

The Decimal System

- That recurring number 10 is called the base of the numbering system
- The usual numbering system is then called *base 10* or *decimal*
- The decimal system is a *positional* numbering system, this means that the position of each digit implies the multiplication to a corresponding power of the base (the weight of that position)

The "base-n" System

- The base of a numbering system can be any integer value greater than 1
- Digits can have values from 0 to n-1 (e.g. the base-10 system has 10 possible digits, from 0 to 9, for bases >10 see the hexadecimal system)
- When not clear from the context, the base of a value must be indicated with a subscript value: 234₁₀

The "base-n" System

- Base-n systems are positional
- The same value is expressed in different ways depending on the numbering system used
- We want to convert a value from a generic base *n* to base 10 because we are acquainted only with the latter

5

7

 Some base-n numbering systems are more suited for special purposes

The Binary System

- Binary means base-2
- There are only 2 digits: 0 and 1
- The digits of a binary value are called bits (bit comes from "BInary digiT")
- A value expressed in the binary system is a sequence of zeroes and ones: 100101₂
- The binary system is suited for computers

- What (decimal) value correspond to 100101₂?
- From the definition of positional numbering system: to convert a base-n value to base 10, each digit must be multiplied by the power of the base (2 in this case) corresponding to the digit position

9 10 The Binary System The Binary System • A "bit" is a small quantity (!), so many Other bit groupings are: bits are grouped together to build a • A **nibble** is composed of 4 bits more significant entity A word is composed of 2 bytes (16 bits) A byte is a sequence of 8 bits • A double word (dword) is composed of 2 words (4 bytes, 32 bits) **10100011** A quad word (qword) is composed of 4 00101001 words (8 bytes, 64) The term *word* has a completely different meaning when dealing with computer architecture 11 12 The Octal System The Binary System For every bit sequence: There are 8 digits: • MSB: Most Significant Bit from 0 to 7 (no 8 nor 9 digits!) The leftmost bit is the most important of Example the sequence because it multiplies the highest power of the base ■ 3642₈ 10010010...10101001 Conversion to base 10 • LSB: Least Significant Bit • $3642_8 = 3 \times 8^3 + 6 \times 8^2 + 4 \times 8^1 + 2 \times 8^0$ The rightmost bit is the less important of $= 1954_{10}$ the sequence because it multiplies the • $384_8 = NOT AN OCTAL NUMBER (8?)$ lowest power of the base (0) 10010010...10101001

Conversion from base 10 to n

- For *integer numbers* only:
 - Divide the value by the target base, computing an integer division, you get a quotient (result) and a remainder
 - Divide the previous quotient by the target base, you get a quotient and a remainder
 - Continue until the quotient is zero
 - Write (from left to right) the remainders from the last computed to the first one

Conversion from base 10 to n

divisor

Example: convert 37₁₀ to base 2

37

18

remainders

19

- Given a number in base n, to convert it to base m:
 - convert the number from base *n* to base 10
 - convert the just calculated number from base 10 to base m
- It is always possible to pass through the intermediate base 10, but sometimes this is not the easiest and fastest way

dividend

remainder quotient

Convert the values as requested

■ 106 ₁₀	→1101010 ₂	■ 47 ₈	→39 ₁₀
3 5 ₁₀	→100011 ₂	7 3 ₁₀	→111 ₈
■ 64 ₁₀	→1000000 ₂	4 4 ₇	→1012 ₃
∎ 45 ₆	→11101 ₂	■ 101001 ₂	→41 ₁₀
■ 17 ₇	→IMP.	■ 11111 ₂	→31 ₁₀
■ 23 ₈	→10011 ₂	■ 10000 ₂	→16 ₁₀
■ 207 ₁₀	→11001111 ₂	■ 10000 ₂	→100 ₄
■ B2 ₁₆	→178 ₁₀	■ 161 ₁₀	→A1 ₁₆

Conversion from Bases 2ⁿ

- To convert a number from base *n* to base *m*, when BOTH *n* and *m* are powers of 2 (e.g. 2,4,8,16), it is easier and faster to pass through base 2
- Every digit in a 2^x base requires at least x bits (possibly starting with zeroes):

 $5_8 = 101_2 2_8 = 010_2$ $B_{16} = 1011_2 2_{16} = 0010_2$

23

 A number in base-2^x can be converted to base 2 by simply substituting each of its digits with the corresponding binary value (each composed of *x* bits):
 52₈ = [101][010]₂ = 101010₂
 B2₁₆ = [1011][0010]₂ = 10110010₂ Con

Conversion from Bases 2ⁿ

 A number in base 2 can be converted to base-2^x by grouping its bits from right to left (each group composed of *x* bits) and substituting each group with the corresponding base-2^x digit: 101010₂ = [101][010]₂ = 52₈ 10110010₂ = [1011][0010]₂ = B2₁₆

Number of bits required

- A simpler approach uses (wise) trial:
 - count the digits (d) of the decimal num. N
 - each digit requires about 3 bits (good approximation up to 20-30 bit numbers), so the approximate number of bits is: x = 3×d
 - compare *N* to powers 2ⁿ with *n* ranging from (*x*-1) to (*x*+1) to find the minimum *n* so that 2ⁿ ≥ *N*
 - Note: if needed, consider extending *n* to (x-2) or to (x+2)

Number of bits required

- Example How many bits are required for number 400? Estimate:
 - 3 decimal digits \rightarrow 3x3 = 9 bits

Check values:

- 9 bits \rightarrow range: 0 \rightarrow 2⁹ -1 = 511 \ge 400 OK Verify if a smaller value is also good:
- 8 bits \rightarrow range: 0 \rightarrow 2⁸ -1 = 255 < 400 NO Answer: at least 9 bits

35

Exercises

How many bits are needed to represent the following values?

422

1024

- **4**7
- **1**37
- 15 ■ 444
- 1412
- **1**28
- **•** 884 **•** 1023
- **1 6**443

Number of bits required

Solutions

4 7 → 6	422	\rightarrow 9
■ 137 → 8	1 5	\rightarrow 4
■ 1412 → 11	444	→ 9
■ 128 → 8	1 024	→ 11
■ 884 → 10	1 023	→ 10
■ 1 → 1	6 443	→ 13

Exercises on Conversions

- Convert the values as requested
 - 56.22₈ →2E.48₁₆
 - CC559.9B1₁₆→3142531.4661₈
 - 1001.11₂ →9.75₁₀
 - 11101.011₂ →29.375₁₀
 - 1000.0001₂ →8.0625₁₀
 - 33.25₁₀ →100001.010₂
 - 13.34₁₀ →1101.01010₂
 - 256.22₁₀ →10000000.001110₂

Approximation Errors

- When we have to limit the number of fractional digits, the value resulting from conversion is not the same as the original value
- This means that if the resulting value is converted back to the original base, it is slightly different
- An error is introduced

47

Approximation Errors

 Absolute precision: the smallest (positive) quantity that can be written by using a given number of fractional digits

 h^n

b is the numbering base *n* is the number of the *fractional* digits *N* is the given number

- Examples
 - In decimal, with 5 fractional digits the smallest positive quantity is
 0.00001₁₀=1/10⁵ = 0.00001₁₀
 - In binary, with 5 fractional digits the smallest positive quantity is 0.00001₂ =1/2⁵ = 0.03125₁₀
 - In octal, with 5 fractional digits the smallest positive quantity is
 0.00001₈ = 1/8⁵ = 0.000030517578125₁₀

- 0.4 has 1 fractional digit, so its absolute precision ε is 1/10¹ = 0.1
- 10.4 has 1 fractional digit, so its absolute precision ε is 1/10¹ = 0.1
- Is ε=0.1 a good or a bad precision?
 It depends on the value itself: you have to compare the absolute error to the given value

Approximation Errors

- An absolute precision value may have different significance with respect to the value it is computed for
- Relative precision: the absolute precision compared to the given value (usually as a percentage)

$$\eta = \frac{\varepsilon}{|N|} \cdot 100\%$$

52

Complete

N	3	η
0.4 ₁₀	1/10 ¹ =0.1	0.1/0.4*100 = 25%
10.4 ₁₀		
0.1011 ₂	1/24=0.0625	
100 ₁₀		

Solutions

N	3	η
0.4 ₁₀	0.1	25%
10.4 ₁₀	0.1	0.96%
0.1011 ₂	0.0625	9.09%
100 ₁₀	1	1%

- In a base conversion, a given error margin (also called *precision* or *approximation*) ε₀ must not be exceeded
- Errors can be used to establish how many fractional digits to use

Approximation

- Example 1 Convert value N=0.21 to base 2 with ε₀=1/32 (i.e. 0.03125)
 - Compute how many fractional bits are needed: because the required ε₀=1/32 must be equal to the theoretic ε=1/2ⁿ, then 1/32 = 1/2ⁿ → 32=2ⁿ → 2⁵=2ⁿ → n = 5

54

56

- Calculate the first 5 fractional bits
- Write the result: 0.00110_2
- The trailing zero is required: without it the ε would be 1/2⁴ = 1/16 and not 1/32

55

- Note that $0.00110_2 = 0.1875_{10}$ and this is NOT the given value 0.21_{10}
- However the absolute difference between them (the introduced *error*) is less than or equal to the maximum allowed error 1/32 (0.03125): |0.21 – 0.1875| = 0.0225 ≤ 0.03125

Approximation

- Example 2 Convert value N=0.21 to base 2 with absolute error $\varepsilon_0 = 1/100$
 - Compute how many fractional bits are needed: because the required $\varepsilon_0 = 1/100$ must be equal to the theoretic $\varepsilon = 1/2^n$, then $1/100 = 1/2^n \rightarrow 100 = 2^n \rightarrow n = ?$

For solving this equation we can use logarithms, but we can use the trial method: n=6 bits $\rightarrow 2^n = 64 < 100$ not enough! n=7 bits $\rightarrow 2^n = 128 \ge 100$ OK!

• Calculate the first 7 fractional bits

Solutions 12 71...

$$\varepsilon_2 = \varepsilon_{10} = \frac{1}{10^2} = \frac{1}{100} = \frac{1}{2^n} \rightarrow n = 7$$

12.71₁₀

$$\eta_{10} = \frac{\varepsilon_{10}}{12.71} \cdot 100 \qquad \eta_2 = \frac{\varepsilon_2}{12.71} \cdot 100$$
$$\eta_{10} = \eta_2 \Rightarrow \varepsilon_{10} = \varepsilon_2 \Rightarrow \text{ same ex. as before}$$

BCD Encoding

- In many cases, the approximation involved with conversion to base 2 is not acceptable
- The most prominent case is currency
- The only way is to not convert to binary, but digital computers do need information stored as bits...
- What to do?

63

BCD Encoding

- Binary-Coded Decimal is an encoding for decimal numbers in which each digit is represented by its own binary value
- Each binary value is composed of 4 bits
- Only 10 groups corresponding to values from 0 to 9 (from 0000 to 1001) are allowed
- This is NOT an equivalent way to convert to/from base 2!

BCD Encoding

 Example – Convert value 23.19 to BCD Every decimal digit is converted to the corresponding 4-bit binary value:

2 3 . 1 9 $0010\ 0011\ .\ 0001\ 1001_{BCD}$ $0010_2\ x\ 10^1\ +\ 0011_2\ x\ 10^0\ +\ +\ 0001_2\ x\ 10^{-1}\ +\ 1001_2\ x\ 10^{-2}$ Note the base used is 10, just the decimal digits are expressed in binary

- BCD operations are slower than binary operations
- BCD circuits are bigger
- Space is wasted (unused bit sequences)
- No approximation errors
- Easy scaling of a factor of 10
- Rounding at a decimal boundary is easy

 \rightarrow ()_{BCD}

 \rightarrow ()_{BCD}

→()_{BCD}

 \rightarrow ()₁₀

 \rightarrow ()₂

 \rightarrow ()_{BCD}

Convert the values as requested

000100100110.10010001_{BCD}

000100100110.10010001_{BCD}

100100110.10010001₂

■ 123.21₁₀

■ 82.C₁₆

12.2₁₆

Solutions

- 123.21₁₀ → 000100100011.00100001_{BCD}
- 82.C₁₆ \rightarrow 130.75₁₀ \rightarrow \rightarrow 000100110000.01110101_{RCD}
- 12.2_{16} $\rightarrow 18.125_{10} \rightarrow$ $\rightarrow 00011000.000100100101_{BCD}$
- <u>000</u>100100110.10010001_{BCD}→126.91₁₀
- <u>000</u>100100110.10010001_{BCD}→1111110.11...₂
- 100100110.10010001₂ →294.566...₁₀ → → 001010010100.010101100110_{BCD}

Binary Prefixes

- The physical quantities use prefixes as multipliers, their values are powers of 10
- In the binary notation the same prefixes are used, but as powers of 2

Prefix	К	М	G	Т	Р
Name	kilo	mega	giga	tera	peta
Physics value	10 ³	106	10 ⁹	10 ¹²	10 ¹⁵
Binary value	2 ¹⁰	220	2 ³⁰	240	2 ⁵⁰

71

 An attempt to define separate prefixes for powers of 2 lead to the definition of the (seldom used) following prefixes

Prefix	Ki	Mi	Gi	Ti	Pi
Name	kibi	mebi	gibi	tebi	pebi
Value	2 ¹⁰	2 ²⁰	2 ³⁰	240	2 ⁵⁰

Binary Addition

- Usual rules apply:
 - 0+0 = 0
 - $\bullet 0 + 1 = 1 + 0 = 1$
 - 1+1 = 0 with carry = 1 to the following power of 2 (that is: 10₂)
 - 1+1+1=1 with carry = 1 (that is: 11_2)
- It is useful to add column by column, writing carries on top of the next column

- It is not possible to store a number that requires more bits than those provided by the hardware in use (it is out of range)
- When a non-storable number results from a calculation (e.g. an addition), it is not a correct value (must be discarded) and there is an Overflow error condition

 Example Consider a computing machine where numbers are stored in 8-bit variables

 $\frac{10011001}{11001100} +$

<u>101100101</u>

Note that the result requires 9 bits, the machine cannot store it and then signals an Overflow error condition

83

- Simple multiplication and division by a power of 2 is achieved by shifting the number bits
- "Shifting" means moving each bit either to the right (right shift) or to the left (left shift)
- Symbols « and » are used to identify the shift operation, they are followed by the number of shifts to perform

Shift Operations

 Left shift («): a zero is added to the right

 $\begin{array}{ccc} 1010_2 & \rightarrow & 10_{10} \\ 10100_2 & \rightarrow & 20_{10} \\ 101000_2 & \rightarrow & 40_{10} \end{array}$

- Each left shift doubles the value, (actually it multiplies the value by the base, in base 10: 12«1 = 120)
- *n* left shifts \rightarrow multiplication by 2^n

