
Physica A 340 (2004) 274–282
www.elsevier.com/locate/physa

Current  uctuations in the nonequilibrium
Lorentz gas
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Abstract

To extend Onsager–Machlup’s theory, Bertini, De Sole, Gabrielli, Jona-Lasino and Landim
proposed a  uctuation theory for the steady states of stochastic nonequilibrium systems, which
predicts a temporal asymmetry between a  uctuation and its relaxation. Here, this theory is
considered in the context of the nonequilibrium Lorentz gas. This system is deterministic and
time reversible, but is chaotic and dissipative, hence its evolution is close to that of irreversible
stochastic processes.
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1. Introduction

Large  uctuations around steady states occur rarely but are responsible for many
physical processes (phase transitions, nucleation, chemical reactions, DNA mutations,
etc.), and shed some light on the emergence of the irreversible behaviour of macro-
scopic systems from reversible microscopic dynamics [1,2]. A fundamental question
concerns the relation between  uctuation and relaxation paths around a steady state
(be it equilibrium or not). Temporal asymmetries between these paths have been ob-
served experimentally in stochastically perturbed analog electric devices [2], and should
be observable in more general mesoscopic systems, as predicted by the theory recently
developed by Bertini, De Sole, Gabrielli, Jona-Lasinio and Landim for nonequilibrium
steady states [3]. This theory generalizes Onsager–Machlup’s theory [4] to steady states
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in Local Thermodynamic Equilibrium (LTE). For stochastic particle systems which
admit the hydrodynamic description

9t% = ∇ · [D(%)∇%] ≡ D(%); % = %(u; t) ; (1)

where % is a vector of macroscopic observables, and u a space variable, the theory of
Ref. [3] asserts that the spontaneous  uctuations are governed by

− 9t% =D∗(%) ; (2)

where D∗ is in general nonlocal, and diGerent from D. Eq. (2) is called adjoint
hydrodynamic equation. The theory rests on the following:

Assumptions. (1) The “mesoscopic” evolution is a Markov process Xt ; 1

(2) the macroscopic description is given by the 7elds % (the local thermodynamic
variables) whose evolution is described by di8usion type equations like (1);
(3) The probability measures describing the evolution of Xt and of its time reverse

X ∗
t , respectively Pst and P∗

st , are related by

P∗
st(X

∗
t = 	t; t ∈ [t1; t2]) = Pst(X ∗

t = 	−t ; t ∈ [ − t2; −t1]) : (3)

Moreover, if L is the generator of Xt , the adjoint dynamics is generated by the adjoint
operator L∗, which admits a hydrodynamic description;
(4) The stationary measure Pst admits a large deviation principle stating that the

local observable %N , in a volume V containing N particles, obeys:

Pst(%N (Xt)∼%̂(t); t ∈ [t1; t2]) ≈ e−N [S(%̂(t1))+J[t1 ; t2](%̂)] ; (4)

where %̂ is a given density pro7le, J vanishes if %̂ is a solution of Eq. (1) and S(%̂(t1))
is the “entropy” cost to produce the initial pro7le %̂(t1).

The generalization given in Ref. [3] of Onsager–Machlup’s theory follows from these
assumptions, and amounts to this:

Fluctuation principle. In a stationary non equilibrium system, a spontaneous
macroscopic ;uctuation most likely follows a path which is the time reversal of the
relaxation path, according to the adjoint hydrodynamics (Eq. (2)).

The point is that D∗ �= D, in general. The question then arises as to whether
the consequent asymmetry between a spontaneous  uctuation and its relaxation can
be obtained from deterministic, reversible microscopic dynamics. In fact, one gener-
ally assumes that the thermodynamic behaviour of, e.g. classical  uids is due to the

1 We call microscopic the deterministic dynamics of many particles constituting a macroscopic system,
and mesoscopic the associated reduced stochastic description.
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chaotic reversible dynamics of their particles, which appear stochastic at a mesoscopic,
or coarse grained, level. 2

Unfortunately, it is hard to construct models of steady states of particle systems on
which these ideas can be directly tested. For instance, one needs two reservoirs at
diGerent temperatures, in order to produce a steady heat  ow in a system coupled to
them. The corresponding thermodynamic limits pose formidable mathematical problems,
while the present computer technology cannot simulate suMciently large reservoirs.
Therefore, the question whether, and how, some deterministic reversible dynamics may
account for the behaviour predicted by Ref. [3] is open.
Nevertheless, quite realistic molecular dynamics models have been produced [7],

which turn successful in self-consistent calculations of transport coeMcients. Hence,
simpliNed versions of these models, like the nonequilibrium Lorentz gas (NLG) [8],
have been considered for theoretical purposes.
Although the NLG seems suitable to assess the theory of [3] in the context of

microscopic, deterministic, reversible dynamics (cf. Section 3), our results show no
clear asymmetry between relaxation and  uctuation paths. DiGerent regions of the NLG
parameters space might yield diGerent results. But it is more likely that more realistic
models will be needed for the asymmetries of [3] to be observed.

2. Structure of the adjoint hydrodynamics

Let % be a n-dimensional vector, and consider the deterministic dynamics

%̇ =D(%) ; (5)

where D is a vector Neld with an attracting Nxed point %̂. The components of % may
be viewed as the values taken by a given observable on the n diGerent sites of a
spatially discrete system, %̂ as a steady state, and (5) as the corresponding hydro-
dynamic law. Perturbing Eq. (5) with a Gaussian noise �, with mean 〈�(t)〉 = 0
and 〈�i(t)�j(t′)〉 = Kij�(t − t′), where K is symmetric and positive deNnite, Eq. (5)
results rom the maximization of the probability of the paths %(t) connecting the
states %i = %(ti) and %f = %(tf), i.e., from the minimization of

J[ti ;tf](%) =
1
2

∫ tf

ti
(%̇ − D)TK−1(%̇ − D) dt ≡ 1

2

∫ tf

ti
〈%̇ − D; %̇ − D〉 dt ; (6)

where 〈x; y〉 = xTK−1y, and the superscript T indicates matrix transposition. In fact,
consider the discretized version of the perturbed equation %̇ =D(%) + �:

%k+1 − %k

Qt
=D(%k) + �k with 〈�k〉 = 0; 〈�l; i�k; i〉 = 1

Qt
�l;k ; (7)

2 The analogy between physical systems and chaotic dynamical systems must be taken with a grain of
salt. The coarse graining of dynamical systems concerns their phase space, while the physical mesoscopic
level refers to real space. Furthermore, chaotic dynamics have fast decays of correlations, and do not need
the thermodynamic limit, but then they only yield 7ctitious thermodynamic behaviours [5,6].
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where k labels the time instants, and the noise vectors �k = {�k; i}n
i=1 are normally

distributed. The time evolution is then described by the conditional probability P that
%k+1 equals rk+1, given that %k equals rk , i.e., by

P(%k+1 = rk+1|%k = rk) =
∫

d�kp(�k)�
(

rk+1 − rk

Qt
− D(rk) − �k

)
: (8)

For the probability of a path � = {%i = r0; %1 = r1; : : : ; %f = rm+1}, this yields:

P(�) =
(

Qt
(2�)n|K |

)1=2

e
Qt
2

∑m
k=0 〈 rk+1−rk

Qt −D(rk );
rk+1−rk

Qt −D(rk )〉 : (9)

For small Qt, the argument of the exponential approximates J[ti ;tf]. Its extremum with
ti=−∞, taken over all paths %(t) connecting %i to %f, S(%f)=inf %(−∞)=%i J[−∞; tf](%),
called “entropy functional”, identiNes the most likely path. Let ∇% indicate diGerenti-
ation with respect to the components of %, and suppose that D be decomposed as a
sum of two parts:

D(%) = − 1
2 K∇%V (%) +A(%) with 〈K∇%V;A〉 = 0 ; (10)

where %̂ minimizes V . This decomposition is used in the context of Nnite dimensional
Langevin equations [11]. In Ref. [3], it is observed that a similar decomposition arises
in the hydrodynamic limit of stochastic multiparticle systems, in which case K is
the matrix of the transport coeMcients which link the thermodynamic forces to the
corresponding  uxes %̇. The entropy functional can then be written as

J[ti ;tf](%) =
1
2

∫ tf

ti

〈
%̇ +

1
2

K∇%V − A; %̇ +
1
2

K∇%V − A

〉
dt (11)

=
1
2

∫ tf

ti

〈
%̇ − 1

2
K∇%V − A; %̇ − 1

2
K∇%V − A

〉
dt

+ [V (%f) − V (%i)] : (12)

The minimization of (11) leads to Eq. (5), for relaxation paths, while the minimization
of (12) leads to the  uctuation paths governed by

− %̇ =D∗(%) = − 1
2 K∇%V − A(%) : (13)

This implies an asymmetry between  uctuation and relaxation (not present in
Onsager–Machlup’s theory) due to the fact that K∇%V and A have opposite time
reversal transformation properties. Onsager–Machlup’s theory is recovered in the lin-
ear regime (K independent of %) with A = 0, but symmetric  uctuation–relaxation
paths are obtained also in the nonlinear case, if A= 0.
This theory can be extended to inNnite dimensional %’s, as in Ref. [3], where

the hydrodynamic limit of certain classes of lattice gases is considered. This yields
evolution equations like (1), where D is an elliptic diGerential operator. The analogy
with the Langevin case is due to the fact that the probabilities of the  uctuation paths
are given by large deviation expressions like exp(−J ). So, most relations used in the
Nnite dimensional Langevin case hold in the inNnite dimensional setting, provided that
K is a positive deNnite elliptic operator, and that ∇% is replaced by the functional
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derivative �=�%. The “quasi potential” V can now be identiNed with the “entropy” cost
S(%f) = inf J[−∞; tf](%) for the  uctuation %f to be created at time tf.
Writing the generator of the stochastic dynamics on the lattice gas as a sum of

hermitian and anti-hermitian parts: L = 1
2(L

+ + L−) + 1
2 (L

+ − L−), the term A in
Eq. (10) arises as the scaling limit of L+ − L−. Since the adjoint generator can be
written as L = 1

2(L
+ + L−) − 1

2 (L
+ − L−), the adjoint hydrodynamics must then have

form (13). If L is self-adjoint, one obtains D(%) =D∗(%).

3. The nonequilibrium Lorentz gas

The NLG is arguably the simplest particle model which aGords a nonequilibrium
steady state, with a net current. It consists of a two dimensional lattice of hard scatterers
(Fig. 1), and of noninteracting particles subject to a constant external force F=(!; 0) and
to an isokinetic “thermostat” [8–10]. In Lorentz’s original model, the moving particles
are in LTE with the scatterers, 3 and are randomly placed in the plane. Let m = 1 be
the mass of the particle, K = 1=2 its initial kinetic energy, x = (x; y) its position, and
p= (px; py) its momentum. The equations of motion between two collisions read:

ẋ = p; ṗ= F − "p with “thermostat” " = !px : (14)

The dynamics is dissipative (phase space volumes contract on average), reversible
and, for suMciently small !, hyperbolic with one ergodic measure for the forward time
statistics [9]. Moreover, there is a Kawasaki formula for the nonlinear response, which
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Fig. 1. Trajectory of a Lorentz particle, and (shaded) integration region T for the local  uctuations
(left panel). Typical  uctuation–relaxation path (right panel). The irregular curve is the instantaneous
current inside T, and the straight line is the average current. The paths of the global current are analogous.

3 Note, LTE requires Nnite mass scatterers and an inNnite time limit. The inNnite mass limit, if desired,
must be taken after the time limit. Exchanging the order of these limits corresponds to physical situations
without LTE, like in our NLG.
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reduces to a kind of Ohm’s law at small !. 4 This is due to the fact that the ergodic
measure assigns diGerent weights to phase space trajectories corresponding to opposite
currents, thus breaking the temporal symmetry on the statistical (average, or “macro-
scopic”) level, despite the reversibility of the dynamics. Moreover, the deterministic
evolution may be reduced to a stochastic process, by means of a kind of coarse graining
in phase space, which can be viewed as a less detailed description of the dynamics.
For the equilibrium Lorentz gas, this description is based on the Markov partitions
constructed by Sinai and Bunimovich, later reNned also by Chernov (cf. Ref. [12]).
The reNned method has been adapted to the NLG in Ref. [9].
Unfortunately, no rigorous results seem to be available on the symmetry properties

of the generator of the corresponding Markov chain. Furthermore, this process concerns
phase space, not real space, and explicit knowledge of its generator may not suMce to
our purpose. Therefore, numerical simulations appear to be the only presently available
option to investigate the symmetry properties of the stochastic process and of the
 uctuation–relaxation paths of the NLG. In fact, a numerical study [13] of the symbolic
dynamics of the NLG suggests that the real space projection of the NLG phase space
stochastic process does have asymmetric transition probabilities (as expected), and that
the asymmetry grows with ! [13]. This makes the NLG an ideal candidate to test the
theory of Ref. [3] in the context of deterministic reversible dynamics.
The only relevant observable here seems to be the instantaneous current due to N

particles. We take N∼106 and follow the particles for the time needed to undergo ∼104

collisions. Then, the x component of the current averaged over the ensemble of parti-
cles is integrated either over the shaded domain T of Fig. 1, to give the local current
in T, or over the whole space, to give the global current. The resulting signal
(Fig. 1) is analyzed and  uctuations exceeding a given threshold (2.5 standard de-
viations from the mean) are collected. Then, a time interval centered on the instant of
time in which the current reaches the threshold is discretized, together with the range
of observed currents, in order to obtain a grid of rectangular bins in the current-time
plane. This grid is used to construct the histogram of the current paths before and after
the threshold, thus identifying the most frequent  uctuation–relaxation path (Fig. 2).
Our results for the local and global currents of the NLG appear symmetric under time
reversal (cf. Figs. 2 and 3) which raises some questions on the kind of observables
and of reversible deterministic dynamics compatible with the theory of Ref. [3]. These
questions are listed below, and will be investigated in the future.
(1) We collected large current  uctuations exceeding 2.5 standard deviations from

the mean, for two forces !. Would other observables, other thresholds and other forces
give diGerent results?
(2) The NLG is periodic in space, and homogeneously driven, instead of boundary

driven. Is this the source of the observed  uctuation–relaxation symmetry?
(3) Is the observed symmetry a mere consequence of the reversibility of the NLG?

This does not seem to be the case. In the Nrst place, the microscopic reversibility
of the NLG is compatible with its macroscopic irreversibility, and probably also with

4 Because of lack of LTE, this is only a formal Ohm’s law, and the dissipation is not the irreversible
entropy production of Irreversible Thermodynamics [6].
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Fig. 2. Histogram of large (local) current  uctuations in the Lorentz gas with ! = 1:5 (left panel). The
histogram is symmetric with respect to the origin of times (threshold times). The global current behaves
analogously, as the plot of the crest of its histogram, in the right panel, shows. Error bars are drawn for
completeness.
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Fig. 3. Contour plots of the probabilities of the local current  uctuations for !=1:5 (left panel), and !=0:75
(right panel). The histograms appear symmetric (the slight asymmetry for ! = 1:5 seems to be due to the
particular size of the bins.

its mesoscopic irreversibility, as argued in Section 3. Furthermore, if reversibility
was a suMcient condition for the  uctuation–relaxation paths to be symmetric, no
known microscopic description of a nonequilibrium steady state would have asymmet-
ric paths (Fig. 3). In fact, the most realistic currently available models of such states
are hamiltonian, and consist of a many particle system coupled to much larger particle
reservoirs at diGerent thermodynamic states (see Fig. 4 for one example). Such models
are reversible and have only Nnitely many degrees of freedom. The limit of inNnitely
many degrees of freedom, which is usually considered and makes the models eGec-
tively irreversible, is taken only for mathematical convenience. Indeed, the microscopic
time scales are separated from the macroscopic ones, and one has a nonequilibrium
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Fig. 4. Model of a nonequilibrium “steady state”. The shaded central region is the “system”, which is made
of Ns�1 particles and is coupled to two heat baths. The bath on the left is made of N1�Ns particles at
temperature T1, while the bath on the right is made of N2�Ns particles at temperature T2 �= T1. The union
of the baths and of the system is hamiltonian and has Nnitely many degrees of freedom.

steady state on the observation time scales, when the reservoirs are suMciently large,
but still Nnite.
Were symmetric  uctuation–relaxation paths implied by reversibility, the statistical

mechanical approach, based on reversible microscopic dynamics, would unexpectedly
fail to describe the asymmetric paths which have been observed in some experimental
setup, and are expected in other mesoscopic systems as well. A possible scenario is that
the current molecular dynamics models resolve the microscopic and the macroscopic
features of physical systems, but not their mesoscopic features. It seems more likely
that some microscopic dynamics are not suitable to represent thermodynamic systems.
For instance, the NLG is aGected by an unphysical dissipation due to the force "p,
called Gaussian thermostat, and does not enjoy LTE [6]. We conclude that the NLG,
apparently an ideal model to test the theory of Ref. [3], in reality is not suMciently
close to a thermodynamic system, and that more realistic (but still reversible) models
of nonequilibrium systems have to be considered.
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