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The ability of cells to sense spatial gradients of chemoattractant
factors governs the development of complex eukaryotic organ-
isms. Cells exposed to shallow chemoattractant gradients respond
with strong accumulation of the enzyme phosphatidylinositol
3-kinase (PI3K) and its D3-phosphoinositide product (PIP3) on the
plasma membrane side exposed to the highest chemoattractant
concentration, whereas PIP3-degrading enzyme PTEN and its prod-
uct PIP2 localize in a complementary pattern. Such an early sym-
metry-breaking event is a mandatory step for directed cell move-
ment elicited by chemoattractants, but its physical origin is still
mysterious. Here, we propose that directional sensing is the
consequence of a phase-ordering process mediated by phospho-
inositide diffusion and driven by the distribution of chemotactic
signal. By studying a realistic reaction–diffusion lattice model that
describes PI3K and PTEN enzymatic activity, recruitment to the
plasma membrane, and diffusion of their phosphoinositide prod-
ucts, we show that the effective enzyme–enzyme interaction
induced by catalysis and diffusion introduces an instability of the
system toward phase separation for realistic values of physical
parameters. In this framework, large reversible amplification of
shallow chemotactic gradients, selective localization of chemical
factors, macroscopic response timescales, and spontaneous polar-
ization arise naturally. The model is robust with respect to order-
of-magnitude variations of the parameters.

directional sensing � lattice model � first-order phase transitions

The general picture emerging from the analysis of chemotaxis
in several different eukaryotic cell types indicates that, in the

process of directional sensing, a shallow extracellular gradient of
chemoattractant is translated into an equally shallow gradient of
receptor activation (1) that in turn elicits the recruitment of the
cytosolic enzyme phosphatidylinositol 3-kinase (PI3K) to the
plasma membrane, where it phosphorylates PIP2 into the D3-
phosphoinositide product of PI3K, PIP3. However, phosphoino-
sitide distribution does not simply mirror the receptor activation
gradient, but rather a strong and sharp separation in PIP2- and
PIP3-rich phases arises (1), realizing a powerful and efficient
amplification of the external chemotactic signal. PIP3 acts as a
docking site for plekstrin homology-domain-containing effector
proteins that induce cell polarization, i.e., the generation of
biochemically defined cell anterior and posterior sides, regulate
cytoskeletal dynamics (2), and eventually cell motion (3). Cell
polarization can be decoupled from directional sensing by the
use of inhibitors of actin polymerization so that cells are
immobilized but respond with the same signal amplification of
untreated cells (4). The action of PI3K is counteracted by the
phosphatase PTEN that dephosphorylates PIP3 into PIP2 (1).
PTEN localization at the cell membrane depends on the binding
to PIP2 of its first 16 N-terminal amino acids (5). Because PI3K
and PTEN constitute a pair of enzymes with counteracting
biochemical activities, it has been conjectured that in chemo-
tacting cells mutual regulation between the two enzymes could
be responsible for their localization into complementary regions
of the cell surface.

In physical terms, the process of directional sensing shows the
characteristic phenomenology of phase separation (6). However,
it is not clear which mechanism could be responsible for it. In
known physical models, such as binary alloys, phase separation
is the consequence of some kind of interaction among the
constituents of a system, which can favor their segregation in
separated phases (7). In this work we show that, even in the
absence of direct enzyme–enzyme or phosphoinositide–
phosphoinositide interactions, catalysis and phosphoinositide
diffusion mediate an effective interaction among enzymes, which
is sufficient to drive the system toward phase separation.

Materials and Methods
A semiregular tessellation of the sphere composed of 10,230
hexagonal and 12 pentagonal sites was used to represent the plasma
membrane. On each site, the number of molecules of any given type
was represented as an integer variable. The probability rate f i

s for
a reaction or diffusion step of type s (s � 1, . . . , R) to take place
at site i (i � 1, . . . , Ns) was decomposed in the product of a global
(site independent) rate fs and a local (site dependent) probability pi

s.
Global rates were functions of the global number of available
reactants, whereas local probabilities were functions of their local
concentrations, following from the expressions given in Tables 1
and 2 and the normalization conditions ¥i�1

Ns pi
s � 1. Reaction and

diffusion processes were performed stochastically according to the
following algorithm (see Data Set 1, which is published as support-
ing information on the PNAS web site) (8 and 9). At each time step,
the reaction or diffusion step of type s was chosen with probability
fs�¥u�1

R fu. Then the site i where the reaction or diffusion step had
to take place was chosen with probability pi

s. The reaction or
diffusion step was then performed. The tables of global rates and
local probabilities were updated to take into account the variation
in the values of the local and global values of available reactants.
The tables of local probabilities were ordered with the use of a
bisection algorithm to speed up the choice of the next reaction–
diffusion site i. Time was advanced as a Poisson process with mean
1�¥u�1

R fu. The simulations were performed on a 99 dual-processor
nodes Beowulf cluster [2800 MHz Athlon processors (AMD,
Sunnyvale, CA) with 4 Gbyte of memory each] using SLACKWARE
LINUX (Slackware Linux, Brentwood, CA) and the GNU C compiler
(http:��gcc.gnu.org). Simulation results were represented graphi-
cally by using MATLAB (Mathworks, Natick, MA).

Results and Discussion
We simulated the kinetics of the network of chemical reactions
that represents the ubiquitous biochemical backbone of the
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directional sensing module and contains the following: (i) bind-
ing of PI3K to activated membrane receptors, (ii) binding of
PTEN to PIP2, (iii) catalytic activity of PI3K and PTEN, and (iv)
phosphoinositide diffusion within the plasma membrane. Be-
cause the chemical system is characterized by extremely low
concentrations of chemical factors [0–50 nM for enzymes (10)
and 0.1–1 �M for phosphoinositides (11)] and evolution takes
place out of equilibrium, we used a stochastic approach (8, 9).
Indeed, rare, large fluctuations are likely to be relevant for
kinetics in the presence of unstable or metastable states. This

assumption is also consistent with the observation that cell
response to chemotactic stimuli has a stochastic character (12).
Simulated reactions and diffusion processes are summarized as
follows:

1. PI3K(cytosol) � Rec(i) 7 PI3K�Rec(i)
2. PTEN(cytosol) � PIP2(i) 7 PTEN�PIP2(i)
3. PI3K�Rec(i) � PIP2(i) 3 PI3K�Rec(i) � PIP3(i)
4. PTEN�PIP2(i) � PIP3(i) 3 PTEN�PIP2(i) � PIP2(i)
5. PIP2(i) 3 PIP2(j)
6. PIP3(i) 3 PIP3(j)

Index i represents a generic plasma membrane site and j one of
its nearest neighbors. We have simulated the chemical kinetics
on the inner face of the plasma membrane as a two-dimensional
lattice gas coupled to an unstructured cytoplasmic reservoir. On
each site i of the lattice we have assumed the presence of a
number ni

(k) of molecules of the k-th species. Chemical reactions
and diffusion have been simulated as random processes with
intensities proportional to kinetic reaction and diffusion rates
(see Tables 1 and 2).

The probability of performing a reaction on a given site is
taken to be proportional to realistic kinetic reaction rates and
local reactant concentrations (Tables 1 and 2).

Stochastic Simulation. The plasma membrane is represented as a
sphere of radius R � 10 �m partitioned in Ns � 10,242
computational sites forming a honeycomb lattice with 12 pen-
tagonal defects. Chemical concentrations are represented as
integer variables ni

(k) giving the number of molecules of the k-th
species present on site i. Reaction–diffusion kinetics is simulated
according to Gillespie’s method (8) generalized to the case of an
anisotropic environment. Catalytic processes are described by
Michaelis–Menten kinetics. The density of activated receptors is
proportional to extracellular chemoattractant concentration.
The probability of diffusion from a computational site to a
neighboring one is assumed proportional to the difference in
local concentrations, according to Fick’s law. Time is advanced
as a Poisson process. To provide complete reproducibility, the C
code of the simulation algorithm is included as Data Set 1.

The density � of activated receptors controls PI3K recruiting
to the plasma membrane, thus playing the role of a chemical
potential (13). Although receptor activation is directly controlled
in the experiments through the extracellular concentration of
chemoattractant stimulus, it is difficult to control experimentally
[PI3K]. We have therefore set [PI3K] to a realistic fixed value
(Table 2) and varied � in the range 0–100 nM. Diffusion controls
the behavior of the system in an obvious way, because for high
values it tends to mix chemical species, but in conjunction with
catalytic activity it also exerts an ordering action, transferring
information between neighboring uniformly populated patches
of the plasma membrane. Diffusion is therefore a second
parameter, which strongly influences the system’s dynamic and
stationary state. We have considered D values in the range 0–5
�m2�s.

Order Parameter. Because PTEN localizes on PIP2-rich regions of
the plasma membrane, phase separation can be observed either
at the enzyme or phosphoinositide level. In real cells, phospho-
inositide clusters trigger actin polymerization and motility. For
this reason we have studied symmetry breaking in phosphoino-
sitide distribution. The physics of phase-separation dynamics has
been thoroughly studied (14–18) and is known to give rise to a
variety of effects such as self-organization, pattern formation,
and pattern selection in many physical–chemical systems (refs. 6,
19, and 20; for a general reference on pattern formation in
reaction–diffusion systems, see ref. 21). The degree of order of
a chemical mixture undergoing phase separation can be quan-

Table 1. Probabilities of chemical reactions and
diffusion processes

Reaction fi

PI3K(cytosol) � Rec(i )3 PI3K�Rec(i )
V
Ns

kass
Rec�Rec� i �PI3K�cyto

PI3K(cytosol) � Rec(i )4 PI3K�Rec(i )
1
Ns

kdiss
Rec�Rec�PI3K�i

PTEN(cytosol) � PIP2(i )3 PTEN�PIP2(i )
V
Ns

kass
PIP2�PIP2�i�PTEN�cyto

PTEN(cytosol) � PIP2(i )4 PTEN�PIP2(i )
1
Ns

kdiss
PIP2�PIP2�PTEN�i

PI3K�Rec(i ) � PIP2(i )3 PI3K�Rec(i ) � PIP3(i ) kcat
PI3K

�PI3K�i�PIP2�i

KM
PI3K � �PIP2� i

PTEN�PIP2(i ) � PIP3(i )3 PTEN�PIP2(i ) � PIP2(i ) kcat
PTEN

�PTEN�i�PIP3�i

K M
PTEN � �PIP3� i

PIP2(i )3 PIP2( j )
D

�3Ssite
�
�i, j �

��PIP2�i � �PIP2� j��

PIP3(i )3 PIP3( j )

D

�3Ssite
�
�i, j �

��PIP3�i � �PIP3� j��

Let X�Y denote the bound state of species X and Y, [X] the global concen-
tration of species X in the whole cell, [X]cyto the cytosolic concentration, and
[X]i the local concentration on plasmamembrane site i. The rate for a given
reaction on site i is denoted by fi, V is the cell volume, �i, j� denotes (sum over)
nearest neighbors, and (x)� � x for positive x and 0 otherwise. Time is
advanced as a Poisson process of intensity equal to the reciprocal of the sum
of the fi frequencies for all the processes. The simulations were performed
using the values for kinetic rates and Michaelis–Menten constants given in
Table 2.

Table 2. Physical and kinetic parameters used in the simulations

Parameter Value References and notes

R 10.00 �m Ref. 32
[Rec] 0–50 nM Ref. 33
[PI3K] 50.00 nM Ref. 10
[PTEN] 50.00 nM Assumed
[PIP2] 500 nM Ref. 11; for unstimulated cells
D 0.1–1 �m2�s Ref. 34
kcat

PI3K 1.00 s	1 Ref. 10
kcat

PTEN 0.50 s	1 Ref. 35
KM

PI3K 200.00 nM The value obtained from ref. 10 was
modified to take into account the
effect of reduced dimensionality
according to Adam and Delbruck (36)

KM
PTEN 200.00 nM Ref. 35

kass
Rec 50.00 (s��M)	1 Ref. 37

kass
PIP2 50.00 (s��M)	1 Assumed

kdiss
Rec 0.10 s	1 Ref. 37

kdiss
PIP2 0.10 s	1 Assumed
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tified by means of an order parameter, i.e., a dimensionless
observable assuming the value 0 in the symmetric, mixed state
and a value of order 1 in the symmetry-broken state in which
chemical species are separated (13). A convenient order param-
eter measuring the degree of phase separation of the phospho-
inositide mixture is Binder’s cumulant (9, 22)

g �
1
2

�3 � ��� � ����4����� � ����2�2�,

where � � �i � [PIP3]i 	 [PIP2]i is a difference of local
concentrations on site i, and � . . . � denotes average over many
different random realizations. Binder’s cumulant measures the
distance of the probability distribution of � from a Gaussian
distribution. When phosphoinositides are mixed, f luctuations
around the uniform average value are Gaussian, and g tends to
zero, whereas when phosphoinositides separate into distinct
clusters (Fig. 1), the probability distribution of � is characterized
by two distinct peaks, and g becomes of order 1 (Fig. 1 d and e).
Maximal observed values of g for phase-separating systems are
between 0.4 and 0.8, corresponding to the fact that the PIP2 and
PIP3 distributions partially overlap.

Spontaneous phase symmetry breaking leads to the formation
of PIP2, PIP3-rich clusters of different size. Cluster sizes can be
characterized by harmonic analysis. For each realization, the
fluctuations �� � � 	 ��� of the � field can be expanded in
spherical harmonics (23) as ��(u) � ¥l�0



¥m�	l

l almY l
m(u) where

u is a unit vector identifying a point on the spherical surface. Let
us consider the two-point correlation functions

����u����u��� iso � �
l�1

�


ClPl�u�u�� ,

where � . . . �iso denotes average over ensembles (7) and over the
action of the sphere rotation group, Cl � 1

4�
¥m�	l

l ��alm�2�, and Pl
are Legendre polynomials (23). A measure of the average cluster
size is �R�2�l�, where �l� � ¥l�1

�
Cll. In particular, if most of the
weight is concentrated on the l-th harmonic component, average
phosphoinositide clusters extend over the characteristic length
�R�2l.

When receptor activation � � �i � [Rec]i is not uniformly
distributed we are interested in its correlation with localized PIP2,
PIP3 clusters, which is measured by the components of the covari-
ance matrix c�� � �(� 	 ���)2�, c�� � �(� 	 ���)(� 	 ���)�, c�� � �(� 	
���)2� and by the correlation coefficient r�� � c����c��c�� (24).

Dynamic Phase Diagram. We have run 10 random realizations of
the system for 400 (�R, D) pairs with 1 �M � � � 100 �M, 0.1
�m2�s	1 � D � 5 �m2�s	1 for 2 h of simulated time [1 Tflop
(trillion floating point operations) per realization]. For each (�, D)
pair we have computed g as a function of time by performing
surface and ensemble average at fixed time intervals. For each
random realization we have started from a stationary homogeneous
PTEN, PIP2 distribution (10 s of simulated time evolution were
enough to reach stationarity). To measure automatically phase-
separation events and characteristic phase-separation times, we
have computed the 10-min running average of g to cut off rapid
fluctuations and selected the moment when it reached the threshold
0.4 and did not fluctuate below that value during the following 30
min of simulated time. Patterns observed at t � 2 h are then quite
close to stationarity. Similarly, we have measured the harmonic
components Cl. In this case we have identified the phase-separation
time with the moment when the weight of the 10-min running
average of a single harmonic component surpassed the 80% of the
total weight and did not fluctuate below that value for the following
30 min of simulation time.

We let the system evolve to stationarity, in the absence of

Fig. 1. Phase separation in the presence of isotropic or 5% anisotropic receptor activation switched on as described in the text (D � 0.4 �m2�s, [Rec] � 30 nM).
The 5% activation gradient pointed in the upward vertical direction. (a–d) For isotropic receptor activation, a–d show the difference between local PIP3 and PIP2

concentrations at times t � 0 (a), 10 (b), 30 (c), and 90 (d) min. Red zones correspond to PIP3-rich phases; blue zones correspond to PIP2-rich phases. (e) The time
evolution of Binder’s cumulant g, measuring the degree of phase separation of the phosphoinositide mixture, and of the relative weight of the first harmonic
component C1 (see text), measuring the formation of phosphoinositide patches of the size of the system. ( f–j) For anisotropic receptor activation, the
corresponding data for phosphoinositide concentrations are given in f–i, and the evolution of g and C1 is given in j. In the presence of activation gradient phase
separation is faster and takes place along the gradient direction.
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receptor activation, obtaining a homogeneous PTEN and PIP2
distribution at the plasma membrane, identical to that observed
in unstimulated cells. At time t � 0 receptor activation is
switched on; either activated receptors are isotropically distrib-
uted or the isotropic distribution is perturbed with a linear term
producing a 5% difference in activated receptor density between
the North and the South poles.

In the isotropic case, we found that in a wide region of
parameter space, the chemical network presents an instability
with respect to phase separation (25, 26), i.e., the homogeneous
phosphoinositide mixture realized soon after receptor activation
is unstable and tends to decay into spatially separated PIP2- and
PIP3-rich phases (Fig. 1 a–d). Characteristic times for phase
separation vary from the order of a minute to that of an hour,
depending on receptor activation (Fig. 1e). The dynamic behav-
ior and stationary state of the system strongly depend on the
values of two key parameters: the concentration � of activated
receptors and the diffusivity D.

In the case of anisotropic stimulation, orientation of PIP2 and
PIP3 patches clearly correlates with signal anisotropy (Fig. 1 g–i),
and, compared with isotropic stimulation, phase separation takes
place in a larger region of parameter space and in times that can
be shorter by one order of magnitude (Fig. 1j).

Average phase-separation times are plotted in Fig. 2a, where
red areas correspond to non-phase-separating systems. In the
deep blue area, phase separation takes place in �5 min, whereas
close to the boundary of the broken symmetry region phase
separation can take times of the order of an hour (Fig. 1e).
Average cluster sizes at stationarity are plotted in Fig. 2b. In the
red region, cluster sizes are of the order of the size of the system,
corresponding to the formation of pairs of complementary PIP2
and PIP3 patches (Fig. 1). For diffusivities �0.1 �m2�s the

diffusion-mediated interaction is unable to establish correlations
on lengths of the order of the size of the system, and one observes
the formation of clusters of separated phases of size much
smaller than the size of the system (Fig. 2c). For diffusivities �2
�m2�s the tendency to phase separation is contrasted by the
disordering action of phosphoinositide diffusion (Fig. 2 a–c).

Average phase-separation times for the anisotropic case are
plotted in Fig. 2d. By comparing with the isotropic case (Fig. 2a),
it appears that there is a large region of parameter space where
phase separation is not observed with isotropic stimulation,
while a 5% anisotropic modulation of activated receptor density
triggers a fast phase-separation process. Cluster sizes (Fig. 2e)
are in the average larger in the anisotropic case than in the
isotropic case (Fig. 2a). Fig. 2f shows that the orientation of PIP2
and PIP3 patches is strongly correlated with signal anisotropy.
Therefore, anisotropy has two main effects: on one hand, it
triggers the phase-separation process on shorter timescales and
in a wider region of parameter space; on the other hand, its
direction breaks the system’s rotational symmetry and selects the
stationary state of the system. For receptor activation � � 20 nM,
the few PI3K enzymes bound to the plasma membrane are not
sufficient to create extended PIP3-rich regions; however, small
intermittent PIP3 clusters are still observed (Fig. 3a).

Simulating a gradient in receptor activation similar to the one
imposed in experimental assays, we are able (Fig. 4) to reproduce
the input–output relationship observed on Dictyostelium (4). It
is also worth noting that the characteristic timescales for phase
separation emerging from our dynamical simulations, which
have been performed by using realistic reaction and diffusion
rates, are in agreement with the observed ones (4).

Physical Picture. The transition from a phase-separating to a phase-
mixing regime results from a competition between the ordering

Fig. 2. Dynamic phase diagram. Average phase-separation times and average cluster sizes are shown using color scales as functions of receptor activation [Rec]
and diffusivity D for isotropic and 5% anisotropic activation. Simulations were performed on a uniform grid of points spaced by 5 nM in the [Rec] direction and
0.2 �m2�s in the D direction. (a–c) In the isotropic case, shown are the following. (a) Average phase-separation time. (b) Average cluster size as a function of [Rec]
and D. (c) Average cluster size as a function of D for fixed [Rec] values. (d–f ) In the anisotropic case, d–f show the following. (d) Average phase separation time.
(e) Average cluster size. ( f) Correlation r�� between deviations from the mean of receptor activation �� and phosphoinositide differences ��. For anisotropic
activation phase separation is faster, takes place in a larger region of parameter space, and is correlated with the anisotropy direction.
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effect of the interactions and the disordering effect of molecular
diffusivity. The frontier between these two regimes varies contin-
uously as a function of parameters. Importantly, we found that the
overall phase-separation picture is robust with respect to parameter
perturbations, because it persists even for concentrations and
reaction rates differing from those of Table 2 by one order of
magnitude. Moreover, both in isotropic and anisotropic conditions,
signal amplification is completely reversible. Switching off receptor
activation abolishes phase separation, delocalizes PI3K from the
plasma membrane to the cytosol, and brings the system back to the
quiescent state (see Movie 1, which is published as supporting
information on the PNAS web site).

Thus, phosphoinositide diffusion is directly responsible for
establishing correlations between neighboring sites, leading the
system to a phase-separation instability. Although large diffu-
sivity has a mixing effect, intermediate diffusivity cooperates
with catalysis to order the system on large scales. Physically, this
process can be understood as follows. Receptor activation shifts
the chemical potential for PI3K, which is thus recruited to the
plasma membrane. PI3K catalytic activity produces PIP3 mole-
cules from the initial PIP2 sea. Initially, the two phosphoinositide
species are well mixed. Fluctuations in PIP2 and PIP3 concen-
trations are, however, enhanced by preferential binding of PTEN
to its own diffusing phosphoinositide product, PIP2. Binding of
a PTEN molecule to a cell membrane site induces a localized

transformation of PIP3 into PIP2, resulting in higher probability
of binding other PTEN molecules at neighboring sites. Such a
positive feedback loop not only amplifies the inhibitory PTEN
signal, but via phosphoinositide diffusion it also establishes
spatiotemporal correlations strong enough to drive the system
toward spontaneous phase separation. The time needed by the
system to fall into the more stable, phase-separated phase,
however, can be a long one if the symmetric, unbroken phase is
metastable. In that case, a small anisotropic perturbation in the
pattern of receptor activation can be enormously amplified by
the system instability.

It is worth noting that, when the system phase separates, the
final size of the clusters is limited only by the size of the system
and the availability of cytosolic enzymes. In an infinite system,
clusters would grow indefinitely. In a finite system instead, as
long as PTEN molecules are recruited on the PIP2 patch, they
are no longer available to compete with PI3K on the residual
PIP3 patch, which is therefore stabilized. The net effect is that
the cluster size saturates at a stationary value of the order of the
size of the system.

Dimensional considerations suggest that the size of the
patches should grow proportionally to �D�k, 1�k being the
characteristic enzyme association–dissociation timescale, for low
diffusivity values, and saturate to the size of the system for
intermediate diffusivities. Simulations confirm the dimensional
estimate and show that for higher diffusivities the species are
mixed up and the size of clusters drops abruptly (Fig. 5).

The properties of the real reaction and diffusion processes
described in Results and Discussion and Table 1 are better under-
stood through the study of a one-dimensional model derived from
them under simplifying assumptions (see Supporting Text and Fig.
6, which are published as supporting information on the PNAS web
site), where a more complete analysis is possible. The simplified
model presents a parameter region where multiple stable equilibria
are possible, and stochasticity in the number of membrane-bound
enzymes can trigger a transition from a less stable to a stabler state.
The transition takes place through the formation of a small region
of the stabler phase in the sea of the less stable one. Although small
regions of the stabler phase are wiped off by diffusion, larger
regions propagate with finite velocity in the less stable phase and
would eventually take over the whole system if the number of
available cytosolic enzymes was infinite. Because, however, the
number of cytosolic enzymes is limited, the process slows down and
eventually stops with the formation of a stationary front separating

Fig. 3. PIP3 phase separation in response to low concentrations and multiple
sources of chemoattractant. (a) For low receptor activation ([Rec] � 5 nM)
stationary phase separation does not take place; however, small intermittent
PIP3 clusters arise. (b) Under the simulated influence of two opposite che-
moattractant sources multiple PIP3 patches are observed.

Fig. 4. Amplification of simulated chemoattractant signal. The system was
exposed for 1 min to a 25% gradient in receptor activation in the upward
vertical direction. PIP3 concentration and receptor activation, normalized with
their mean (a) or maximum (b), were sampled around a great circle passing
through the North and South poles and divided in 40 bins. (a) Cell response
plotted against receptor activation. (b) Cell response and receptor activation
as functions of the deviation from the North Pole.

Fig. 5. For small diffusivities the cluster size grows as �D and saturates when
it reaches the system size; for higher diffusivities, diffusion mixes up the two
phosphoinositide species, and the cluster size drops abruptly ([Rec] � 50 nM).
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a PTEN-rich and a PI3K-rich region. The critical size of the
nucleating region is determined by the relative strength of two
intrinsically dynamic quantities: diffusivity and the velocity of front
propagation.

Conclusions
Our results provide a simple physical clue to the enigmatic behavior
observed in eukaryotic cells. As we have shown, there is a large
region of parameter space where the cell can be insensitive to
uniform stimulation over very large times but responsive to slight
anisotropies in receptor activation in times of the order of minutes
(Fig. 1 and Movie 1). Accordingly, by simulating shallow gradients
of chemoattractant, we observed PIP3 patches accumulating with
high probability on the side of the plasma membrane with higher
concentration of activated receptors, thus resulting into a large
amplification of the chemotactic signal (Figs. 1 and 4). Moreover,
we identified an intermediate region of parameters, where phase
separation under isotropic stimulation is observed on average in a
long but finite time. In this case, one would predict that on long
timescales cells undergo spontaneous polarization in random di-
rections and that the number of polarized cells grows with time.
Intriguingly, this peculiar motile behavior is known as chemokinesis
and is observed in cell-motility experiments when cells are exposed
to chemoattractants in the absence of a gradient (27). An additional
consequence of the tendency to phase separation is that for low
values of receptor activation small intermittent clusters should
form, because diffusion cannot establish a correlation between
too-distant phosphoinositide patches and the number of enzymes
producing the patches is too low. Indeed, intermittent phospho-
inositide clusters are observed in our simulations (Fig. 3a), and their
formation has been recently described in Dictyostelium cells ex-
posed to very low cAMP concentrations (28). It appears that
D3-phosphoinositide patches serve as a spatial cue for pseudopod
formation, which enhances the sensitivity and amplitude of che-
motactic movement. Furthermore, cells migrating within tissues,
such as neurons or immune system cells, may encounter multiple
chemoattractant signals in complex spatial and temporal patterns
that can potentially direct their path. Notably, cell polarization
induced by multiple chemoattractant sources has been observed
in vitro (4), and this experimental situation can be mimicked in silico
by simulating the receptor activation pattern produced by multiple
chemoattractant sources (Fig. 3b).

In summary, the phase-separation scenario provides a simple and
unified framework to different aspects of directed cell motility, such
as large amplification of slight signal anisotropies, insensitivity to
uniform stimulation, appearance of isolated and transient phos-
phoinositide patches, and stochastic cell polarization. It provides a
link between known microscopic and macroscopic timescales. Fi-
nally, it unifies apparently conflicting aspects that previous mod-
eling efforts (29, 30) could not satisfactorily reconcile (31), such as
insensitivity to absolute stimulation values, large amplification of
shallow chemotactic gradients, reversibility of phase separation,
robustness with respect to parameter perturbations, stochastic
character of cell response, use of realistic biochemical parameters,
and space–time scales.

One of the characteristic features of our model is that it brings
together into a unified picture several seemingly disconnected
phenomena, such as response to anisotropic chemotactic stim-
ulation, stochastic polarization, and small cluster formation for
low activation levels. It would be useful to perform systematic
quantitative observations on stochastic cell polarization under
uniform stimulating conditions, both at high and low activation
leves. Because nucleation can be arguably modeled as a Poisson
process, in the presence of isotropic stimulation one should
observe a number of stochastically polarized cells growing with
time, with a rate comparable with the model predictions.

We thank I. Kolokolov, V. Lebedev (Landau Institute), G. Ortenzi, and
L. Rondoni (Turin Polythecnic) for useful discussions. We thank A.
Giorgilli, L. Marsella, G. Naldi, and the Departments of Mathematics of
the Universities of Milano and Milano Bicocca for kind hospitality and
help with computational resources. This work was supported by Minis-
tero dell’Istruzione, dell’Università e della Ricerca–Progetti di Ril-
evanza Nationale 2003 (to A.G.), Telethon Italy Grant GGP04127 (to
G.S.), European Union Network Grant MRTN-CT-2003-504712, Min-
istero dell’Istruzione, dell’Università e della Ricerca–Progetti di Riler-
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