Numbering Systems

Ver. 1.4

The Decimal System

- Consider value 234, there are:
- 2 hundreds
- 3 tens
- 4 units
that is: $2 \times 100+3 \times 10+4 \times 1$
but 100, 10, and 1 are all powers of 10
so value 234 can be written as:
$2 \times 10^{2}+3 \times 10^{1}+4 \times 10^{0}$

The Decimal System

- That recurring number $\mathbf{1 0}$ is called the base of the numbering system
- The usual numbering system is then called base 10 or decimal
- The decimal system is a positional numbering system, this means that the position of each digit implies the multiplication to a corresponding power of the base (the weight of that position)

The "base-n" System

- The base of a numbering system can be any integer value greater than 1
- Digits can have values from 0 to $n-1$ (e.g. the base-10 system has 10 possible digits, from 0 to 9 , for bases >10 see the hexadecimal system)
- When not clear from the context, the base of a value must be indicated with a subscript value: 234_{10}

The "base-n" System

- Base-n systems are positional
- The same value is expressed in different ways depending on the numbering system used
- We want to convert a value from a generic base n to base 10 because we are acquainted only with the latter
- Some base-n numbering systems are more suited for special purposes

The Binary System

- Binary means base-2
- There are only 2 digits: 0 and 1
- The digits of a binary value are called bits (bit comes from "Bl nary digiT")
- A value expressed in the binary system is a sequence of zeroes and ones: 100101_{2}
- The binary system is suited for computers

The Binary System

- What (decimal) value correspond to 100101_{2} ?
- From the definition of positional numbering system: to convert a base-n value to base 10 , each digit must be multiplied by the power of the base (2 in this case) corresponding to the digit position

The Binary System

write powers right to left on each digit starting from unit

- $\mathbf{1 0 0 1 0 1}_{2}=1 \times 2^{5}+\rightarrow 32+$
$0 \times 2^{4}+\rightarrow 0+$
$0 \times 2^{3}+\quad \rightarrow \quad 0+$
$1 \times 2^{2}+\quad \rightarrow \quad 4+$
$0 \times 2^{1}+\quad 0+$
$1 \times 2^{0}=\rightarrow \quad 1=$

The Binary System

- A "bit" is a small quantity (!), so many bits are grouped together to build a more significant entity
- A byte is a sequence of 8 bits
- 10100011
- 00101001

The Binary System

- Other bit groupings are:
- A nibble is composed of 4 bits
- A word is composed of 2 bytes (16 bits)
- A double word (dword) is composed of 2 words (4 bytes, 32 bits)
- A quad word (qword) is composed of 4 words (8 bytes, 64)
The term word has a completely different meaning when dealing with computer architecture

The Binary System

- For every bit sequence:
- MSB: Most Significant Bit

The leftmost bit is the most important of the sequence because it multiplies the highest power of the base
10010010... 10101001

- LSB: Least Significant Bit

The rightmost bit is the less important of the sequence because it multiplies the lowest power of the base (0)
10010010... 10101001

The Octal System

- There are 8 digits: from 0 to 7 (no 8 nor 9 digits!)
- Example
- 3642_{8}
- Conversion to base 10
$.32102_{8}=3 \times 8^{3}+6 \times 8^{2}+4 \times 8^{1}+2 \times 8^{0}$
$=1954_{10}$
- $384_{8}=$ NOT AN OCTAL NUMBER (8?)

The Hexadecimal System

The Hexadecimal System

- 16 digits: 0 to F (subscript 16 or H)
- The first 10 digits are the same as the decimal system, the other 6 digit symbols are taken from the alphabet:
$\mathrm{A}_{\mathrm{H}} \rightarrow 10_{10}$ (digit "A", NOT letter "A")
$\mathrm{B}_{\mathrm{H}} \rightarrow 11_{10}$
$\mathrm{C}_{\mathrm{H}} \rightarrow 12_{10}$
$\mathrm{D}_{\mathrm{H}} \rightarrow 13_{10}$
$\mathrm{E}_{\mathrm{H}} \rightarrow 14_{10}$
$\mathrm{F}_{\mathrm{H}} \rightarrow 15_{10}$
- $\stackrel{31}{2210}_{\mathrm{Cl}_{\mathrm{H}}}=12 \times 16^{3}+1 \times 16^{2}+11 \times 16^{1}$

$$
+8 \times 16^{0}=49592_{10}
$$

Doubling and Dabbling

Doubling and Dabbling

- Example 100101_{2}
- leftmost bit (MSB) is $\mathbf{1}$
- $\mathbf{1} \times \underline{\mathbf{2}}=\mathbf{2} \quad+0=2$
- $2 \times \underline{2}=4 \quad+0=4$
- $4 \times \underline{2}=8 \quad+1=9$
- $9 \times \underline{2}=18+0=18$
- $18 \times \underline{2}=36+1=37$
- continue until the LSB is added

Conversion from base 10 to n

Conversion from base 10 to n

- For integer numbers only:
- Divide the value by the target base, computing an integer division, you get a quotient (result) and a remainder
- Divide the previous quotient by the target base, you get a quotient and a remainder
- Continue until the quotient is zero
- Write (from left to right) the remainders from the last computed to the first one
- Example: convert 37_{10} to base 2

Conversion from Base n to m

- Given a number in base n, to convert it to base m.
- convert the number from base n to base 10
- convert the just calculated number from base 10 to base m
- It is always possible to pass through the intermediate base 10, but sometimes this is not the easiest and fastest way

Conversion Exercises

- Convert the values as requested
$-106_{10} \quad \rightarrow()_{2} \quad-47_{8} \quad \rightarrow()_{10}$
$=35_{10} \quad \rightarrow()_{2} \quad=73_{10} \quad \rightarrow()_{8}$
$-64_{10} \quad \rightarrow()_{2} \quad-44_{7} \quad \rightarrow()_{3}$
$-45_{6} \quad \rightarrow()_{2} \quad-101001_{2} \rightarrow()_{10}$
$=17_{7} \quad \rightarrow()_{2} \quad=11111_{2} \rightarrow()_{10}$
$-23_{8} \rightarrow()_{2} \quad=10000_{2} \rightarrow()_{10}$
$=207_{10} \rightarrow()_{2} \quad=10000_{2} \rightarrow()_{4}$
- $\mathrm{B2}_{16} \quad \rightarrow()_{10} \quad=\mathrm{Bl}_{10} \quad \rightarrow()_{16}$

Conversion Exercises

Conversion from Bases 2^{n}

- Convert the values as requested
$-106_{10} \quad \rightarrow 1101010_{2} \quad$ - $47_{8} \quad \rightarrow 39_{10}$
$-3_{10} \quad \rightarrow{100011_{2}}^{-10} 73_{10} \rightarrow 111_{8}$
- $64_{10} \quad \rightarrow 1000000_{2} \quad$ - $_{10} \quad \rightarrow 4_{7}$ 1012 $_{3}$
$-45_{6} \rightarrow 11101_{2} \quad=101001_{2} \rightarrow 41_{10}$
$-17_{7} \rightarrow$ IMP. $\quad=11111_{2} \rightarrow 31_{10}$
$-23_{8} \rightarrow{10011_{2}}=10000_{2} \rightarrow 16_{10}$
- 207 $_{10} \rightarrow 11001111_{2}=10000_{2} \rightarrow 100_{4}$
$-\mathrm{B}_{16} \quad \rightarrow \mathrm{IF8}_{10} \quad=161_{10} \quad \rightarrow \mathrm{Al}_{16}$
- To convert a number from base n to base m, when BOTH n and m are powers of 2 (e.g. 2,4,8,16), it is easier and faster to pass through base 2
- Every digit in a 2^{x} base requires at least x bits (possibly starting with zeroes):
$5_{8}=101_{2} \quad 2_{8}=010_{2}$
$B_{16}=1011_{2} \quad 2_{16}=0010_{2}$

Conversion from Bases 2^{n}

- A number in base- 2^{x} can be converted to base 2 by simply substituting each of its digits with the corresponding binary value (each composed of x bits):
$52_{8}=[101][010]_{2}=101010_{2}$ $B 2_{16}=[1011][0010]_{2}=10110010_{2}$

Conversion from Bases 2^{n}

- A number in base 2 can be converted to base- 2^{x} by grouping its bits from right to left (each group composed of x bits) and substituting each group with the corresponding base- 2^{x} digit:
$101010_{2}=[101][010]_{2}=52_{8}$ $10110010_{2}=[1011][0010]_{2}=B 2_{16}$

Conversion from Bases 2^{n}

Conversion from Bases 2^{n}

- If the leftmost group has less than x bits, an appropriate number of zeroes are added to the left part:
$10010_{2}=[\underline{010}][010]_{2}=22_{8}$
$110010_{2}=\left[\underline{0011][0010]_{2}}=32_{16}\right.$
- Example

Convert number 3CB21F $_{16}$ to base 8
3 C B 2 1 F 001111001011001000011111 $001111001011 \mid 001000011111$ $\begin{array}{lllllllll}1 & 7 & 1 & 3 & 1 & 0 & 3 & 7\end{array}$
17131037_{8}

Conversion from Bases 2^{n}

Exercises on Conversions

- The most important base in Computer Science is 2 , but it is difficult and long to write and read long binary values
- Base 16 and 8 are so often used because it is simple and immediate to convert a value between them and base 2 and because of the compact notation: it is much easier to read and write a 32 bit value like 95DBA6CF instead of 10010101110110111010011011001111
- Convert the values as requested
- $1001010010100101_{2} \rightarrow()_{8}$
- $1001010010100101_{2} \rightarrow()_{\mathrm{H}}$
- $3325_{8} \quad \rightarrow()_{2}$
- $3325_{8} \quad \rightarrow()_{4}$
- $3325_{8} \rightarrow()_{16}$
- $1334_{8} \rightarrow()_{16}$
- All6 $_{16} \rightarrow()_{8}$
- $13364_{8} \rightarrow()_{16}$

Exercises on Conversions

- Solutions
- OOI| 001 |010|010| $100 \mid 101_{2} \rightarrow 112245_{8}$
$-1001|0100| 1010 \mid 0101_{2} \rightarrow$ 94A5 $_{\mathrm{H}}$
- $3325_{8} \rightarrow$ 011011010101 $_{2}$
- 3325 $\quad \rightarrow$ 123111 $_{4}$
- $3325_{8} \rightarrow$ WD5 $_{16}$
- $1334_{8} \rightarrow 2 \mathrm{DC}_{16}$
- All6 $_{16} \rightarrow$ 120426 $_{8}$
- 13364 $_{8} \rightarrow$ 16F4 $_{16}$

Powers of 2

- $2^{0}=1_{10} \quad=1_{2} \quad 2^{9}=512$
- $2^{1}=2_{10} \quad=10_{2} \quad 2^{10}=1024$
- $2^{2}=4_{10} \quad=100_{2} \quad 2^{11}=2048$
- $2^{3}=8_{10} \quad=1000_{2} \quad 2^{12}=4096$
- $2^{4}=16_{10}=10000_{2} \quad 2^{13}=8192$
- $2^{5}=32_{10}=100000_{2} \quad 2^{14}=16384$
- $2^{6}=64_{10}=1000000_{2} \quad 2^{15}=32768$
- $2^{7}=128_{10}=10000000_{2} \quad 2^{16}=65536$
- $2^{8}=256_{10}=100000000_{2}$
- Note that 2^{n} in binary is 1 followed by n zeroes

Range

- With n bits, just a limited subset of values can be represented
- There are 2^{n} different combinations of n bits, each one is a binary number:
$\left.\begin{array}{cc}\text { from } 000 \ldots 000 & \rightarrow 0 \\ \ldots & \ldots \\ \text { to } \quad 111 \ldots 111 & \rightarrow 2^{n}-1\end{array}\right\} 2^{n}$ numbers
Thus the range of a binary number composed of n bits is: $0 \rightarrow 2^{n}-1$

Number of bits required

- A simpler approach uses (wise) trial:
- count the digits (d) of the decimal num. N
- each digit requires about 3 bits (good approximation up to $20-30$ bit numbers), so the approximate number of bits is: $x=3 \times d$
- compare N to powers 2^{n} with n ranging from $(x-1)$ to $(x+1)$ to find the minimum n so that $2^{n} \geq N$
- Note: if needed, consider extending n to $(x-2)$ or to $(x+2)$

Number of bits required

- Example - How many bits are required for number 400?
Estimate:
- 3 decimal digits $\rightarrow 3 \times 3=9$ bits

Check values:

- 9 bits \rightarrow range: $0 \rightarrow 2^{9}-1=511 \geq 400$ OK

Verify if a smaller value is also good:

- 8 bits \rightarrow range: $0 \rightarrow 2^{8}-1=255<400 \mathrm{NO}$

Answer: at least 9 bits

Number of bits required

- Exercises

How many bits are needed to represent the following values?

- 47
- 422
- 137
- 15
- 1412
- 444
- 128
- 1024
- 884
- 1023
- 1
- 6443

Number of bits required

- Solutions
- $137 \rightarrow 8 \quad-15 \rightarrow 4$
$-1412 \rightarrow 11 \quad-444 \rightarrow 9$
- $128 \rightarrow 8 \quad$ - $1024 \rightarrow 11$
- $884 \rightarrow 10 \quad-1023 \rightarrow 10$
$.1 \rightarrow 1 \quad-6443 \rightarrow 13$

Fractional Numbers Conversion

Fractional Numbers Conversion

- Conversion from any base n to base 10 just requires the application of the positional numbering system definition
- Example
$1011.101_{2} \rightarrow()_{10}$

$$
\begin{aligned}
& 3210-1-2-3 \\
& 1011.101=1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0} \\
&+1 \times 2^{-1}+0 \times 2^{-2}+1 \times 2^{-3}= \\
&=8+2+1+0.5+0.125=11.625_{10}
\end{aligned}
$$

- Conversion from base 10 to any base n requires 2 steps:
- conversion of the integral part (already seen)
- conversion of the fractional part (to be seen)
The two parts are then juxtaposed (added)

Fractional Numbers Conversion

- Conversion of the fractional part
(i.e. a value in the form $0 . x x x x$)
- multiply the number to the target base (e.g. 2)
- write down the integer part of the result and THEN set it to 0
- repeat until result is 0 or as otherwise required (more on this later)
- write left to right " 0 ." followed by the integer parts in the order they have been calculated

Fractional Numbers Conversion

- Example, convert 0.6875_{10} to binary
$0.6875 \times 2=\mid 1.3750$
$0.3750 \times 2=0.750$
$0.750 \times 2=1.50$
$0.50 \times 2=\downarrow 1.00$
0.00 STOP
$\xrightarrow{0.1011_{2}}$
- Example, convert 12.6875 to binary:

Result: 1100.1011_{2}

Fractional Numbers Conversion

Fractional Numbers Conversion

- To convert a number with a fractional part from one base to another, it is always possible to pass through the intermediate base 10
- When BOTH bases are powers of 2, it is easier and faster to pass through base 2
- Regrouping must start from the point so that unity remains on the digit at left of the point, if required, zeroes must be added on the right of the fractional part
- Example
$\times 2^{0}$
C4B2.D6 ${ }_{\mathrm{H}} \rightarrow()_{8}$
$1100010010110010.11010110^{2}$
001100010010110010.110101100
$\begin{array}{lllllllll}1 & 4 & 2 & 2 & 6 & 2 & 6 & 5 & 48\end{array}$
- A value with a finite number of fractional digits in one base may require an infinite number of fractional digits in another base (often periodic in binary)
- E.g. $2.31 \rightarrow 10.01001100110011001 .$.
- When converting values with an unlimited fractional part, the number of fractional digit to calculate must be known in advance (in some way)
- Convert the values as requested
$-56.22_{8} \quad \rightarrow()_{16}$
- $\mathrm{CC} 559.9 \mathrm{Bl}_{16} \rightarrow()_{8}$
- 1001.11 $\mathrm{H}_{2} \rightarrow()_{10}$
- 11101.011 $\rightarrow()_{10}$
- $1000.0001_{2} \rightarrow()_{10}$
- $33.25_{10} \rightarrow()_{2}$ (3 fractional digits)
- $13.34_{10} \quad \rightarrow()_{2}$ (5 fractional digits)
- $256.22_{10} \rightarrow()_{2}$ (6 fractional digits)

Exercises on Conversions

Approximation Errors

- Convert the values as requested
- $56.22_{8} \rightarrow 2 \mathrm{E} .48_{16}$
- CC559.9B1 $1_{16} \rightarrow 3142531.4661_{8}$
- $1001.11_{2} \rightarrow 9.75_{10}$
- 11101.011 $_{2} \rightarrow 29.375_{10}$
- $1000.0001_{2} \rightarrow 8.0625_{10}$
- $33.25_{10} \rightarrow 100001.010_{2}$
- $13.34_{10} \rightarrow 1101.01010_{2}$
- $256.22_{10} \rightarrow 100000000.001110_{2}$
- When we have to limit the number of fractional digits, the value resulting from conversion is not the same as the original value
- This means that if the resulting value is converted back to the original base, it is slightly different
- An error is introduced

Approximation Errors

- Absolute precision: the smallest (positive) quantity that can be written by using a given number of fractional digits

$$
\varepsilon=\frac{1}{b^{n}}
$$

where:
b is the numbering base
n is the number of the fractional digits N is the given number

Approximation Errors

- Examples
- In decimal, with 5 fractional digits the smallest positive quantity is $0.00001_{10}=1 / 10^{5}=0.00001_{10}$
- In binary, with 5 fractional digits the smallest positive quantity is $0.00001_{2}=1 / 2^{5}=0.03125_{10}$
- In octal, with 5 fractional digits the smallest positive quantity is $0.00001_{8}=1 / 8^{5}=0.000030517578125_{10}$

Approximation Errors

Approximation Errors

- An absolute precision value may have different significance with respect to the value it is computed for
- Relative precision: the absolute precision compared to the given value (usually as a percentage)

$$
\eta=\frac{\varepsilon}{|N|} \cdot 100 \%
$$

Approximation Errors

Approximation Errors

- Solutions

N	ε	η
0.4_{10}	$1 / 10^{1}=0.1$	$0.1 / 0.4^{*} 100=25 \%$
10.4_{10}		
0.1011_{2}	$1 / 2^{4}=0.0625$	
100_{10}		

N	ε	η
0.4_{10}	0.1	25%
10.4_{10}	0.1	0.96%
0.1011_{2}	0.0625	9.09%
100_{10}	1	1%

Approximation Errors

Approximation

- In a base conversion, a given error margin (also called precision or approximation) ε_{0} must not be exceeded
- Errors can be used to establish how many fractional digits to use
- Example 1 - Convert value $\mathrm{N}=0.21$ to base 2 with $\varepsilon_{o}=1 / 32$ (i.e. 0.03125)
- Compute how many fractional bits are needed: because the required $\varepsilon_{0}=1 / 32$ must be equal to the theoretic $\varepsilon=1 / 2^{n}$, then $1 / 32=1 / 2^{n} \rightarrow 32=2^{n} \rightarrow 2^{5}=2^{n} \rightarrow n=5$
- Calculate the first 5 fractional bits
- Write the result: 0.00110_{2}
- The trailing zero is required: without it the ε would be $1 / 2^{4}=1 / 16$ and not $1 / 32$

Approximation

- Note that $0.00110_{2}=0.1875_{10}$ and this is NOT the given value 0.21_{10}
- However the absolute difference between them (the introduced error) is less than or equal to the maximum allowed error 1/32 (0.03125):
$|0.21-0.1875|=0.0225 \leq 0.03125$

Approximation

- Example 2 - Convert value $\mathrm{N}=0.21$ to base 2 with absolute error $\varepsilon_{0}=1 / 100$
- Compute how many fractional bits are needed: because the required $\varepsilon_{0}=1 / 100$ must be equal to the theoretic $\varepsilon=1 / 2^{n}$, then $1 / 100=1 / 2^{n} \rightarrow 100=2^{n} \rightarrow n=$?
For solving this equation we can use logarithms, but we can use the trial method: $n=6$ bits $\rightarrow 2^{n}=64<100$ not enough! $n=7$ bits $\rightarrow 2^{n}=128 \geq 100 \quad$ OK!
- Calculate the first 7 fractional bits

Approximation

Exercises on Conversions

- Note that an error of exactly $1 / 100$ cannot be obtained because 100 is not a power of 2
- Instead of $1 / 100$ we use its nearest (smaller) power of 2, resulting in an error smaller than the one requested, so that the requirements are fulfilled
- Having now a power of 2, the exponent can be easily found
- Convert the values as requested
- $33.225_{10} \rightarrow()_{2} \quad\left(\varepsilon_{0}=1 / 64\right)$
- $13.34_{10} \rightarrow()_{2}\left(\varepsilon_{0}=1 / 1000\right)$
- $256.22_{10} \rightarrow()_{2} \quad\left(\eta_{0}=0.001 \%\right)$
- $12.71_{10} \rightarrow()_{2}$ (preserve the same ε of the decimal value)
- $12.71_{10} \quad \rightarrow()_{2}$ (preserve the same η)

Exercises on Conversions

- Solutions
- 33.225_{10}
$\varepsilon=\frac{1}{64}=\frac{1}{2^{n}} \quad 2^{n} \geq 64 \rightarrow n=6$
100001.001110
- 13.34_{10}
$\varepsilon=\frac{1}{1000}=\frac{1}{2^{n}} \quad 2^{n} \geq 1000 \rightarrow n=10$
1101.0101011100

Exercises on Conversions

- Solutions
- 256.22_{10}

$$
\begin{aligned}
& \eta_{0}=\frac{\varepsilon_{0}}{N} \cdot 100 \rightarrow 0.001=\frac{\varepsilon_{0}}{256.22} \cdot 100 \rightarrow \varepsilon_{0}=0.0025622 \\
& \varepsilon=\frac{1}{2^{n}} \rightarrow \varepsilon=\frac{1}{2^{n}}=0.0025622 \\
& 2^{n}=390.3 \\
& 2^{n}>390.3 \\
& n=9 \mathrm{bit}
\end{aligned}
$$

Exercises on Conversions

BCD Encoding

- Solutions
- 12.71_{10}
$\varepsilon_{2}=\varepsilon_{10}=\frac{1}{10^{2}}=\frac{1}{100}=\frac{1}{2^{n}} \rightarrow n=7$

1100. 1011010

- 12.71_{10}
$\eta_{10}=\frac{\varepsilon_{10}}{12.71} \cdot 100 \quad \eta_{2}=\frac{\varepsilon_{2}}{12.71} \cdot 100$
$\eta_{10}=\eta_{2} \rightarrow \varepsilon_{10}=\varepsilon_{2} \rightarrow$ same ex. as before
- In many cases, the approximation involved with conversion to base 2 is not acceptable
- The most prominent case is currency
- The only way is to not convert to
binary, but digital computers do need information stored as bits...
- What to do?

BCD Encoding

- Binary-Coded Decimal is an encoding for decimal numbers in which each digit is represented by its own binary value
- Each binary value is composed of 4 bits
- Only 10 groups corresponding to values from 0 to 9 (from 0000 to 1001) are allowed
- This is NOT an equivalent way to convert to/from base 2!

BCD Encoding

- Example - Convert value 23.19 to BCD Every decimal digit is converted to the corresponding 4-bit binary value:
$2 c \frac{3}{2} \cdot \frac{1}{9}$
$00100011.00011001_{\mathrm{BCD}}$
$0010_{2} \times 10^{1}+0011_{2} \times 10^{0}+$
$+0001_{2} \times 10^{-1}+1001_{2} \times 10^{-2}$

Note the base used is 10 , just the decimal digits are expressed in binary

BCD Encoding

BCD Encoding

- Comparison - Convert value 126.625 to both base 2 and BCD
- 1111110.101
- 000100100110.011000100101 $1_{B C D}$

The two sequences of bits are quite different, the only way to transform one into the other is through base 10

- Other types of BCD encoding exist, the one just seen is called Simple BCD (SBCD) or BCD 8421
- BCD values are stored in different ways on different machines:
- one byte for each digit, the higher nibble can be set to:
- 0000 or 1111
- 0011 (in this case, the resulting value is the ASCII code of the value, e.g. BCD digit 0010, if stored preceded by 0011 becomes: 00110010 that is the ASCII value for character ' 2 ', i.e. 50)
- one byte for two digits (packed BCD)
- other compressed ways

BCD Encoding

- BCD operations are slower than binary operations
- BCD circuits are bigger
- Space is wasted (unused bit sequences)
- No approximation errors
- Easy scaling of a factor of 10
- Rounding at a decimal boundary is easy

Exercises on BCD

- Convert the values as requested
- $123.21_{10} \rightarrow()_{\text {BCD }}$
- 82. $\mathrm{C}_{16} \rightarrow()_{\mathrm{BCD}}$
- $12.2_{16} \rightarrow()_{\text {BCD }}$
- $000100100110.10010001_{\text {BCD }} \rightarrow()_{10}$
- 000100100110.10010001 $\mathrm{BCD}^{\rightarrow()_{2}}$
- $100100110.10010001_{2} \rightarrow()_{\mathrm{BCD}}$

Exercises on BCD

- Solutions
- $123.21_{10} \rightarrow 000100100011.00100001_{B C D}$
- 82. $\mathrm{C}_{16} \rightarrow$ 130.75 $_{10} \rightarrow$
$\rightarrow 000100110000.01110101_{\text {BCD }}$
- 12.2 $2_{16} \rightarrow$ 18.125 $_{10} \rightarrow$
$\rightarrow 00011000.000100100101_{\mathrm{BCD}}$
$-\underline{000100100110.10010001_{\mathrm{BCD}} \rightarrow 126.91_{10}}$
$-000100100110.10010001_{\mathrm{BCD}} \rightarrow 1111110.11 ._{2}$
- 100100110.10010001 $\quad \rightarrow 294.566 \ldots_{10} \rightarrow$
$\rightarrow 001010010100.010101100110_{\text {BCD }}$

Binary Prefixes

- The physical quantities use prefixes as multipliers, their values are powers of 10
- In the binary notation the same prefixes are used, but as powers of 2

Prefix	K	M	G	T	P
Name	kilo	mega	giga	tera	peta
Physics value	10^{3}	10^{6}	10^{9}	10^{12}	10^{15}
Binary value	2^{10}	2^{20}	2^{30}	2^{40}	2^{50}

Binary Prefixes

- An attempt to define separate prefixes for powers of 2 lead to the definition of the (seldom used) following prefixes

Prefix	Ki	Mi	Gi	Ti	Pi
Name	Kibi	mebi	gibi	tebi	pebi
Value	2^{10}	2^{20}	2^{30}	2^{40}	2^{50}

Binary Addition

- Usual rules apply:
- $0+0=0$
- $0+1=1+0=1$
- $1+1=0$ with carry $=1$ to the following power of 2 (that is: 10_{2})
- $1+1+1=1$ with carry $=1$ (that is: 11_{2})
- It is useful to add column by column, writing carries on top of the next column

Binary Addition

Exercises on Addition

- Example

- Complete:
- $0+1=$
- $1+1=$
- 10+1=
- 11+1=
- $100+1=$
- 101+1=
- $111+1=$
- 1000+1=
- 11111+1=

Exercises on Addition

- Solution:
- 0+1=1
- $1+1=10$
- 10+1=11
- 11+1=100
- 100+1=101
- 101+1=110
- 111+1=1000
- 1000+1=1001
- 11111+1=100000

Binary Subtraction

- Usual rules apply:
- $0-0=0$
- $1-0=1$
- $1-1=0$
- $0-1=1$ with borrow $=1$ (borrowed from the nearest 1 leftmost)
Remember that the 1 that gives its value becomes 0 and any intermediate 0
becomes 1 (the highest digit in base 2)

Binary Subtraction

Exercises on Add \& Sub

- Examples

- Complete:
- 1010 + 10010=
- $11+11=$
- $11011+1001=$
- 1101 + 111=
- $10000-10=$
- 11010 - 10101=
- 10010 - 1111=
- 10101 - 10101=
- 10000 - 111=

Exercises on Add \& Sub

- Solutions :
- $1010+10010=11100$
- $11+11=110$
- $11011+1001=100100$
- $1101+111=10100$
- 10000 - $10=1110$
- 11010 - 10101 = 101
- 10010 - 1111 = 11
- $10101-10101=0$
- 10000 - 111 = 1001

Overflow

- The binary numbering system we used until now does not take into account any limitation to the number of bits that can be used
- When binary numbers are stored in a digital computer, the number of bits available is an architectural, fixed, and limiting characteristic

Overflow

Overflow

- It is not possible to store a number that requires more bits than those provided by the hardware in use (it is out of range)
- When a non-storable number results from a calculation (e.g. an addition), it is not a correct value (must be discarded) and there is an Overflow error condition
- Example

Consider a computing machine where numbers are stored in 8-bit variables

$$
\frac{\frac{10011001}{11001100}}{101100101}=
$$

Note that the result requires 9 bits, the machine cannot store it and then signals an Overflow error condition

Shift Operations

- Simple multiplication and division by a power of 2 is achieved by shifting the number bits
- "Shifting" means moving each bit either to the right (right shift) or to the left (left shift)
- Symbols < and» are used to identify the shift operation, they are followed by the number of shifts to perform

Shift Operations

- Left shift («): a zero is added to the right

$$
\begin{aligned}
1010_{2} & \rightarrow 10_{10} \\
10100_{2} & \rightarrow 20_{10} \\
101000_{2} & \rightarrow 40_{10}
\end{aligned}
$$

- Each left shift doubles the value, (actually it multiplies the value by the base, in base 10: $12<1=120$)
- n left shifts \rightarrow multiplication by 2^{n}

Shift Operations

- Right shift (»): for integer values, the LSB is discarded, for fractional values the LSB goes beyond the radix point

1010_{2}	$\rightarrow 10_{10}$
101_{2}	\rightarrow
10_{10}	
10_{10}	$2_{10} \quad\left(10.1_{2}=2.5_{10}\right.$ for fract. val. $)$

- Each right shift halves the value, for integer values it is an integer division with truncation of the fractional part

Exercises on Shifts

- Calculates the following op. by using shifts on the binary integer notation
- 124 / 8 e.g. 1111100»3 $\rightarrow 1111$
- 22 * 4
- 128* 16
- 131 / 2
- $28 * 8$
- 47 * 2
- 12 / 16

Exercises on Shifts

- Solutions
- 124 / $8 \quad 1111 \underline{100 » 3 \rightarrow 1111}$
- $22 * 4 \quad 10110<2 \rightarrow 1011000$
- 128 * 16 10000000<4 $\rightarrow 100000000000$
- 131 / $210000011 » 1 \rightarrow 1000001$
- $28 * 8 \quad 11100<3 \rightarrow 11100000$
$-47 * 2 \quad 101111<1 \rightarrow 1011110$
- 12 / $16 \quad \underline{1100 » 4 ~} \rightarrow 0$

