A heuristic approach to microcracking and fracture for ceramics with statistical consideration

A. Brencich, A. Carpinteri *

Department of Structural Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy

Abstract

Microcracking damage and toughening are examined for ceramics. These effects have been found to depend on the material microstructure and macrocrack growth. Isotropic damage, attributed to random distribution of microcrack location, length and orientation can be associated with a disordered microstructure and a non-uniform residual stress field. When the applied stress is the main cause of cracking, the microcrack distribution is no longer random such as a system of quasi-parallel cracks. To highlight the effect of crack interaction, discrete models are advanced where damage is simulated by a distribution of microcracks. The dilute concentration assumption is invoked to simplify the analysis.

The two-dimensional discrete model is based on a phenomenological approach that is statistical in character. Interactions of microcracks and with a macrocrack are considered by means of a boundary element technique (A. Brencich, A. Carpinteri, Int. J. Fracture 76 (1996) 373–389; A. Brencich, A. Carpinteri, Eng. Fract. Mech. 59 (1998) 797–814) where both isotropic and anisotropic damage could be treated. Comparisons with other results are made to show that the model can be applied to analyse the fracture behaviour of different materials. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Microcrack damage; Crack interaction; Statistical model; Microcrack toughening

1. Introduction

Brittle materials are known to contain extensive microcracks. Such a region is known as process zone. It is developed in front of a macrocrack [3–7]. This occurs in ceramics, rocks and concrete-like materials. Microcracking damage tends to toughen the material at the macroscopic scale level for stationary and steadily growing cracks [5,8–10]. That is the load level at which a crack propagates is increased when compared with the estimated limit load for the undamaged material.

With reference to the material microstructure, two different distributions could be identified inside the process zone. For a two-phase ceramic system, such as zirconia toughened alumina, microcracks are nucleated at grain boundaries in the form of intergranular [8] and radial cracks [9]. Due to the random distribution of the second phase particles and grain facets, the microcracks are randomly distributed and the damaged zone exhibits an isotropic behaviour. Other ceramics, such as lithium–alumino-silicate glass ceramics [5] or alumina–silicon carbide composites [10] and concrete-like materials [6,7], may be regarded as a homogeneous matrix containing dispersed second phase particles. For these materials, the microcrack pattern resembles the principal stress...
directions with some deviations due to inhomogeneities at the microscopic level. The material inside the process zone is highly anisotropic.

Microcrack toughening has been attributed to energy dissipation \[11,12\] and residual stress relief \[8,13–15\] that are associated with crack nucleation and growth. The latter corresponds to steadily growing cracks, while the onset of crack growth appears to be independent of residual stress \[16\].

Besides, one of the effects of the interactions between the macrocrack and the second phase particles consists of a mixed mode loading at the main crack tip which forces it to deflect away from the path it would have if the material were undamaged. Crack entrapment by material inhomogeneities \[17,18\] is another way of enhancing fracture resistance.

Depending on the material and loading condition, delay fracture mechanisms may not occur at the same time. Consider a cracked solid under load, removed and then re-applied in a quasi-static way. Residual stress would have then been relieved. In this case, onset of crack propagation in an alumina–silicon carbide type ceramic composite (homogeneous matrix with dispersed second phase particles) would be dictated by stress-induced microcracks in front of the main crack tips. Elastic interaction between cracks would delay crack growth \[19,20\].

Theoretical analysis of microcracking related to fracture behaviour of solids involves two approaches. One of them refers to average quantities describing the cracked material at a macroscopic scale \[13,14,21,22\]. The other approach makes use of discrete models in which the effective microcrack distribution is simulated \[16,19,20,23–25\].

A typical continuum model views the process zone as a region where the material properties have been degraded. The inner part of the process zone is characterised by the so-called saturated density. It is usually considered as a measure of damage that corresponds to a region where the elastic properties have degraded the most. Such an approach is admissible when random microcracking produces an isotropic process zone. A softened elastic material describes a process zone symmetric with respect to the main crack. In this way, no anti-symmetric stress field can be simulated. That is the main crack deviates away from its original path, a feature of microcracking. The anisotropic behaviour of the damaged area cannot be taken into account.

Discrete models usually follow a kinematic approach in that the crack geometry is pre-set according to some empirical or heuristic criterion. A major drawback of such schemes is that only simple geometries could be treated involving a few microcracks or periodic arrays of microcracks \[26–28\]. A satisfactory treatment of the process zone requires a large number of microcracks. Hence discrete models are restricted to numerical techniques \[1,26,29\] unless the interaction of cracks is neglected \[16\].

2. Mesomechanical model

Crack density \[30–32\] in two-dimensions can be defined in terms of a representative area \(A\) containing \(N_A\) cracks of average length \(2\ell\), i.e.,

\[
\rho = \frac{1}{A} N_A (2\ell)^2. \tag{1}
\]

The surface crack density may be regarded as an average measure of damage in the microcracked areas. Experiments \[3\] have shown that the highest crack density occurs near the macrocrack tip and it is nearly constant. This portion of the process zone is said to be saturated with the maximum crack density \(\rho_s\), as shown in Fig. 1. Microcracking

![Fig. 1. Saturated and non-saturated areas inside the process zone for a stationary crack.](image-url)
The location of such a boundary can be calculated by invoking some simplifying assumptions. Consider a generic location \(r, \varphi \) at which the nucleation of a microcrack is possible, Fig. 2. Under pure Mode I loading, the normal stress in the direction of outward normal \(n \) is given by

\[
\sigma_n = \frac{K_I}{\sqrt{2\pi r}} \left[\cos \frac{\varphi}{2} + \frac{1}{2} \sin \varphi \sin \left(\frac{3}{2} \varphi - 2\varphi \right) \right].
\] (2)

The microcracks could nucleate if there prevails at least one orientation \(\varphi \) for which \(\sigma_n \) exceeds a threshold limit \(\sigma_{\text{lim}} \), say the tensile strength \(\sigma_t \). The material will remain undamaged if none of the orientations \(\varphi \) fulfills this condition. Conversely, if nucleation is found for any orientation \(\varphi \), then microcracks shall nucleate for all orientations. This is assumed to occur inside the saturated process zone. An intermediate situation could arise when cracks are nucleated only for \(\Delta \varphi < \pi \). This is to be found in the outer portion of the process zone.

2.1. Crack density

An analytical expression of crack density in this area as a function of the vertical distance \(y \) from the microcrack line (Fig. 2) can be obtained by assuming that \(\rho \) is directly proportional to \(\Delta \varphi \) [2,16]

\[
\rho = \frac{\rho_{\text{sat}}}{\pi} \cos^{-1} \left[\frac{K_I}{\sigma_{\text{lim}}} \sqrt{\frac{8\pi y}{K_I}} - \sqrt{2} \right].
\] (3)

The outer boundary of the saturated area corresponds to the location where the minimum normal stress \(\sigma_n \) equals the limit stress \(\sigma_{\text{lim}} \)

\[
r_{\text{sat}}(\varphi) = \left(\frac{K_I}{\sigma_{\text{lim}}} \right)^2 \frac{1}{2\pi} \left(\cos \frac{\varphi}{2} - \frac{1}{2} \sin \varphi \right)^2.
\] (4)

The outer boundary of the previous zone is where the maximum value of \(\sigma_n \) equals \(\sigma_{\text{lim}} \). This gives

\[
r_{\text{dam}}(\varphi) = \left(\frac{K_I}{\sigma_{\text{lim}}} \right)^2 \frac{1}{2\pi} \left(\cos \frac{\varphi}{2} + \frac{1}{2} \sin \varphi \right)^2.
\] (5)

The analytical details and assumptions are given in [2].

In the saturated area of the process zone, nucleation is possible for every orientation \(\varphi \). The actual microcracking will depend on the material microstructure. If the material can be regarded as homogeneous at the scale under consideration, then a crack would be assumed to occur at an angle \(\varphi \) so as to maximise \(\sigma_n \). If the micrograins are of the same order of magnitude as the microcracks, the crack orientation would depend on the grain facet distribution.

One of the limitations to this approach is that use is made of the stress field prior to microcracking. It was shown in [33] that the actual process zone is nearly as wide as that estimated by this approach. The estimated zone is 40% longer and variations of the microcrack orientation are also larger. These discrepancies may be used as corrections of the process zone size.

It has been shown in [1,2] that the more distant cracks, with density less than 40% of the saturated condition, contribute less than 3% to the SIF at the macrocrack tip. It is therefore reasonable to reduce the width of the process zone and to neglect those microcracks outside, as shown in Fig. 3.

2.2. Assumptions

The two simplifying assumptions are:

- the fracture toughness \(K_{IC} \) is considered a material constant independent of the amount of damage and size of the process zone;
- the saturated density \(\rho_{\text{sat}} \) is assumed to be independent of the stress level.
The first assumption implies that K_{IC}, being a macroscopic quantity, stands for the fracture toughness of the homogeneous matrix. Size scale appears to be attributed \cite{6,34} to lower order effects, say at the mesolevel. The second hypothesis seems to be reasonable if the concept of crack precursor is accepted \cite{16,33}. Cracks are assumed to nucleate at favorable locations (grain boundaries); they are associated with the material microstructure rather than the macro-stress field. The saturated microcrack density can thus be assumed to coincide with the density of grain facets.

2.3. Microcrack geometry

Fig. 4 displays a system of idealised microcracks where h and S_0 are, respectively, the vertical and horizontal spacing. A mean value d is chosen such that the crack interaction has no effect on the main tip. That is the SIF of the main crack is the same as K_{10} without the influence of the microcracks. This value is 0.33 times the microcrack half length ℓ.

The microcrack density for the system in Fig. 4 is \cite{2}

$$p = \frac{4\ell^2}{h(S_0 + 2\ell)}, \tag{6}$$

where ℓ is the microcrack half length. Eq. \ref{eq:6} also applies to the case of saturated density, ρ_s. When the geometric parameters are given statistical values, Eq. \ref{eq:6} is no longer applicable for evaluating the local crack density.

Brittle materials are characterised by different microcrack densities according to the material microstructure. Table 1 summarises some experimental data for ceramics, rocks and concrete. The average value for ρ_s is taken equal to 0.25, which is the value used in Eq. \ref{eq:6} subsequently.

2.4. Microcrack distribution

To define a general distribution of microcracks, the orientation $-90^\circ \leq \alpha \leq 90^\circ$ in Fig. 5 is needed. To simulate random microcracking, the vertical spacing h and the horizontal one S_0 can vary in the ranges $[0.5\ell, 2.0\ell]$ and $[2.5\ell, 4.5\ell]$, respectively. This allows local fluctuations of the microcrack density around the mean value of 0.25. The lower bounds of these parameters are used to avoid crack intersection. The microcrack length ranges in the interval $[1/80L, 1/20L]$, where L stands for the main crack half length. The upper limit corresponds to cracks in the process zone that origi-
nate from the coalescence of microcracks. The lower bound corresponds to the limit observed at the mesoscopic scale level. When the microcrack half length is given a statistical distribution, the other parameters have to be referred to the average value of ℓ. Figs. 6(a) and (b) display two disordered Gaussian distributions of microcracks and uniform distribution.

3. Statistical procedure

Under the above-mentioned considerations, different random simulations of microcracks can be set up.

3.1. Gaussian probability

Each geometric parameter can be regarded as a random variable. Complete randomness is obtained by imposing a uniform distribution, while a Gaussian probability density function is suitable for simulating limited fluctuations around a fixed value.

A “statistical disorder” can be regarded as “scattering of data from a mean value”. A uniformly distributed variable is characterised by the maximum scattering; it corresponds to the maximum degree of statistical disorder. A deterministic choice for the variable, which can be thought of as a Dirac-delta distribution, is assumed as an example of minimum disorder. A Gaussian distribution represents a disorder in between the two extremes.

The disorder level of the microcrack distribution is illustrated in Fig. 7. Such a statistical approach to a generic distribution of cracks could be applied to describe statistically disordered process zones to represent isotropic damage.

For the five independent geometric parameters, a single set of these parameters, representing a distribution of 56 microcracks, involves 56 values of h, S_0, ℓ, α, and d, and a single value of the distance d. They build up a microcrack distribution consisting of 56 microcracks. If these 56 values and the single value for d are defined through a uniform distribution law, then the microcrack distribution corresponds to an isotropic process zone. When the same set of parameters is given a Gaussian probability density function, then the statistical disorder is reduced. The microcracks present only limited fluctuations around their mean values and correspond to anisotropic damage.

The statistical distribution functions have been simulated by means of a Monte Carlo technique. A Gaussian distribution of 80 individuals, for example, is obtained with a skewness coefficient equal to 0.002 and a Kurtosis coefficient equal to 2.77, close to the value of 3 which is typical of an exact Gaussian curve (the tails of the curve are terminated in order to keep the random numbers within the range of applicability). A 15% standard deviation of the Gaussian curve is assumed. This represents a distribution law with scattering between the Dirac-delta function and that for uniform distribution.

3.2. Simulation of process zone

A group of 80 simulated process zones is used as a statistical population. Description refers to the average, minimum and maximum K_I at the
main crack tip. Random microcracks are not necessarily symmetric with respect to the macro-crack line. Antisymmetric stress field or K_{II}-SIF could arise.

According to Erdogan and Sih [38], crack growth is assumed to occur in the direction normal to the circumferential stress. In terms of the stress intensity factor quantities, the criterion becomes

$$K_{eq} = \cos \frac{\vartheta}{2} \left(K_I \cos^2 \frac{\vartheta}{2} - \frac{3}{2} K_{II} \sin \vartheta \right) = K_{IC}. \quad (7)$$

Consider a group of microcracks of constant length ℓ and regard the parameters d, h, and a as random variables. The horizontal spacing S_0 is determined via Eq. (6) once h and ℓ are known. This means that, if ℓ is given a fixed value, S_0 is a random variable with the same statistics as h. Three different statistics are considered:

Case A. All parameters are given a Dirac-delta distribution (a deterministic choice inducing highly anisotropic damage).

Case B. All parameters are defined by a Gaussian curve.

Case C. A uniform distribution function is coupled with all the parameters (isotropic damage).

For each of the second and third choice, a series of 80 simulations has been made. The results are plotted in Fig. 8. Fig. 8(a) shows that the average SIFs, both K_I and K_{eq}, decrease as the statistical disorder of the microcracks is increased. A Gaussian distribution around the mean value (group G) produces a shielding effect which is 10% of the reference value on the average. A further increase of disorder obtained through the uniform distribution law for every parameter (Case C) leads to more pronounced shielding effect up to 20% of the remotely applied SIF K_{I0} that can be calculated for the macrocrack in absence of microcracks. Broken lines correspond to the maximum and minimum SIFs found at the main crack tip among the 80 samples. It can be seen that some microcrack arrangement produces a strong amplification (40% of K_{I0}), while others may yield a strong shielding (70% of K_{I0}).

Fig. 8(b) shows that the global average of shielding on the main crack is not due to the influence of few samples, but it is a general trend of the entire population.

An analogous trend is shown in Fig. 9 for the situation when the microcracks are parallel to the main crack and the assumption of constant crack density is removed. The rest of the parameters are given according to a Dirac-delta distribution, a Gaussian probability density function, and a uniform distribution.

Consider a partially disordered crack distribution where the parameters d, a and S_0 are given a

![Fig. 8. Statistically disordered populations on d, a and h.](image)

![Fig. 9. Statistically disordered populations on S_0, h and d.](image)
Gaussian distribution, while ℓ is kept constant. A population of 80 specimens indicated as group GGG is shown in Fig. 10. The disorder is reflected via a uniform statistical distribution of the spacings S_0 and h via Eq. (6). The remaining parameters maintain the Gaussian probability function (group GGU). More disorder would result if the other Gaussian distributions are changed to uniform distributions. The group GUU in Fig. 10 reflects change of a. When all the three parameters are changed, the results correspond to UUU.

Again, shielding is increased as disorder is introduced. The average SIF is 12–13% lower than K_{I0}. Again, this effect is a trend of the entire population, Fig. 10(b).

Analogous trends are summarised in Fig. 11. They differ from those discussed earlier, since the microcracks are kept parallel to the main crack and their length takes different values.

4. Discussion and conclusion

The results presented account for 960 numerical simulations and the test of more than 4000 specimens [39]. Assuming that K_{IC} is a material parameter of constant value, the average shielding effect on the main crack turns out to be approximately 20% of K_{I0}.

In [16] the shielding of the main crack by the microcrack process zone has been estimated to be $0.92 \rho_s$ to $1.15 \rho_s$ according to different crack nucleation criteria. The present study estimates ρ_s to be 0.25 on the average. This corresponds to a mean shielding of the main crack of 23–28% of K_{I0}. Taking into account a group of non-interacting microcracks, a global shielding effect of about 1.61 times the saturated density is found [16]. For the microcrack density considered, this yields 40% of K_{I0} which is twice the present result. The difference can be explained as follows:

- In [16], the author considers the microcracks to be oriented in the principal tensile stress direction. The present study considers the microcracks to be oriented randomly or parallel to the main crack.
- Mutual interactions between the microcracks are neglected in [16]. This could lead to an underestimate of the result.

Good agreement is found for the theoretical and experimental data in [10]. For a stationary crack under static loading, the shielding effect is estimated to be 25% of K_{I0}.

This work is similar to the approach in [40–43], but the results are different. The numerical simulations in [40–43] are limited to six specimens related to random distributions of microcracks with constant length. Microcracks had no statistically stable effect on the main crack. The same conclusion is obtained for microcracks oriented in the principal stress directions. Six specimens are not sufficient to establish a statistical base.
In all the simulations of this work, the microcracks seldom experience an equivalent SIF that is higher than K_{eq} at the main crack tip. Even though microcrack propagation and coalescence could take place, nevertheless it is the macroscopic crack that is responsible for the global cracking phenomenon. This view differs from that in [23].

Acknowledgements

The authors gratefully acknowledge the financial support of the National Research Council (CNR) and the Department for University and Scientific and Technological Research (MURST). Thanks are also due to the European Community for the TMR Contract ERBFMRXCT 960062.

References

[34] A. Carpinteri, B. Chiaia, Size effects on concrete fracture energy: dimensional transition from order to disorder, Mater. Struct. 29 (1996) 259–266.