
Numbering Systems

Ver. 1.4

© 2010 - Claudio Fornaro

2

The Decimal System

 Consider value 234, there are:
 2 hundreds
 3 tens
 4 units

that is: 2 x 100 + 3 x 10 + 4 x 1
but 100, 10, and 1 are all powers of 10
so value 234 can be written as:
2 x 102 + 3 x 101 + 4 x 100

3

The Decimal System

 That recurring number 10 is called the
base of the numbering system

 The usual numbering system is then
called base 10 or decimal

 The decimal system is a positional
numbering system, this means that the
position of each digit implies the
multiplication to a corresponding power
of the base (the weight of that position)

4

The “base-n” System

 The base of a numbering system can be
any integer value greater than 1

 Digits can have values from 0 to
n –1 (e.g. the base-10 system has 10
possible digits, from 0 to 9, for bases
>10 see the hexadecimal system)

 When not clear from the context, the
base of a value must be indicated with a
subscript value: 23410

5

The “base-n” System

 Base-n systems are positional
 The same value is expressed in

different ways depending on the
numbering system used

 We want to convert a value from a
generic base n to base 10 because we
are acquainted only with the latter

 Some base-n numbering systems are
more suited for special purposes

6

The Binary System

 Binary means base-2
 There are only 2 digits: 0 and 1
 The digits of a binary value are called

bits (bit comes from “BInary digiT”)
 A value expressed in the binary system

is a sequence of zeroes and ones:
1001012

 The binary system is suited for
computers

7

The Binary System

 What (decimal) value correspond to
1001012?

 From the definition of positional
numbering system: to convert a base-n
value to base 10, each digit must be
multiplied by the power of the base
(2 in this case) corresponding to the
digit position

8

The Binary System

 1001012 = 1 x 25 +  32 +
0 x 24 +  0 +
0 x 23 +  0 +
1 x 22 +  4 +
0 x 21 +  0 +
1 x 20 =  1 =

3710

5 4 3 2 1 0

write powers right to left on
each digit starting from unit

9

The Binary System

 A “bit” is a small quantity (!), so many
bits are grouped together to build a
more significant entity

 A byte is a sequence of 8 bits
 10100011
 00101001

10

The Binary System

 Other bit groupings are:
 A nibble is composed of 4 bits
 A word is composed of 2 bytes (16 bits)
 A double word (dword) is composed of 2

words (4 bytes, 32 bits)
 A quad word (qword) is composed of 4

words (8 bytes, 64)
The term word has a completely different

meaning when dealing with computer
architecture

11

The Binary System
 For every bit sequence:

 MSB: Most Significant Bit
The leftmost bit is the most important of
the sequence because it multiplies the
highest power of the base
10010010…10101001

 LSB: Least Significant Bit
The rightmost bit is the less important of
the sequence because it multiplies the
lowest power of the base (0)
10010010…10101001

12

The Octal System

 There are 8 digits:
from 0 to 7 (no 8 nor 9 digits!)

 Example
 36428

 Conversion to base 10
 36428= 3 x 83 + 6 x 82 + 4 x 81 + 2 x 80

= 195410

 3848= NOT AN OCTAL NUMBER (8?)

3 2 1 0

13

The Hexadecimal System

 16 digits: 0 to F (subscript 16 or H)
 The first 10 digits are the same as the

decimal system, the other 6 digit
symbols are taken from the alphabet:

AH  1010 (digit “A”, NOT letter “A”)
BH  1110
CH  1210
DH  1310
EH  1410
FH  1510

14

The Hexadecimal System

 C1B8H = 12 x 163 + 1 x 162 + 11 x 161

+ 8 x 160 = 4959210

3 2 1 0

15

Doubling and Dabbling

 Fast conversion to base 10 of small
binary values (it could be used with
other bases and big values, but memory
computation is not such effective):
 multiply the first (leftmost) bit (MSB) by

the base (2) and add the second bit
 multiply the value just calculated by the

base and add the third bit
 continue until the LSB is added

16

Doubling and Dabbling

 Example
1001012

 leftmost bit (MSB) is 1
 1 x 2 = 2 + 0 = 2
 2 x 2 = 4 + 0 = 4
 4 x 2 = 8 + 1 = 9
 9 x 2 = 18 + 0 = 18
 18 x 2 = 36 + 1 = 37

17

Conversion from base 10 to n

 For integer numbers only:
 Divide the value by the target base,

computing an integer division, you get a
quotient (result) and a remainder

 Divide the previous quotient by the target
base, you get a quotient and a remainder

 Continue until the quotient is zero
 Write (from left to right) the remainders

from the last computed to the first one

18

Conversion from base 10 to n

 Example: convert 3710 to base 2
37 2

1 18 2
0 9 2

1 4 2
0 2 2

0 1 2
1 0

divisor dividend

remainder quotient

remainders

100101

19

Conversion from Base n to m

 Given a number in base n, to convert it
to base m:
 convert the number from base n to base 10
 convert the just calculated number from

base 10 to base m
 It is always possible to pass through the

intermediate base 10, but sometimes
this is not the easiest and fastest way

20

Conversion Exercises

 Convert the values as requested
 10610 ()2

 3510 ()2

 6410 ()2

 456 ()2

 177 ()2

 238 ()2

 20710 ()2

 B216 ()10

 478 ()10

 7310 ()8

 447 ()3

 1010012 ()10

 111112 ()10

 100002 ()10

 100002 ()4

 16110 ()16

21

Conversion Exercises

 Convert the values as requested
 10610 11010102

 3510 1000112

 6410 10000002

 456 111012

 177 IMP.
 238 100112

 20710 110011112

 B216 17810

 478 3910

 7310 1118

 447 10123

 1010012 4110

 111112 3110

 100002 1610

 100002 1004

 16110 A116

22

Conversion from Bases 2n

 To convert a number from base n to
base m, when BOTH n and m are
powers of 2 (e.g. 2,4,8,16), it is easier
and faster to pass through base 2

 Every digit in a 2x base requires at least
x bits (possibly starting with zeroes):
58 = 1012 28 = 0102
B16 = 10112 216 = 00102

23

Conversion from Bases 2n

 A number in base-2x can be converted
to base 2 by simply substituting each of
its digits with the corresponding binary
value (each composed of x bits):
528 = [101][010]2 = 1010102
B216 = [1011][0010]2 = 101100102

24

Conversion from Bases 2n

 A number in base 2 can be converted to
base-2x by grouping its bits from right
to left (each group composed of x bits)
and substituting each group with the
corresponding base-2x digit:
1010102 = [101][010]2 = 528
101100102 = [1011][0010]2 = B216

25

Conversion from Bases 2n

 If the leftmost group has less than x
bits, an appropriate number of zeroes
are added to the left part:
100102 = [010][010]2 = 228
1100102 = [0011][0010]2 = 3216

26

Conversion from Bases 2n

 Example
Convert number 3CB21F16 to base 8

3 C B 2 1 F
0011 1100 1011 0010 0001 1111
0011 1100 1011 0010 0001 1111

1 7 1 3 1 0 3 7

171310378

27

Conversion from Bases 2n

 The most important base in Computer
Science is 2, but it is difficult and long to
write and read long binary values

 Base 16 and 8 are so often used because
it is simple and immediate to convert a
value between them and base 2 and
because of the compact notation:
it is much easier to read and write a 32
bit value like 95DBA6CF instead of
10010101110110111010011011001111

28

Exercises on Conversions

 Convert the values as requested
 10010100101001012 ()8

 10010100101001012 ()H

 33258 ()2

 33258 ()4

 33258 ()16

 13348 ()16

 A11616 ()8

 133648 ()16

29

Exercises on Conversions

 Solutions
 001|001|010|010|100|1012 1122458

 1001|0100|1010|01012 94A5H

 33258 0110110101012

 33258 1231114

 33258 6D516

 13348 2DC16

 A11616 1204268

 133648 16F416

30

Powers of 2
 20=110 =12 29=512
 21=210 =102 210=1024
 22=410 =1002 211=2048
 23=810 =10002 212=4096
 24=1610 =100002 213=8192
 25=3210 =1000002 214=16384
 26=6410 =10000002 215=32768
 27=12810 =100000002 216=65536
 28=25610 =1000000002

 Note that 2n in binary is 1 followed by n zeroes

31

Range

 With n bits, just a limited subset of
values can be represented

 There are 2n different combinations of
n bits, each one is a binary number:
from 000...000  0

... ...
to 111...111  2n –1
Thus the range of a binary number
composed of n bits is: 0  2n –1

2n numbers

32

Number of bits required
 Given a decimal value N, the same

value converted to binary requires
a minimum of bits equal to:

where the ceiling operator
returns the minimum integer greater
then or equal to a (e.g. 2.1  3,
2.9  3, 2.0  2)

 )1(log2  Nn

 a

33

Number of bits required

 A simpler approach uses (wise) trial:
 count the digits (d) of the decimal num. N
 each digit requires about 3 bits (good

approximation up to 20-30 bit numbers), so
the approximate number of bits is: x = 3d

 compare N to powers 2n with n ranging
from (x-1) to (x+1) to find the minimum n
so that 2n  N

 Note: if needed, consider extending n to
(x –2) or to (x +2)

34

Number of bits required

 Example - How many bits are required
for number 400?
Estimate:
 3 decimal digits  3x3 = 9 bits

Check values:
 9 bits  range: 0  29 –1 = 511  400 OK

Verify if a smaller value is also good:
 8 bits  range: 0  28 –1 = 255 < 400 NO

Answer: at least 9 bits

35

Number of bits required

 Exercises
How many bits are needed to represent
the following values?
 47
 137
 1412
 128
 884
 1

 422
 15
 444
 1024
 1023
 6443

36

Number of bits required

 Solutions
How many bits are needed to represent
the following values?
 47  6
 137 8
 1412 11
 128  8
 884  10
 1  1

 422  9
 15  4
 444  9
 1024  11
 1023  10
 6443  13

37

Fractional Numbers Conversion

 Conversion from any base n to base 10
just requires the application of the
positional numbering system definition

 Example
1011.1012  ()10

1011.101 = 1x23 + 0x22 + 1x21 + 1x20

+ 1x2-1 + 0x2-2 + 1x2-3 =
= 8 + 2 + 1 + 0.5 + 0.125 = 11.62510

3 2 1 0 -1-2-3

38

Fractional Numbers Conversion

 Conversion from base 10 to any base n
requires 2 steps:
 conversion of the integral part (already

seen)
 conversion of the fractional part (to be

seen)

The two parts are then juxtaposed
(added)

39

Fractional Numbers Conversion
 Conversion of the fractional part

(i.e. a value in the form 0.xxxx)
 multiply the number to the target base

(e.g. 2)
 write down the integer part of the result

and THEN set it to 0
 repeat until result is 0 or as otherwise

required (more on this later)
 write left to right “0.” followed by the

integer parts in the order they have been
calculated

40

Fractional Numbers Conversion

 Example, convert 0.687510 to binary
0.6875 x 2 = 1.3750
0.3750 x 2 = 0.750
0.750 x 2 = 1.50
0.50 x 2 = 1.00
0.00 STOP

0.10112

 Example, convert 12.6875 to binary:
Result: 1100.10112

41

Fractional Numbers Conversion
 To convert a number with a fractional

part from one base to another, it is
always possible to pass through the
intermediate base 10

 When BOTH bases are powers of 2, it
is easier and faster to pass through
base 2

42

Fractional Numbers Conversion
 Regrouping must start from the point so

that unity remains on the digit at left of
the point, if required, zeroes must be
added on the right of the fractional part

 Example
C4B2.D6H  ()8

1100 0100 1011 0010.1101 01102

001 100 010 010 110 010 .110 101 100
1 4 2 2 6 2 . 6 5 48

x 20

43

Fractional Numbers Conversion

 A value with a finite number of
fractional digits in one base may require
an infinite number of fractional digits in
another base (often periodic in binary)

 E.g. 2.31 10.01001100110011001...
 When converting values with an

unlimited fractional part, the number of
fractional digit to calculate must be
known in advance (in some way)

44

Exercises on Conversions

 Convert the values as requested
 56.228 ()16

 CC559.9B116()8

 1001.112 ()10

 11101.0112 ()10

 1000.00012 ()10

 33.2510 ()2 (3 fractional digits)
 13.3410 ()2 (5 fractional digits)
 256.2210 ()2 (6 fractional digits)

45

Exercises on Conversions

 Convert the values as requested
 56.228 2E.4816

 CC559.9B1163142531.46618

 1001.112 9.7510

 11101.0112 29.37510

 1000.00012 8.062510

 33.2510 100001.0102

 13.3410 1101.010102

 256.2210 100000000.0011102

46

Approximation Errors

 When we have to limit the number of
fractional digits, the value resulting
from conversion is not the same as the
original value

 This means that if the resulting value is
converted back to the original base, it is
slightly different

 An error is introduced

47

Approximation Errors

 Absolute precision: the smallest
(positive) quantity that can be written
by using a given number of fractional
digits

where:
b is the numbering base
n is the number of the fractional digits
N is the given number

nb
1



48

Approximation Errors

 Examples
 In decimal, with 5 fractional digits the

smallest positive quantity is
0.0000110=1/105 = 0.0000110

 In binary, with 5 fractional digits the
smallest positive quantity is
0.000012 =1/25 = 0.0312510

 In octal, with 5 fractional digits the
smallest positive quantity is
0.000018 =1/85 = 0.00003051757812510

49

Approximation Errors

 0.4 has 1 fractional digit, so its absolute
precision  is 1/101= 0.1

 10.4 has 1 fractional digit, so its
absolute precision  is 1/101= 0.1

 Is =0.1 a good or a bad precision?
It depends on the value itself: you have
to compare the absolute error to the
given value

50

Approximation Errors

 An absolute precision value may have
different significance with respect to the
value it is computed for

 Relative precision: the absolute
precision compared to the given value
(usually as a percentage)

%100
N


51

Approximation Errors

 Complete

10.410

10010

1/24=0.06250.10112

0.1/0.4*100 = 25%1/101=0.10.410

N

52

Approximation Errors

 Solutions

0.96%0.110.410

1%110010

9.09%0.06250.10112

25%0.10.410

N

53

Approximation Errors

 In a base conversion, a given error
margin (also called precision or
approximation) o must not be
exceeded

 Errors can be used to establish how
many fractional digits to use

54

Approximation
 Example 1 - Convert value N=0.21 to

base 2 with o=1/32 (i.e. 0.03125)
 Compute how many fractional bits are

needed: because the required o=1/32
must be equal to the theoretic =1/2n, then
1/32 = 1/2n  32=2n  25=2n  n = 5

 Calculate the first 5 fractional bits
 Write the result: 0.001102
 The trailing zero is required: without it the 

would be 1/24 =1/16 and not 1/32

55

Approximation
 Note that 0.001102 = 0.187510 and this

is NOT the given value 0.2110

 However the absolute difference
between them (the introduced error) is
less than or equal to the maximum
allowed error 1/32 (0.03125):
|0.21 – 0.1875| = 0.0225  0.03125

56

Approximation
 Example 2 - Convert value N=0.21 to

base 2 with absolute error o=1/100
 Compute how many fractional bits are

needed: because the required o=1/100
must be equal to the theoretic =1/2n, then
1/100 = 1/2n  100=2n  n = ?
For solving this equation we can use
logarithms, but we can use the trial method:
n=6 bits  2n = 64 < 100 not enough!
n=7 bits  2n = 128  100 OK!

 Calculate the first 7 fractional bits

57

Approximation
 Note that an error of exactly 1/100

cannot be obtained because 100 is not
a power of 2

 Instead of 1/100 we use its nearest
(smaller) power of 2, resulting in an
error smaller than the one requested, so
that the requirements are fulfilled

 Having now a power of 2, the exponent
can be easily found

58

Exercises on Conversions

 Convert the values as requested
 33.22510 ()2 (o =1/64)
 13.3410 ()2 (o =1/1000)
 256.2210 ()2 (o =0.001%)
 12.7110 ()2 (preserve the same  of

the decimal value)
 12.7110 ()2 (preserve the same )

59

Exercises on Conversions

 Solutions
 33.22510

100001.001110
 13.3410

1101.0101011100

n2
1

64
1ε 

n2
1

1000
1ε 

2n  64 n =6

2n  1000 n =10

60

Exercises on Conversions

 Solutions
 256.2210

 

n

0
0

2
1ε

100εη




N

bit 9
3.3902
3.3902

0.0025622
2
1ε

100
22.256

ε001.0 0










n

n

n

n

0.0025622ε0 

61

Exercises on Conversions

 Solutions
 12.7110

n =7

1100.1011010
 12.7110

10= 2  10= 2  same ex. as before

n2
1

100
1

10
1εε 2102 

100
71.12
εη100

71.12
εη 2

2
10

10 

62

BCD Encoding

 In many cases, the approximation
involved with conversion to base 2 is
not acceptable

 The most prominent case is currency
 The only way is to not convert to

binary, but digital computers do need
information stored as bits…

 What to do?

63

BCD Encoding

 Binary-Coded Decimal is an encoding
for decimal numbers in which each digit
is represented by its own binary value

 Each binary value is composed of 4 bits
 Only 10 groups corresponding to values

from 0 to 9 (from 0000 to 1001) are
allowed

 This is NOT an equivalent way to
convert to/from base 2!

64

BCD Encoding

 Example – Convert value 23.19 to BCD
Every decimal digit is converted to the
corresponding 4-bit binary value:

2 3 . 1 9
0010 0011 . 0001 1001BCD

00102 x 101 + 00112 x 100 +
+ 00012 x 10-1 + 10012 x 10-2

Note the base used is 10, just the
decimal digits are expressed in binary

65

BCD Encoding
 Comparison – Convert value 126.625 to

both base 2 and BCD
 1111110.1012

 000100100110.011000100101BCD

The two sequences of bits are quite
different, the only way to transform one
into the other is through base 10

 Other types of BCD encoding exist, the
one just seen is called Simple BCD
(SBCD) or BCD 8421

66

BCD Encoding

 BCD values are stored in different ways
on different machines:
 one byte for each digit, the higher nibble

can be set to:
 0000 or 1111
 0011 (in this case, the resulting value is the

ASCII code of the value, e.g. BCD digit 0010, if
stored preceded by 0011 becomes: 00110010
that is the ASCII value for character ‘2’, i.e. 50)

 one byte for two digits (packed BCD)
 other compressed ways

67

BCD Encoding

 BCD operations are slower than binary
operations

 BCD circuits are bigger
 Space is wasted (unused bit sequences)
 No approximation errors
 Easy scaling of a factor of 10
 Rounding at a decimal boundary is easy

68

Exercises on BCD

 Convert the values as requested
 123.2110 ()BCD

 82.C16 ()BCD

 12.216 ()BCD

 000100100110.10010001BCD ()10

 000100100110.10010001BCD ()2

 100100110.100100012 ()BCD

69

Exercises on BCD
 Solutions

 123.2110  000100100011.00100001BCD

 82.C16  130.7510 
 000100110000.01110101BCD

 12.216  18.12510 
 00011000.000100100101BCD

 000100100110.10010001BCD126.9110

 000100100110.10010001BCD1111110.11…2

 100100110.100100012 294.566...10 
 001010010100.010101100110BCD

70

Binary Prefixes

 The physical quantities use prefixes as
multipliers, their values are powers of 10

 In the binary notation the same prefixes
are used, but as powers of 2

petateragigamegakiloName

250240230220210Binary value

10151012109106103Physics value

PTGMKPrefix

71

Binary Prefixes

 An attempt to define separate prefixes
for powers of 2 lead to the definition of
the (seldom used) following prefixes

pebitebigibimebikibiName

250240230220210Value

PiTiGiMiKiPrefix

72

Binary Addition

 Usual rules apply:
 0+0 = 0
 0+1 = 1+0 = 1
 1+1 = 0 with carry = 1 to the following

power of 2 (that is: 102)
 1+1+1= 1 with carry = 1 (that is: 112)

 It is useful to add column by column,
writing carries on top of the next
column

73

Binary Addition

 Example

10110 +
1011 =

100001

1 1 1 1 non null carries

74

Exercises on Addition
 Complete:

 0+1=
 1+1=
 10+1=
 11+1=
 100+1=
 101+1=
 111+1=
 1000+1=
 11111+1=

75

Exercises on Addition
 Solution:

 0+1=1
 1+1=10
 10+1=11
 11+1=100
 100+1=101
 101+1=110
 111+1=1000
 1000+1=1001
 11111+1=100000

76

Binary Subtraction

 Usual rules apply:
 0–0 = 0
 1–0 = 1
 1–1 = 0
 0–1= 1 with borrow = 1 (borrowed from

the nearest 1 leftmost)
Remember that the 1 that gives its value
becomes 0 and any intermediate 0
becomes 1 (the highest digit in base 2)

77

Binary Subtraction

 Examples
1011 –
110 =

0101

110000 –
11 =

101101

1 The nearest leftmost 1 gives
its value and becomes 0
The borrowing 0 becomes 10

0

10 1 Intermediate 0s becomes 1s
Remember, in base 10 (the
highest digit is 9) we have:

1000 –
1 =

0999

1 1

1990

78

Exercises on Add & Sub
 Complete:

 1010 + 10010=
 11 + 11=
 11011 + 1001=
 1101 + 111=
 10000 – 10=
 11010 – 10101=
 10010 – 1111=
 10101 – 10101=
 10000 – 111=

79

Exercises on Add & Sub
 Solutions :

 1010 + 10010 = 11100
 11 + 11 = 110
 11011 + 1001 = 100100
 1101 + 111 = 10100
 10000 – 10 = 1110
 11010 – 10101 = 101
 10010 – 1111 = 11
 10101 – 10101 = 0
 10000 – 111 = 1001

80

Overflow

 The binary numbering system we used
until now does not take into account
any limitation to the number of bits that
can be used

 When binary numbers are stored in a
digital computer, the number of bits
available is an architectural, fixed, and
limiting characteristic

81

Overflow

 It is not possible to store a number that
requires more bits than those provided
by the hardware in use (it is out of
range)

 When a non-storable number results
from a calculation (e.g. an addition), it
is not a correct value (must be
discarded) and there is an Overflow
error condition

82

Overflow
 Example

Consider a computing machine where
numbers are stored in 8-bit variables

10011001 +
11001100 =

101100101
Note that the result requires 9 bits, the
machine cannot store it and then
signals an Overflow error condition

83

Shift Operations

 Simple multiplication and division by a
power of 2 is achieved by shifting the
number bits

 “Shifting” means moving each bit either
to the right (right shift) or to the left
(left shift)

 Symbols « and » are used to identify
the shift operation, they are followed by
the number of shifts to perform

84

Shift Operations

 Left shift («): a zero is added to the
right

10102  1010
101002  2010

1010002  4010

 Each left shift doubles the value,
(actually it multiplies the value by the
base, in base 10: 12«1 = 120)

 n left shifts  multiplication by 2n

85

Shift Operations
 Right shift (»): for integer values, the

LSB is discarded, for fractional values
the LSB goes beyond the radix point

10102  1010
1012 510

102 210 (10.12=2.510 for fract. val.)
 Each right shift halves the value, for

integer values it is an integer division
with truncation of the fractional part

 n right shifts  division by 2n

86

Exercises on Shifts

 Calculates the following op. by using
shifts on the binary integer notation
 124 / 8 e.g. 1111100»3  1111
 22 * 4
 128 * 16
 131 / 2
 28 * 8
 47 * 2
 12 / 16

87

Exercises on Shifts

 Solutions

 124 / 8 1111100»3  1111
 22 * 4 10110«2  1011000
 128 * 16 10000000«4  100000000000
 131 / 2 10000011»1  1000001
 28 * 8 11100«3  11100000
 47 * 2 101111«1  1011110
 12 / 16 1100»4  0

