 5 contains two graphs: a plot of the exact
elevation versus the computed elevation and a plot of the com-
puted unit-width discharge. The former plot evidences the

good accuracy of the scheme for the elevation as well as the
fulfillment of the mass-conservation property with a small loss
of 0.5% for this mesh.

It should be mentioned that a very large number of time
steps were required to reach the steady-state solution, since no
mechanism to dissipate the spurious components of the initial
conditions is present in this computation.

DELTA OF PO RIVER

In the present study, we apply the numerical scheme pre-
viously described for the simulation of the flow at the delta of
the Po River, i.e., the final 20 km of its length. A plot of the
river contours together with a very rough description of the
bottom may be seen in Fig. 6. In this map, the areas that are
marked by letters denote regions where experimental measures
are available or where the flow field has some particular fea-
tures that will be discussed.

This final part of the Po River is characterized by an intri-
cate pattern and a strongly varying bottom that make the nu-
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FIG. 9. Velocity Fieid in Areas G and F Computed on Fine Mesh

merical simulation of the flow nontrivial. The width of the
river at the inflow is 379 m; the depth varies between a few
centimeters and 17 m. Below the first bifurcation, the river has
a narrow bend. Here the river width decreases, the depth
strongly increases (area G of Fig. 6), and one expects the ve-
locity v and especially the unit-width discharge q to assume
large values and gradients.

The boundary conditions are chosen to fit our final task: the
simulation of the flow evolution governed by the tidal-eleva-
tion variation corresponding to the experimental data availa-
ble. Therefore, we impose the elevation everywhere at the
open boundary and, if a boundary node is found to be of in-
flow type, the tangential velocity component is prescribed to
be zero. No slip-boundary conditions have been used on the
closed boundary.

Two computational meshes have been used: a coarse one
with 3,185 elements and 2,172 vertices (with a minimum tri-
angle diameter of 18 m) and a fine one with 10,602 elements
and 6,481 vertices (with a minimum triangle diameter of 8 m).
A detail of the fine mesh in two crucial areas may be seen in
Fig. 7; the chosen regions correspond to those areas indicated
by E and G in Fig. 6, respectively.
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As a starting point for the simulations, we consider the so-
lution of the steady-state flow field computed with the bound-
ary conditions at the initial time used in the unsteady simu-
lation. Considering the open river boundaries starting from the
bottom in Fig. 6 and rotating in a counterclockwise sense, the
imposed elevations for the steady-state computations are then
0.46, 0.35, 0.30, 0.41, 0.32, and 0.38 m.

NUMERICAL RESULTS

For the present computation, the Strickler coefficient has
been set equal to 42 and the value of the viscosity coefficient
is 0.1. A time step of 200 s has been used for the computations
on the coarse mesh, and a time step of 100 s has been used
for those on the fine mesh.

Figs. 8 and 9 show the velocity vectors computed by the
code in two regions that have been indicated in the map by
the letters G and F. For the sake of clarity, only a subset of
the velocity vectors is plotted in these pictures.

The computed velocity field is subcritical everywhere with
the largest Froude number in the whole domain being equal
to 0.61. As would be expected, the velocity has strong gra-
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FIG. 10. Elevation of Water Level in Areas G and F

dients due to the simultaneous occurrence of three factors: the
aspect ratio of the river is large, the bottom shows a strong
variation, and the contour has a sharp elbow. In particular, in
area G the bottom depth varies abruptly from 2 to 18 m, and
in area F the river width collapses from 100 to 10 m. The
meandering of the river makes the cross derivatives of the
convective term (i.e., v du/dy and u dv/dx) dominant, which
are of secondary importance when the river contour is straight.
Therefore, an accurate treatment of the convection terms is
necessary for the simulation of the local characteristics of the
flow.
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The velocity field resulting from the computation agrees
with the preceding observations and confirms the good prop-
erties of stability and accuracy of the scheme. In fact, no os-
cillations appear neither in the velocity field and in the ele-
vation, as may be seen in the 3D plot of Fig. 10. The velocity
field computed on the fine mesh in Fig. 9 reveals two small
recirculation zones that are not detected in the computation
with the coarse mesh. The effects of inertia are also detectable
by noting the variation of the velocity strength across the river
section below a bend. However, these differences between the
coarse and fine mesh occur on a local scale and do not affect
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the total discharge at open boundaries, which is equally well
computed by using both meshes.

The numerical simulation of the river flow over three days
has been carried out using the same computational parameters
as those previously specified and by imposing the experi-
mental values of the elevation at the open boundary that
evolve in time. The maximum amplitude of the tidal waves at

the river outflow is 63 c¢m, which is a typical Mediterranean
value. The results of the computation obtained by using the
two meshes do not present relevant differences at the nodes
where experimental measures are available; therefore, only the
results relative to the coarse mesh will be shown. With refer-
ence to the computational cost, 50 min on a HP730 have been
necessary to simulate three days of real flow.

In Fig. 11, the computed and experimental elevation values
on point D are plotted. The two curves agree rather well; the
discrepancies are probably not due to the numerical method,
as a very similar behavior has also been found using com-
pletely different approaches [as discussed in Ambrosi et al.
(1994)]. ,

Figs. 12 and 13 compare numerical and experimental results
for the magnitude of the unit-width discharge vector corre-
sponding to points located in the areas B, C, and A, respec-
tively. Note that the curve between ¢t = 95,000 s and ¢ =
115,000 s for these plots is relative to the upstream flow. When
comparing the numerical and experimental data, one should
take into account the following two observations. First, the
experimental velocity measures may be inaccurate due to small
variations of the position where the measurement occurred.
Second, the computational results are strongly dependent on
the calibration of the Strickler coefficient, which in our sim-

0.8
0.6 L o
esxperiment
- === numerical
o.4 -
E
§ 0.2 -
0.0 + p
-0.2 r -
-0'40.0 100000.0 200000.0 300000.0 400000.0
seconds
FIG. 11. Experimental and Numerical Values of Elevationin D
2.0 +
4
! ;|
i \
1.8 - \ \
| :
H :
\ |
: :
—_ :
E 10 a
= '
i
}
:
o.s8 [ |
H
!
©-%% .5 100000.0

expertiment
- - - - computationr

200000.0

300000.0 400000.0

time (=)

FIG. 12. Experimental and Numerical Values of Unit-Width Discharge in B

@

4.0 y T T

3.0 b

] 3
80000.0  100000.0
time (8)

%0000

®)

1.8

0.6

—— experiment
---- computation

$80000

250000.0 300000.0
time (8)

350000.0

FIG. 13. Experimental and Numerical Values of Unit-Width Discharge in C and A

742 / JOURNAL OF HYDRAULIC ENGINEERING / DECEMBER 1996 .



ulation has been set ad hoc to fit the measured discharge in
the steady-state calculations. The diagrams for the area of in-
flow (A) and for the middle of the considered domain (B)
show a satisfactory agreement between computational and ex-
perimental results. On the other hand, the diagram for the area
of outflow (C) shows large discrepancies. This fact is partic-
ularly disappointing because the greater difference occurs in
the region where the current is upstream, in particular for the
nodes nearer to the sea where the prediction of salted water
flow is most interesting from an engineering point of view.
However, one of the possible explanations for this effect is
that SWE in (1) and (2) assumes that density is constant; how-
ever, in reality, in region C fresh and salted water are present
so that the measured density is variable as a function of the
salinity. Therefore in such a region, a more realistic model
should take into account the dynamics of the salinity field so
that the water density becomes a variable dependent on space.

CONCLUSIONS

A finite-element method for the shallow-water equations has
been presented and has been preliminarily tested in two simple
geometries. The code has then been applied to the simulation
of the flow of the Po River at the delta, carrying out a com-
parison between the numerical results and the experimental
measures. The following remarks arise.

The geometrical flexibility ensured by a finite-element ap-
proach has been extremely useful in handling the complicated
geometry of the Po River.

The use of the Lagrangian step allows an accurate and ef-
ficient integration of the convective terms. The fractional-step
method used to advance in time ensures efficiency and uncon-
ditional stability at a low computational cost. When there are
river bends (as in a present case), the role of inertia is visible
in the results, and the use of a fine enough mesh reveals re-
circulation zones.

The use of a P1-P2 representation is known to be necessary
to avoid spurious oscillations in the elevation. Here it is cou-
pled with a Lagrangian discretization of the convective terms
and a fractional-step time-advancing scheme that also elimi-
nates any oscillations in the velocity.

The computational cost of this approach is very competitive,
requiring only one hour to compute a real-life unsteady flow
in a complicated geometry over three days.

The comparison with experimental results is rather satisfac-
tory in regions sufficiently far from the mouths; near to the

shoreline a more accurate physical model is probably neces-
sary, and will be addressed in future.
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