
Numbering Systems

Ver. 1.4

© 2010 - Claudio Fornaro

2

The Decimal System

 Consider value 234, there are:
 2 hundreds
 3 tens
 4 units

that is: 2 x 100 + 3 x 10 + 4 x 1
but 100, 10, and 1 are all powers of 10
so value 234 can be written as:
2 x 102 + 3 x 101 + 4 x 100

3

The Decimal System

 That recurring number 10 is called the 
base of the numbering system

 The usual numbering system is then 
called base 10 or decimal

 The decimal system is a positional
numbering system, this means that the 
position of each digit implies the 
multiplication to a corresponding power 
of the base (the weight of that position)
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The “base-n” System

 The base of a numbering system can be 
any integer value greater than 1

 Digits can have values from 0 to 
n –1 (e.g. the base-10 system has 10 
possible digits, from 0 to 9, for bases 
>10 see the hexadecimal system)

 When not clear from the context, the 
base of a value must be indicated with a 
subscript value: 23410
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The “base-n” System

 Base-n systems are positional
 The same value is expressed in 

different ways depending on the 
numbering system used

 We want to convert a value from a 
generic base n to base 10 because we 
are acquainted only with the latter

 Some base-n numbering systems are 
more suited for special purposes
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The Binary System

 Binary means base-2
 There are only 2 digits: 0 and 1
 The digits of a binary value are called 

bits (bit comes from “BInary digiT”)
 A value expressed in the binary system 

is a sequence of zeroes and ones:
1001012

 The binary system is suited for 
computers
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The Binary System

 What (decimal) value correspond to
1001012?

 From the definition of positional 
numbering system: to convert a base-n 
value to base 10, each digit must be 
multiplied by the power of the base
(2 in this case) corresponding to the 
digit position
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The Binary System

 1001012 = 1 x 25 +    32 +
0 x 24 +    0 +
0 x 23 +    0 +
1 x 22 +    4 +
0 x 21 +    0 +
1 x 20 =    1 =

-----
3710

5 4 3 2 1 0

write powers right to left on 
each digit starting from unit
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The Binary System

 A “bit” is a small quantity (!), so many 
bits are grouped together to build a 
more significant entity

 A byte is a sequence of 8 bits
 10100011
 00101001
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The Binary System

 Other bit groupings are:
 A nibble is composed of 4 bits
 A word is composed of 2 bytes (16 bits)
 A double word (dword) is composed of 2 

words (4 bytes, 32 bits)
 A quad word (qword) is composed of 4 

words (8 bytes, 64)
The term word has a completely different 

meaning when dealing with computer 
architecture
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The Binary System
 For every bit sequence:

 MSB: Most Significant Bit
The leftmost bit is the most important of 
the sequence because it multiplies the 
highest power of the base
10010010…10101001

 LSB: Least Significant Bit
The rightmost bit is the less important of 
the sequence because it multiplies the 
lowest power of the base (0)
10010010…10101001
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The Octal System

 There are 8 digits:
from 0 to 7 (no 8 nor 9 digits!)

 Example
 36428

 Conversion to base 10
 36428= 3 x 83 + 6 x 82 + 4 x 81 + 2 x 80

= 195410

 3848= NOT AN OCTAL NUMBER (8?)

3 2 1 0
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The Hexadecimal System

 16 digits: 0 to F (subscript 16 or H)
 The first 10 digits are the same as the 

decimal system, the other 6 digit 
symbols are taken from the alphabet:

AH  1010 (digit “A”, NOT letter “A”)
BH  1110
CH  1210
DH  1310
EH  1410
FH  1510
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The Hexadecimal System

 C1B8H = 12 x 163 + 1 x 162 + 11 x 161

+ 8 x 160 = 4959210

3 2 1 0
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Doubling and Dabbling

 Fast conversion to base 10 of small 
binary values (it could be used with 
other bases and big values, but memory 
computation is not such effective):
 multiply the first (leftmost) bit (MSB) by 

the base (2) and add the second bit
 multiply the value just calculated by the 

base and add the third bit
 continue until the LSB is added
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Doubling and Dabbling

 Example
1001012

 leftmost bit (MSB) is 1
 1 x 2 = 2 + 0 = 2
 2 x 2 = 4 + 0 = 4
 4 x 2 = 8 + 1 = 9
 9 x 2 = 18 + 0 = 18
 18 x 2 = 36 + 1 = 37
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Conversion from base 10 to n

 For integer numbers only:
 Divide the value by the target base, 

computing an integer division, you get a 
quotient (result) and a remainder

 Divide the previous quotient by the target 
base, you get a quotient and a remainder

 Continue until the quotient is zero
 Write (from left to right) the remainders 

from the last computed to the first one
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Conversion from base 10 to n

 Example: convert 3710 to base 2
37  2

1 18  2
0 9  2

1 4  2
0 2  2

0 1  2
1 0

divisor       dividend

remainder quotient

remainders

100101
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Conversion from Base n to m

 Given a number in base n, to convert it 
to base m:
 convert the number from base n to base 10
 convert the just calculated number from 

base 10 to base m
 It is always possible to pass through the 

intermediate base 10, but sometimes 
this is not the easiest and fastest way
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Conversion Exercises

 Convert the values as requested
 10610 ()2

 3510 ()2

 6410 ()2

 456 ()2

 177 ()2

 238 ()2

 20710 ()2

 B216 ()10

 478 ()10

 7310 ()8

 447 ()3

 1010012 ()10

 111112 ()10

 100002 ()10

 100002 ()4

 16110 ()16
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Conversion Exercises

 Convert the values as requested
 10610 11010102

 3510 1000112

 6410 10000002

 456 111012

 177 IMP.
 238 100112

 20710 110011112

 B216 17810

 478 3910

 7310 1118

 447 10123

 1010012 4110

 111112 3110

 100002 1610

 100002 1004

 16110 A116
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Conversion from Bases 2n

 To convert a number from base n to 
base m, when BOTH n and m are 
powers of 2 (e.g. 2,4,8,16), it is easier 
and faster to pass through base 2

 Every digit in a 2x base requires at least 
x bits (possibly starting with zeroes):
58 = 1012 28 = 0102
B16 = 10112 216 = 00102
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Conversion from Bases 2n

 A number in base-2x can be converted 
to base 2 by simply substituting each of 
its digits with the corresponding binary 
value (each composed of x bits):
528 = [101][010]2 = 1010102
B216 = [1011][0010]2 = 101100102
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Conversion from Bases 2n

 A number in base 2 can be converted to 
base-2x by grouping its bits from right 
to left (each group composed of x bits) 
and substituting each group with the 
corresponding base-2x digit:
1010102 = [101][010]2 = 528 
101100102 = [1011][0010]2 = B216
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Conversion from Bases 2n

 If the leftmost group has less than x
bits, an appropriate number of zeroes 
are added to the left part:
100102 = [010][010]2 = 228 
1100102 = [0011][0010]2 = 3216
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Conversion from Bases 2n

 Example
Convert number 3CB21F16 to base 8

3      C      B       2     1       F 
0011 1100 1011 0010 0001 1111
0011 1100 1011 0010 0001 1111

1    7    1     3    1    0     3    7    

171310378
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Conversion from Bases 2n

 The most important base in Computer 
Science is 2, but it is difficult and long to 
write and read long binary values

 Base 16 and 8 are so often used because 
it is simple and immediate to convert a 
value between them and base 2 and 
because of the compact notation:
it is much easier to read and write a 32 
bit value like 95DBA6CF instead of 
10010101110110111010011011001111
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Exercises on Conversions

 Convert the values as requested
 10010100101001012 ()8

 10010100101001012 ()H

 33258 ()2

 33258 ()4

 33258 ()16

 13348 ()16

 A11616 ()8

 133648 ()16
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Exercises on Conversions

 Solutions
 001|001|010|010|100|1012 1122458

 1001|0100|1010|01012 94A5H

 33258 0110110101012

 33258 1231114

 33258 6D516

 13348 2DC16

 A11616 1204268

 133648 16F416
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Powers of 2
 20=110 =12 29=512
 21=210 =102 210=1024
 22=410 =1002 211=2048
 23=810 =10002 212=4096
 24=1610 =100002 213=8192
 25=3210 =1000002 214=16384
 26=6410 =10000002 215=32768
 27=12810 =100000002 216=65536
 28=25610 =1000000002

 Note that 2n in binary is 1 followed by n zeroes 
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Range

 With n bits, just a limited subset of 
values can be represented

 There are 2n different combinations of 
n bits, each one is a binary number:
from 000...000    0

...             ...
to 111...111    2n –1
Thus the range of a binary number 
composed of n bits is:  0  2n –1

2n numbers
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Number of bits required
 Given a decimal value N, the same 

value converted to binary requires
a minimum of bits equal to:

where the ceiling operator 
returns the minimum integer greater 
then or equal to a (e.g. 2.1  3,   
2.9  3,   2.0  2)

 )1(log2  Nn

 a
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Number of bits required

 A simpler approach uses (wise) trial:
 count the digits (d ) of the decimal num. N
 each digit requires about 3 bits (good 

approximation up to 20-30 bit numbers), so 
the approximate number of bits is: x = 3d

 compare N to powers 2n with n ranging 
from (x-1) to (x+1) to find the minimum n
so that 2n  N

 Note: if needed, consider extending n to 
(x –2) or to (x +2)
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Number of bits required

 Example - How many bits are required 
for number 400?
Estimate:
 3 decimal digits  3x3 = 9 bits

Check values:
 9 bits  range: 0  29 –1 = 511  400  OK

Verify if a smaller value is also good:
 8 bits  range: 0  28 –1 = 255 < 400 NO

Answer: at least 9 bits 
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Number of bits required

 Exercises
How many bits are needed to represent 
the following values?
 47
 137
 1412
 128
 884
 1

 422
 15
 444
 1024
 1023
 6443
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Number of bits required

 Solutions
How many bits are needed to represent 
the following values?
 47  6
 137 8
 1412 11
 128  8
 884  10
 1  1

 422  9
 15  4
 444  9
 1024  11
 1023  10
 6443  13
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Fractional Numbers Conversion

 Conversion from any base n to base 10 
just requires the application of the 
positional numbering system definition

 Example
1011.1012  ()10

1011.101 = 1x23 + 0x22 + 1x21 + 1x20

+ 1x2-1 + 0x2-2 + 1x2-3 = 
= 8 + 2 + 1 + 0.5 + 0.125 = 11.62510

3 2 1 0 -1-2-3
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Fractional Numbers Conversion

 Conversion from base 10 to any base n
requires 2 steps:
 conversion of the integral part (already 

seen)
 conversion of the fractional part (to be 

seen)

The two parts are then juxtaposed 
(added)
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Fractional Numbers Conversion
 Conversion of the fractional part 

(i.e. a value in the form 0.xxxx)
 multiply the number to the target base 

(e.g. 2)
 write down the integer part of the result 

and THEN set it to 0
 repeat until result is 0 or as otherwise 

required (more on this later)
 write left to right “0.” followed by the 

integer parts in the order they have been 
calculated
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Fractional Numbers Conversion

 Example, convert 0.687510 to binary
0.6875 x 2 = 1.3750 
0.3750 x 2 = 0.750 
0.750 x 2 = 1.50 
0.50 x 2 = 1.00 
0.00  STOP

0.10112

 Example, convert 12.6875 to binary:
Result: 1100.10112
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Fractional Numbers Conversion
 To convert a number with a fractional 

part from one base to another, it is 
always possible to pass through the 
intermediate base 10

 When BOTH bases are powers of 2, it 
is easier and faster to pass through 
base 2
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Fractional Numbers Conversion
 Regrouping must start from the point so 

that unity remains on the digit at left of 
the point, if required, zeroes must be 
added on the right of the fractional part

 Example
C4B2.D6H  ()8

1100 0100 1011 0010.1101 01102

001 100 010 010 110 010 .110 101 100
1     4    2     2    6     2  .  6     5    48

x 20
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Fractional Numbers Conversion

 A value with a finite number of 
fractional digits in one base may require 
an infinite number of fractional digits in 
another base (often periodic in binary)

 E.g. 2.31 10.01001100110011001...
 When converting values with an 

unlimited fractional part, the number of 
fractional digit to calculate must be 
known in advance (in some way)
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Exercises on Conversions

 Convert the values as requested
 56.228 ()16

 CC559.9B116()8

 1001.112 ()10

 11101.0112 ()10

 1000.00012 ()10

 33.2510 ()2 (3 fractional digits)
 13.3410 ()2 (5 fractional digits)
 256.2210 ()2 (6 fractional digits)
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Exercises on Conversions

 Convert the values as requested
 56.228 2E.4816

 CC559.9B1163142531.46618

 1001.112 9.7510

 11101.0112 29.37510

 1000.00012 8.062510

 33.2510 100001.0102

 13.3410 1101.010102

 256.2210 100000000.0011102
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Approximation Errors

 When we have to limit the number of 
fractional digits, the value resulting 
from conversion is not the same as the 
original value

 This means that if the resulting value is 
converted back to the original base, it is 
slightly different

 An error is introduced
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Approximation Errors

 Absolute precision: the smallest 
(positive) quantity that can be written 
by using a given number of fractional 
digits

where:
b is the numbering base
n is the number of the fractional digits
N is the given number

nb
1


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Approximation Errors

 Examples
 In decimal, with 5 fractional digits the 

smallest positive quantity is 
0.0000110=1/105 = 0.0000110

 In binary, with 5 fractional digits the 
smallest positive quantity is 
0.000012 =1/25 = 0.0312510

 In octal, with 5 fractional digits the 
smallest positive quantity is 
0.000018 =1/85 = 0.00003051757812510
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Approximation Errors

 0.4 has 1 fractional digit, so its absolute 
precision  is 1/101= 0.1

 10.4 has 1 fractional digit, so its 
absolute precision  is 1/101= 0.1

 Is =0.1 a good or a bad precision?
It depends on the value itself: you have 
to compare the absolute error to the 
given value
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Approximation Errors

 An absolute precision value may have 
different significance with respect to the 
value it is computed for

 Relative precision: the absolute 
precision compared to the given value 
(usually as a percentage)

%100
N

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Approximation Errors

 Complete

10.410

10010

1/24=0.06250.10112

0.1/0.4*100 = 25%1/101=0.10.410

N
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Approximation Errors

 Solutions

0.96%0.110.410

1%110010

9.09%0.06250.10112

25%0.10.410

N
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Approximation Errors

 In a base conversion, a given error 
margin (also called precision or 
approximation) o must not be 
exceeded

 Errors can be used to establish how 
many fractional digits to use
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Approximation
 Example 1 - Convert value N=0.21 to 

base 2 with o=1/32 (i.e. 0.03125)
 Compute how many fractional bits are 

needed: because the required  o=1/32 
must be equal to the theoretic =1/2n, then
1/32 = 1/2n  32=2n  25=2n  n = 5

 Calculate the first 5 fractional bits
 Write the result: 0.001102
 The trailing zero is required: without it the 

would be 1/24 =1/16 and not 1/32
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Approximation
 Note that 0.001102 = 0.187510 and this  

is NOT the given value 0.2110

 However the absolute difference 
between them (the introduced error) is 
less than or equal to the maximum 
allowed error 1/32 (0.03125):
|0.21 – 0.1875| = 0.0225  0.03125
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Approximation
 Example 2 - Convert value N=0.21 to 

base 2 with absolute error o=1/100
 Compute how many fractional bits are 

needed: because the required  o=1/100 
must be equal to the theoretic =1/2n, then
1/100 = 1/2n  100=2n  n = ?
For solving this equation we can use 
logarithms, but we can use the trial method:
n=6 bits  2n = 64 < 100 not enough!
n=7 bits  2n = 128  100 OK!

 Calculate the first 7 fractional bits
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Approximation
 Note that an error of exactly 1/100 

cannot be obtained because 100 is not 
a power of 2

 Instead of 1/100 we use its nearest 
(smaller) power of 2, resulting in an 
error smaller than the one requested, so 
that the requirements are fulfilled

 Having now a power of 2, the exponent 
can be easily found
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Exercises on Conversions

 Convert the values as requested
 33.22510 ()2 (o =1/64)
 13.3410 ()2 (o =1/1000)
 256.2210 ()2 (o =0.001%)
 12.7110 ()2 (preserve the same  of 

the decimal value)
 12.7110 ()2 (preserve the same )
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Exercises on Conversions

 Solutions
 33.22510

100001.001110
 13.3410 

1101.0101011100

n2
1

64
1ε 

n2
1

1000
1ε 

2n  64 n =6

2n  1000 n =10
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Exercises on Conversions

 Solutions
 256.2210

 

n

0
0

2
1ε

100εη




N

bit 9
3.3902
3.3902

0.0025622
2
1ε

100
22.256

ε001.0 0










n

n

n

n

0.0025622ε0 
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Exercises on Conversions

 Solutions
 12.7110

n =7

1100.1011010
 12.7110

10= 2  10= 2  same ex. as before

n2
1

100
1

10
1εε 2102 

100
71.12
εη100

71.12
εη 2

2
10

10 
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BCD Encoding

 In many cases, the approximation 
involved with conversion to base 2 is 
not acceptable

 The most prominent case is currency
 The only way is to not convert to 

binary, but digital computers do need 
information stored as bits…

 What to do?
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BCD Encoding

 Binary-Coded Decimal is an encoding 
for decimal numbers in which each digit 
is represented by its own binary value

 Each binary value is composed of 4 bits
 Only 10 groups corresponding to values 

from 0 to 9 (from 0000 to 1001) are 
allowed

 This is NOT an equivalent way to 
convert to/from base 2!
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BCD Encoding

 Example – Convert value 23.19 to BCD
Every decimal digit is converted to the 
corresponding 4-bit binary value:

2      3   .    1      9
0010 0011 . 0001 1001BCD

00102 x 101 + 00112 x 100 + 
+ 00012 x 10-1 + 10012 x 10-2

Note the base used is 10, just the 
decimal digits are expressed in binary
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BCD Encoding
 Comparison – Convert value 126.625 to 

both base 2 and BCD
 1111110.1012

 000100100110.011000100101BCD

The two sequences of bits are quite 
different, the only way to transform one 
into the other is through base 10

 Other types of BCD encoding exist, the 
one just seen is called Simple BCD
(SBCD) or BCD 8421
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BCD Encoding

 BCD values are stored in different ways 
on different machines:
 one byte for each digit, the higher nibble 

can be set to:
 0000 or 1111
 0011 (in this case, the resulting value is the 

ASCII code of the value, e.g. BCD digit 0010, if 
stored preceded by 0011 becomes: 00110010 
that is the ASCII value for character ‘2’, i.e. 50)

 one byte for two digits (packed BCD )
 other compressed ways
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BCD Encoding

 BCD operations are slower than binary 
operations

 BCD circuits are bigger
 Space is wasted (unused bit sequences)
 No approximation errors
 Easy scaling of a factor of 10
 Rounding at a decimal boundary is easy
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Exercises on BCD

 Convert the values as requested
 123.2110 ()BCD

 82.C16 ()BCD

 12.216 ()BCD

 000100100110.10010001BCD ()10

 000100100110.10010001BCD ()2

 100100110.100100012 ()BCD
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Exercises on BCD
 Solutions

 123.2110  000100100011.00100001BCD

 82.C16  130.7510 
 000100110000.01110101BCD

 12.216  18.12510 
 00011000.000100100101BCD

 000100100110.10010001BCD126.9110

 000100100110.10010001BCD1111110.11…2

 100100110.100100012 294.566...10 
 001010010100.010101100110BCD
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Binary Prefixes

 The physical quantities use prefixes as 
multipliers, their values are powers of 10

 In the binary notation the same prefixes 
are used, but as powers of 2

petateragigamegakiloName

250240230220210Binary value

10151012109106103Physics value

PTGMKPrefix
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Binary Prefixes

 An attempt to define separate prefixes 
for powers of 2 lead to the definition of 
the (seldom used) following prefixes

pebitebigibimebikibiName

250240230220210Value

PiTiGiMiKiPrefix
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Binary Addition

 Usual rules apply:
 0+0 = 0
 0+1 = 1+0 = 1
 1+1 = 0 with carry = 1 to the following 

power of 2 (that is: 102)
 1+1+1= 1 with carry = 1 (that is: 112)

 It is useful to add column by column, 
writing carries on top of the next 
column
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Binary Addition

 Example

10110 +
1011 =

100001

1 1 1 1 non null carries

74

Exercises on Addition
 Complete:

 0+1=
 1+1=
 10+1=
 11+1=
 100+1=
 101+1=
 111+1=
 1000+1=
 11111+1=

75

Exercises on Addition
 Solution:

 0+1=1
 1+1=10
 10+1=11
 11+1=100
 100+1=101
 101+1=110
 111+1=1000
 1000+1=1001
 11111+1=100000
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Binary Subtraction

 Usual rules apply:
 0–0 = 0
 1–0 = 1
 1–1 = 0
 0–1= 1 with borrow = 1 (borrowed from 

the nearest 1 leftmost)
Remember that the 1 that gives its value 
becomes 0 and any intermediate 0 
becomes 1 (the highest digit in base 2)
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Binary Subtraction

 Examples
1011 –
110 =

0101

110000 –
11 =

101101

1 The nearest leftmost 1 gives
its value and becomes 0
The borrowing 0 becomes 10

0

10 1 Intermediate 0s becomes 1s
Remember, in base 10 (the 
highest digit is 9) we have:

1000 –
1 =

0999

1 1

1990
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Exercises on Add & Sub
 Complete:

 1010 + 10010=
 11 + 11=
 11011 + 1001=
 1101 + 111=
 10000 – 10=
 11010 – 10101=
 10010 – 1111=
 10101 – 10101=
 10000 – 111=
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Exercises on Add & Sub
 Solutions :

 1010 + 10010 = 11100
 11 + 11 = 110
 11011 + 1001 = 100100
 1101 + 111 = 10100
 10000 – 10 = 1110
 11010 – 10101 = 101
 10010 – 1111 = 11
 10101 – 10101 = 0
 10000 – 111 = 1001
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Overflow

 The binary numbering system we used 
until now does not take into account 
any limitation to the number of bits that 
can be used

 When binary numbers are stored in a 
digital computer, the number of bits 
available is an architectural, fixed, and 
limiting characteristic
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Overflow

 It is not possible to store a number that 
requires more bits than those provided 
by the hardware in use (it is out of 
range)

 When a non-storable number results 
from a calculation (e.g. an addition), it 
is not a correct value (must be 
discarded) and there is an Overflow
error condition
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Overflow
 Example

Consider a computing machine where 
numbers are stored in 8-bit variables

10011001 +
11001100 = 

101100101
Note that the result requires 9 bits, the 
machine cannot store it and then 
signals an Overflow error condition
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Shift Operations

 Simple multiplication and division by a 
power of 2 is achieved by shifting the 
number bits

 “Shifting” means moving each bit either 
to the right (right shift) or to the left 
(left shift)

 Symbols « and » are used to identify 
the shift operation, they are followed by 
the number of shifts to perform
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Shift Operations

 Left shift («): a zero is added to the 
right

10102  1010
101002  2010

1010002  4010 

 Each left shift doubles the value, 
(actually it multiplies the value by the 
base, in base 10: 12«1 = 120)

 n left shifts  multiplication by 2n
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Shift Operations
 Right shift (»): for integer values, the 

LSB is discarded, for fractional values 
the LSB goes beyond the radix point

10102  1010
1012 510

102 210 (10.12=2.510 for fract. val.)
 Each right shift halves the value, for 

integer values it is an integer division 
with truncation of the fractional part

 n right shifts  division by 2n
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Exercises on Shifts

 Calculates the following op. by using 
shifts on the binary integer notation
 124 / 8 e.g. 1111100»3  1111
 22 * 4
 128 * 16
 131 / 2
 28 * 8
 47 * 2
 12 / 16
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Exercises on Shifts

 Solutions

 124 / 8 1111100»3  1111
 22 * 4 10110«2  1011000
 128 * 16 10000000«4  100000000000
 131 / 2 10000011»1  1000001
 28 * 8 11100«3  11100000
 47 * 2 101111«1  1011110
 12 / 16 1100»4  0


