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The Decimal System

 Consider value 234, there are:
 2 hundreds
 3 tens
 4 units

that is: 2 x 100 + 3 x 10 + 4 x 1
but 100, 10, and 1 are all powers of 10
so value 234 can be written as:
2 x 102 + 3 x 101 + 4 x 100
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The Decimal System

 That recurring number 10 is called the 
base of the numbering system

 The usual numbering system is then 
called base 10 or decimal

 The decimal system is a positional
numbering system, this means that the 
position of each digit implies the 
multiplication to a corresponding power 
of the base (the weight of that position)
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The “base-n” System

 The base of a numbering system can be 
any integer value greater than 1

 Digits can have values from 0 to 
n –1 (e.g. the base-10 system has 10 
possible digits, from 0 to 9, for bases 
>10 see the hexadecimal system)

 When not clear from the context, the 
base of a value must be indicated with a 
subscript value: 23410
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The “base-n” System

 Base-n systems are positional
 The same value is expressed in 

different ways depending on the 
numbering system used

 We want to convert a value from a 
generic base n to base 10 because we 
are acquainted only with the latter

 Some base-n numbering systems are 
more suited for special purposes
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The Binary System

 Binary means base-2
 There are only 2 digits: 0 and 1
 The digits of a binary value are called 

bits (bit comes from “BInary digiT”)
 A value expressed in the binary system 

is a sequence of zeroes and ones:
1001012

 The binary system is suited for 
computers
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The Binary System

 What (decimal) value correspond to
1001012?

 From the definition of positional 
numbering system: to convert a base-n 
value to base 10, each digit must be 
multiplied by the power of the base
(2 in this case) corresponding to the 
digit position
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The Binary System

 1001012 = 1 x 25 +    32 +
0 x 24 +    0 +
0 x 23 +    0 +
1 x 22 +    4 +
0 x 21 +    0 +
1 x 20 =    1 =

-----
3710

5 4 3 2 1 0

write powers right to left on 
each digit starting from unit
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The Binary System

 A “bit” is a small quantity (!), so many 
bits are grouped together to build a 
more significant entity

 A byte is a sequence of 8 bits
 10100011
 00101001
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The Binary System

 Other bit groupings are:
 A nibble is composed of 4 bits
 A word is composed of 2 bytes (16 bits)
 A double word (dword) is composed of 2 

words (4 bytes, 32 bits)
 A quad word (qword) is composed of 4 

words (8 bytes, 64)
The term word has a completely different 

meaning when dealing with computer 
architecture
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The Binary System
 For every bit sequence:

 MSB: Most Significant Bit
The leftmost bit is the most important of 
the sequence because it multiplies the 
highest power of the base
10010010…10101001

 LSB: Least Significant Bit
The rightmost bit is the less important of 
the sequence because it multiplies the 
lowest power of the base (0)
10010010…10101001
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The Octal System

 There are 8 digits:
from 0 to 7 (no 8 nor 9 digits!)

 Example
 36428

 Conversion to base 10
 36428= 3 x 83 + 6 x 82 + 4 x 81 + 2 x 80

= 195410

 3848= NOT AN OCTAL NUMBER (8?)

3 2 1 0
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The Hexadecimal System

 16 digits: 0 to F (subscript 16 or H)
 The first 10 digits are the same as the 

decimal system, the other 6 digit 
symbols are taken from the alphabet:

AH  1010 (digit “A”, NOT letter “A”)
BH  1110
CH  1210
DH  1310
EH  1410
FH  1510
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The Hexadecimal System

 C1B8H = 12 x 163 + 1 x 162 + 11 x 161

+ 8 x 160 = 4959210

3 2 1 0
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Doubling and Dabbling

 Fast conversion to base 10 of small 
binary values (it could be used with 
other bases and big values, but memory 
computation is not such effective):
 multiply the first (leftmost) bit (MSB) by 

the base (2) and add the second bit
 multiply the value just calculated by the 

base and add the third bit
 continue until the LSB is added
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Doubling and Dabbling

 Example
1001012

 leftmost bit (MSB) is 1
 1 x 2 = 2 + 0 = 2
 2 x 2 = 4 + 0 = 4
 4 x 2 = 8 + 1 = 9
 9 x 2 = 18 + 0 = 18
 18 x 2 = 36 + 1 = 37
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Conversion from base 10 to n

 For integer numbers only:
 Divide the value by the target base, 

computing an integer division, you get a 
quotient (result) and a remainder

 Divide the previous quotient by the target 
base, you get a quotient and a remainder

 Continue until the quotient is zero
 Write (from left to right) the remainders 

from the last computed to the first one
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Conversion from base 10 to n

 Example: convert 3710 to base 2
37  2

1 18  2
0 9  2

1 4  2
0 2  2

0 1  2
1 0

divisor       dividend

remainder quotient

remainders

100101
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Conversion from Base n to m

 Given a number in base n, to convert it 
to base m:
 convert the number from base n to base 10
 convert the just calculated number from 

base 10 to base m
 It is always possible to pass through the 

intermediate base 10, but sometimes 
this is not the easiest and fastest way

20

Conversion Exercises

 Convert the values as requested
 10610 ()2

 3510 ()2

 6410 ()2

 456 ()2

 177 ()2

 238 ()2

 20710 ()2

 B216 ()10

 478 ()10

 7310 ()8

 447 ()3

 1010012 ()10

 111112 ()10

 100002 ()10

 100002 ()4

 16110 ()16
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Conversion Exercises

 Convert the values as requested
 10610 11010102

 3510 1000112

 6410 10000002

 456 111012

 177 IMP.
 238 100112

 20710 110011112

 B216 17810

 478 3910

 7310 1118

 447 10123

 1010012 4110

 111112 3110

 100002 1610

 100002 1004

 16110 A116
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Conversion from Bases 2n

 To convert a number from base n to 
base m, when BOTH n and m are 
powers of 2 (e.g. 2,4,8,16), it is easier 
and faster to pass through base 2

 Every digit in a 2x base requires at least 
x bits (possibly starting with zeroes):
58 = 1012 28 = 0102
B16 = 10112 216 = 00102

23

Conversion from Bases 2n

 A number in base-2x can be converted 
to base 2 by simply substituting each of 
its digits with the corresponding binary 
value (each composed of x bits):
528 = [101][010]2 = 1010102
B216 = [1011][0010]2 = 101100102
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Conversion from Bases 2n

 A number in base 2 can be converted to 
base-2x by grouping its bits from right 
to left (each group composed of x bits) 
and substituting each group with the 
corresponding base-2x digit:
1010102 = [101][010]2 = 528 
101100102 = [1011][0010]2 = B216
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Conversion from Bases 2n

 If the leftmost group has less than x
bits, an appropriate number of zeroes 
are added to the left part:
100102 = [010][010]2 = 228 
1100102 = [0011][0010]2 = 3216
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Conversion from Bases 2n

 Example
Convert number 3CB21F16 to base 8

3      C      B       2     1       F 
0011 1100 1011 0010 0001 1111
0011 1100 1011 0010 0001 1111

1    7    1     3    1    0     3    7    

171310378
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Conversion from Bases 2n

 The most important base in Computer 
Science is 2, but it is difficult and long to 
write and read long binary values

 Base 16 and 8 are so often used because 
it is simple and immediate to convert a 
value between them and base 2 and 
because of the compact notation:
it is much easier to read and write a 32 
bit value like 95DBA6CF instead of 
10010101110110111010011011001111
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Exercises on Conversions

 Convert the values as requested
 10010100101001012 ()8

 10010100101001012 ()H

 33258 ()2

 33258 ()4

 33258 ()16

 13348 ()16

 A11616 ()8

 133648 ()16
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Exercises on Conversions

 Solutions
 001|001|010|010|100|1012 1122458

 1001|0100|1010|01012 94A5H

 33258 0110110101012

 33258 1231114

 33258 6D516

 13348 2DC16

 A11616 1204268

 133648 16F416
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Powers of 2
 20=110 =12 29=512
 21=210 =102 210=1024
 22=410 =1002 211=2048
 23=810 =10002 212=4096
 24=1610 =100002 213=8192
 25=3210 =1000002 214=16384
 26=6410 =10000002 215=32768
 27=12810 =100000002 216=65536
 28=25610 =1000000002

 Note that 2n in binary is 1 followed by n zeroes 
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Range

 With n bits, just a limited subset of 
values can be represented

 There are 2n different combinations of 
n bits, each one is a binary number:
from 000...000    0

...             ...
to 111...111    2n –1
Thus the range of a binary number 
composed of n bits is:  0  2n –1

2n numbers
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Number of bits required
 Given a decimal value N, the same 

value converted to binary requires
a minimum of bits equal to:

where the ceiling operator 
returns the minimum integer greater 
then or equal to a (e.g. 2.1  3,   
2.9  3,   2.0  2)

 )1(log2  Nn

 a
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Number of bits required

 A simpler approach uses (wise) trial:
 count the digits (d ) of the decimal num. N
 each digit requires about 3 bits (good 

approximation up to 20-30 bit numbers), so 
the approximate number of bits is: x = 3d

 compare N to powers 2n with n ranging 
from (x-1) to (x+1) to find the minimum n
so that 2n  N

 Note: if needed, consider extending n to 
(x –2) or to (x +2)
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Number of bits required

 Example - How many bits are required 
for number 400?
Estimate:
 3 decimal digits  3x3 = 9 bits

Check values:
 9 bits  range: 0  29 –1 = 511  400  OK

Verify if a smaller value is also good:
 8 bits  range: 0  28 –1 = 255 < 400 NO

Answer: at least 9 bits 
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Number of bits required

 Exercises
How many bits are needed to represent 
the following values?
 47
 137
 1412
 128
 884
 1

 422
 15
 444
 1024
 1023
 6443
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Number of bits required

 Solutions
How many bits are needed to represent 
the following values?
 47  6
 137 8
 1412 11
 128  8
 884  10
 1  1

 422  9
 15  4
 444  9
 1024  11
 1023  10
 6443  13
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Fractional Numbers Conversion

 Conversion from any base n to base 10 
just requires the application of the 
positional numbering system definition

 Example
1011.1012  ()10

1011.101 = 1x23 + 0x22 + 1x21 + 1x20

+ 1x2-1 + 0x2-2 + 1x2-3 = 
= 8 + 2 + 1 + 0.5 + 0.125 = 11.62510

3 2 1 0 -1-2-3
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Fractional Numbers Conversion

 Conversion from base 10 to any base n
requires 2 steps:
 conversion of the integral part (already 

seen)
 conversion of the fractional part (to be 

seen)

The two parts are then juxtaposed 
(added)
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Fractional Numbers Conversion
 Conversion of the fractional part 

(i.e. a value in the form 0.xxxx)
 multiply the number to the target base 

(e.g. 2)
 write down the integer part of the result 

and THEN set it to 0
 repeat until result is 0 or as otherwise 

required (more on this later)
 write left to right “0.” followed by the 

integer parts in the order they have been 
calculated
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Fractional Numbers Conversion

 Example, convert 0.687510 to binary
0.6875 x 2 = 1.3750 
0.3750 x 2 = 0.750 
0.750 x 2 = 1.50 
0.50 x 2 = 1.00 
0.00  STOP

0.10112

 Example, convert 12.6875 to binary:
Result: 1100.10112
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Fractional Numbers Conversion
 To convert a number with a fractional 

part from one base to another, it is 
always possible to pass through the 
intermediate base 10

 When BOTH bases are powers of 2, it 
is easier and faster to pass through 
base 2
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Fractional Numbers Conversion
 Regrouping must start from the point so 

that unity remains on the digit at left of 
the point, if required, zeroes must be 
added on the right of the fractional part

 Example
C4B2.D6H  ()8

1100 0100 1011 0010.1101 01102

001 100 010 010 110 010 .110 101 100
1     4    2     2    6     2  .  6     5    48

x 20
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Fractional Numbers Conversion

 A value with a finite number of 
fractional digits in one base may require 
an infinite number of fractional digits in 
another base (often periodic in binary)

 E.g. 2.31 10.01001100110011001...
 When converting values with an 

unlimited fractional part, the number of 
fractional digit to calculate must be 
known in advance (in some way)
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Exercises on Conversions

 Convert the values as requested
 56.228 ()16

 CC559.9B116()8

 1001.112 ()10

 11101.0112 ()10

 1000.00012 ()10

 33.2510 ()2 (3 fractional digits)
 13.3410 ()2 (5 fractional digits)
 256.2210 ()2 (6 fractional digits)
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Exercises on Conversions

 Convert the values as requested
 56.228 2E.4816

 CC559.9B1163142531.46618

 1001.112 9.7510

 11101.0112 29.37510

 1000.00012 8.062510

 33.2510 100001.0102

 13.3410 1101.010102

 256.2210 100000000.0011102
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Approximation Errors

 When we have to limit the number of 
fractional digits, the value resulting 
from conversion is not the same as the 
original value

 This means that if the resulting value is 
converted back to the original base, it is 
slightly different

 An error is introduced
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Approximation Errors

 Absolute precision: the smallest 
(positive) quantity that can be written 
by using a given number of fractional 
digits

where:
b is the numbering base
n is the number of the fractional digits
N is the given number

nb
1
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Approximation Errors

 Examples
 In decimal, with 5 fractional digits the 

smallest positive quantity is 
0.0000110=1/105 = 0.0000110

 In binary, with 5 fractional digits the 
smallest positive quantity is 
0.000012 =1/25 = 0.0312510

 In octal, with 5 fractional digits the 
smallest positive quantity is 
0.000018 =1/85 = 0.00003051757812510
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Approximation Errors

 0.4 has 1 fractional digit, so its absolute 
precision  is 1/101= 0.1

 10.4 has 1 fractional digit, so its 
absolute precision  is 1/101= 0.1

 Is =0.1 a good or a bad precision?
It depends on the value itself: you have 
to compare the absolute error to the 
given value
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Approximation Errors

 An absolute precision value may have 
different significance with respect to the 
value it is computed for

 Relative precision: the absolute 
precision compared to the given value 
(usually as a percentage)

%100
N
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Approximation Errors

 Complete

10.410

10010

1/24=0.06250.10112

0.1/0.4*100 = 25%1/101=0.10.410

N
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Approximation Errors

 Solutions

0.96%0.110.410

1%110010

9.09%0.06250.10112

25%0.10.410

N
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Approximation Errors

 In a base conversion, a given error 
margin (also called precision or 
approximation) o must not be 
exceeded

 Errors can be used to establish how 
many fractional digits to use
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Approximation
 Example 1 - Convert value N=0.21 to 

base 2 with o=1/32 (i.e. 0.03125)
 Compute how many fractional bits are 

needed: because the required  o=1/32 
must be equal to the theoretic =1/2n, then
1/32 = 1/2n  32=2n  25=2n  n = 5

 Calculate the first 5 fractional bits
 Write the result: 0.001102
 The trailing zero is required: without it the 

would be 1/24 =1/16 and not 1/32
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Approximation
 Note that 0.001102 = 0.187510 and this  

is NOT the given value 0.2110

 However the absolute difference 
between them (the introduced error) is 
less than or equal to the maximum 
allowed error 1/32 (0.03125):
|0.21 – 0.1875| = 0.0225  0.03125
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Approximation
 Example 2 - Convert value N=0.21 to 

base 2 with absolute error o=1/100
 Compute how many fractional bits are 

needed: because the required  o=1/100 
must be equal to the theoretic =1/2n, then
1/100 = 1/2n  100=2n  n = ?
For solving this equation we can use 
logarithms, but we can use the trial method:
n=6 bits  2n = 64 < 100 not enough!
n=7 bits  2n = 128  100 OK!

 Calculate the first 7 fractional bits
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Approximation
 Note that an error of exactly 1/100 

cannot be obtained because 100 is not 
a power of 2

 Instead of 1/100 we use its nearest 
(smaller) power of 2, resulting in an 
error smaller than the one requested, so 
that the requirements are fulfilled

 Having now a power of 2, the exponent 
can be easily found
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Exercises on Conversions

 Convert the values as requested
 33.22510 ()2 (o =1/64)
 13.3410 ()2 (o =1/1000)
 256.2210 ()2 (o =0.001%)
 12.7110 ()2 (preserve the same  of 

the decimal value)
 12.7110 ()2 (preserve the same )
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Exercises on Conversions

 Solutions
 33.22510

100001.001110
 13.3410 

1101.0101011100

n2
1

64
1ε 

n2
1

1000
1ε 

2n  64 n =6

2n  1000 n =10
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Exercises on Conversions

 Solutions
 256.2210

 

n

0
0

2
1ε

100εη




N

bit 9
3.3902
3.3902

0.0025622
2
1ε

100
22.256

ε001.0 0










n

n

n

n

0.0025622ε0 
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Exercises on Conversions

 Solutions
 12.7110

n =7

1100.1011010
 12.7110

10= 2  10= 2  same ex. as before

n2
1

100
1

10
1εε 2102 

100
71.12
εη100

71.12
εη 2

2
10

10 
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BCD Encoding

 In many cases, the approximation 
involved with conversion to base 2 is 
not acceptable

 The most prominent case is currency
 The only way is to not convert to 

binary, but digital computers do need 
information stored as bits…

 What to do?
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BCD Encoding

 Binary-Coded Decimal is an encoding 
for decimal numbers in which each digit 
is represented by its own binary value

 Each binary value is composed of 4 bits
 Only 10 groups corresponding to values 

from 0 to 9 (from 0000 to 1001) are 
allowed

 This is NOT an equivalent way to 
convert to/from base 2!
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BCD Encoding

 Example – Convert value 23.19 to BCD
Every decimal digit is converted to the 
corresponding 4-bit binary value:

2      3   .    1      9
0010 0011 . 0001 1001BCD

00102 x 101 + 00112 x 100 + 
+ 00012 x 10-1 + 10012 x 10-2

Note the base used is 10, just the 
decimal digits are expressed in binary
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BCD Encoding
 Comparison – Convert value 126.625 to 

both base 2 and BCD
 1111110.1012

 000100100110.011000100101BCD

The two sequences of bits are quite 
different, the only way to transform one 
into the other is through base 10

 Other types of BCD encoding exist, the 
one just seen is called Simple BCD
(SBCD) or BCD 8421
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BCD Encoding

 BCD values are stored in different ways 
on different machines:
 one byte for each digit, the higher nibble 

can be set to:
 0000 or 1111
 0011 (in this case, the resulting value is the 

ASCII code of the value, e.g. BCD digit 0010, if 
stored preceded by 0011 becomes: 00110010 
that is the ASCII value for character ‘2’, i.e. 50)

 one byte for two digits (packed BCD )
 other compressed ways
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BCD Encoding

 BCD operations are slower than binary 
operations

 BCD circuits are bigger
 Space is wasted (unused bit sequences)
 No approximation errors
 Easy scaling of a factor of 10
 Rounding at a decimal boundary is easy
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Exercises on BCD

 Convert the values as requested
 123.2110 ()BCD

 82.C16 ()BCD

 12.216 ()BCD

 000100100110.10010001BCD ()10

 000100100110.10010001BCD ()2

 100100110.100100012 ()BCD
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Exercises on BCD
 Solutions

 123.2110  000100100011.00100001BCD

 82.C16  130.7510 
 000100110000.01110101BCD

 12.216  18.12510 
 00011000.000100100101BCD

 000100100110.10010001BCD126.9110

 000100100110.10010001BCD1111110.11…2

 100100110.100100012 294.566...10 
 001010010100.010101100110BCD
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Binary Prefixes

 The physical quantities use prefixes as 
multipliers, their values are powers of 10

 In the binary notation the same prefixes 
are used, but as powers of 2

petateragigamegakiloName

250240230220210Binary value

10151012109106103Physics value

PTGMKPrefix
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Binary Prefixes

 An attempt to define separate prefixes 
for powers of 2 lead to the definition of 
the (seldom used) following prefixes

pebitebigibimebikibiName

250240230220210Value

PiTiGiMiKiPrefix
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Binary Addition

 Usual rules apply:
 0+0 = 0
 0+1 = 1+0 = 1
 1+1 = 0 with carry = 1 to the following 

power of 2 (that is: 102)
 1+1+1= 1 with carry = 1 (that is: 112)

 It is useful to add column by column, 
writing carries on top of the next 
column
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Binary Addition

 Example

10110 +
1011 =

100001

1 1 1 1 non null carries
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Exercises on Addition
 Complete:

 0+1=
 1+1=
 10+1=
 11+1=
 100+1=
 101+1=
 111+1=
 1000+1=
 11111+1=
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Exercises on Addition
 Solution:

 0+1=1
 1+1=10
 10+1=11
 11+1=100
 100+1=101
 101+1=110
 111+1=1000
 1000+1=1001
 11111+1=100000
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Binary Subtraction

 Usual rules apply:
 0–0 = 0
 1–0 = 1
 1–1 = 0
 0–1= 1 with borrow = 1 (borrowed from 

the nearest 1 leftmost)
Remember that the 1 that gives its value 
becomes 0 and any intermediate 0 
becomes 1 (the highest digit in base 2)
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Binary Subtraction

 Examples
1011 –
110 =

0101

110000 –
11 =

101101

1 The nearest leftmost 1 gives
its value and becomes 0
The borrowing 0 becomes 10

0

10 1 Intermediate 0s becomes 1s
Remember, in base 10 (the 
highest digit is 9) we have:

1000 –
1 =

0999

1 1

1990
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Exercises on Add & Sub
 Complete:

 1010 + 10010=
 11 + 11=
 11011 + 1001=
 1101 + 111=
 10000 – 10=
 11010 – 10101=
 10010 – 1111=
 10101 – 10101=
 10000 – 111=

79

Exercises on Add & Sub
 Solutions :

 1010 + 10010 = 11100
 11 + 11 = 110
 11011 + 1001 = 100100
 1101 + 111 = 10100
 10000 – 10 = 1110
 11010 – 10101 = 101
 10010 – 1111 = 11
 10101 – 10101 = 0
 10000 – 111 = 1001
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Overflow

 The binary numbering system we used 
until now does not take into account 
any limitation to the number of bits that 
can be used

 When binary numbers are stored in a 
digital computer, the number of bits 
available is an architectural, fixed, and 
limiting characteristic
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Overflow

 It is not possible to store a number that 
requires more bits than those provided 
by the hardware in use (it is out of 
range)

 When a non-storable number results 
from a calculation (e.g. an addition), it 
is not a correct value (must be 
discarded) and there is an Overflow
error condition
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Overflow
 Example

Consider a computing machine where 
numbers are stored in 8-bit variables

10011001 +
11001100 = 

101100101
Note that the result requires 9 bits, the 
machine cannot store it and then 
signals an Overflow error condition
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Shift Operations

 Simple multiplication and division by a 
power of 2 is achieved by shifting the 
number bits

 “Shifting” means moving each bit either 
to the right (right shift) or to the left 
(left shift)

 Symbols « and » are used to identify 
the shift operation, they are followed by 
the number of shifts to perform
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Shift Operations

 Left shift («): a zero is added to the 
right

10102  1010
101002  2010

1010002  4010 

 Each left shift doubles the value, 
(actually it multiplies the value by the 
base, in base 10: 12«1 = 120)

 n left shifts  multiplication by 2n
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Shift Operations
 Right shift (»): for integer values, the 

LSB is discarded, for fractional values 
the LSB goes beyond the radix point

10102  1010
1012 510

102 210 (10.12=2.510 for fract. val.)
 Each right shift halves the value, for 

integer values it is an integer division 
with truncation of the fractional part

 n right shifts  division by 2n
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Exercises on Shifts

 Calculates the following op. by using 
shifts on the binary integer notation
 124 / 8 e.g. 1111100»3  1111
 22 * 4
 128 * 16
 131 / 2
 28 * 8
 47 * 2
 12 / 16
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Exercises on Shifts

 Solutions

 124 / 8 1111100»3  1111
 22 * 4 10110«2  1011000
 128 * 16 10000000«4  100000000000
 131 / 2 10000011»1  1000001
 28 * 8 11100«3  11100000
 47 * 2 101111«1  1011110
 12 / 16 1100»4  0


