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A B S T R A C T

In the field of structural mechanics, the study of elastic stability is a very important stage in the design of
slender, thin, and/or shallow elements. The loss of stability can lead to the global collapse of the structural
element. This is achieved when the load applied to the structure reaches the critical value.

There are two fundamental instabilities in rectilinear beams: the axial buckling, due to the axial force, and
the lateral–torsional buckling, due to the bending moment. In general, these two instabilities may interact,
when both axial force and bending moments are applied at the same time.

The present paper will illustrate a three-dimensional coupled formulation, including Vlasov’s Theory for
thin-walled open-section beams. The compactness of the final expressions, made even more evident by the
matrix formulation, allows us for a very convenient use in the case of automatic computations.
. Introduction

The phenomenon of instability is a topic that has received a great at-
ention from the scientific community. The first contributions date back
o the 18th and 19th Centuries. Even today we often make reference
o problems introduced by Euler [1] (axial buckling) and Prandtl [2]
lateral–torsional buckling). On the other hand, the attempts to couple
he two problems are relatively few and incomplete.

The first study on elastic instability is reported in Euler’s Treatise
f 1759 [1], in which axial buckling and critical axial load, leading
o the loss of stability of a rectilinear beam, are defined. In 1899
ichell [3] deduced that the loss of stability of a beam can also be

ue to its lack of flexural and torsional rigidity. Around the same time,
randtl [2] proposed a theory that describes the loss of stability by
lexion–torsion perturbation of a slender and/or deep beam subject
o an uniform bending moment. In the mid-30s of last century, the
erman engineer Wagner published a work (first in German [4], and

ater in English [5]), in which he provided the equations for the
etermination of the critical forces of torsional instability of thin-walled
pen-section beams present in aircraft structures. In his formulation,
n order to determine the axial stresses due to twisting, Wagner used

relationship similar to that of sectorial areas introduced by Vlasov
n 1936 [6]. In the same years, Znamenskii published an article [7]
n which he used the Ritz–Timoshenko method to obtain approximate
xpressions of the critical torsional force. It should also be noted
hat, examining torsional deformations, both Wagner and Znamenskii
ssumed the torsional center coinciding with the shear center. In fact,
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it was demonstrated a few years later by Vlasov himself [8]. The
experiments conducted by Boloban in 1936 [9] on aircraft spars showed
that, in beams subject to torsion, axial instability occurs for critical
forces considerably lower than the theoretical values obtained from
Euler’s formulation. In 1936 F. and H. Bleich published a paper [10]
devoted to the problem of torsion and stability of thin-walled open-
section beams. Using an energy method to describe the problem, the
Authors obtained a system of three differential equations. On the other
hand, they assumed that the sections remain plane after deformation.
Always in those years, the scientists who contributed mostly to the
general instability theory of thin-walled open-section beams were Ble-
ich [11], Timoshenko [12,13], and Vlasov [8,14]. In particular, Bleich
used a procedure describing the total potential energy of the beam
as the difference between its deformation energy and the work by
external loads. Timoshenko instead used the static method, that is, he
wrote the equilibrium equations of the forces in the deformed shape
configuration, whereas Vlasov transformed the stresses generated in a
beam into fictitious external loads. Many years later, Anderson [15]
and Attard [16] carried out experimental studies on mono-symmetric
thin-walled open-section cantilever beams that confirmed the results
obtained using the analytical formulations proposed by Timoshenko
and Vlasov. Over the years, several efforts have been spent to rewrite
the stability theory of thin-walled open-section beams. To describe the
problem and on the basis of the theories by Bleich and Vlasov, different
researchers used an energy approach. This method is the best to analyze
the local stability of a structural element, but it involves excessive
ttps://doi.org/10.1016/j.ijnonlinmec.2023.104432
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calculations when applied to more complex structures. Among others,
we can mention the works by Ghobarah [17] and Roberts [18]: they
took up Vlasov’s Theory by removing the hypothesis of annihilation of
shearing stresses on the mid-line of the section. Yang and McGuire [19],
and Kitipornchai and Chan [20] improved the deformation energy
considering all linear and nonlinear terms. In the first of these studies,
the beams with doubly symmetrical section are analyzed, whereas in
the second, L- and T-section beams (cross-section without warping) are
analyzed. Although greatly complicating the calculations, their results
are confirmed as special cases of the classical Euler’s theory. In 1985,
on the basis of the general theory of elastic stability due to Koiter [21–
23], Pignataro et al. [24] performed a post-buckling analysis of simply
supported channel beams. This technique was subsequently improved
and the initial imperfection effects were taken into account [25]. In
the 1990s, Pi [26] wrote a new formulation considering the rotation
components of the second order, whereas Trahair [27] rewrote the de-
formation energy in a simplified form considering only the linear terms.
Ronagh [28,29], on the other hand, studied the instability of the open-
section beams with variable section, whereas Mohri [30] studied the
post-buckling behavior of the same elements. In 2016 Taig et al. [31]
presented an analytical approach for stability analysis of thin-walled
beams implemented within the framework of the Generalized Beam
Theory [32,33], a one-dimensional theory used in structural mechanics.
In this manner, it was possible to account for the deformability of the
cross-section in both pre-buckling and buckling analysis. More recently,
Tong and Zhang [34,35] performed comparative simulations of beams
under different load conditions by using Finite Element models (FEM).

In the present paper, an analytical formulation, based on the lecture
12 of the course ‘‘Static and Dynamic Instability of Structures’’ held
by Carpinteri (private communication [36]) and the PhD thesis by
Nitti [37], is presented, which allows the stability analysis of a thin-
walled open-section beam. A coupling of Euler’s Theory (axial buckling)
and of Prandtl’s Theory (lateral–torsional buckling) is introduced. Fur-
thermore, an energy-based method is defined that allows determining
the equation of non-uniform torsion by Vlasov [38]. Finally, the equa-
tion of non-uniform torsion with lateral–torsional buckling effects is
also analytically defined, that provides the value of the critical bend-
ing moment for thin-walled open-section beams [39]. The analytical
formulation that will be presented in this paper differs from similar
formulations obtained in the previous years by other Authors. In this
regard, both Vlasov [14] and Timoshenko [13] do not consider the
work of deformation given by the bimoment. On the other hand, the
latter has been considered by Pi [26] and Zhang [35], only in the
case of I-beam sections with double symmetry. However, differently
from the last two papers, where only the flexural stress is considered,
the effect of stress due to axial force is also considered herein. In the
papers by Pignataro et al. [24] and Piccardo [32], a rather complex
formulation is presented, in which the assumption of non-deformability
of sections is removed, with a focus onto post-buckling analysis of
simply supported channel beams.

2. A brief outline of Vlasov’s theory

In the second half of the 1930s, Vlasov published some papers [6,40,
41], in which a new method to determine strains and stresses in thin-
walled open-section beams is illustrated. This approach, called Sectorial
Areas’ Theory, is an extension of Saint Venant’s Theory. A few years
later, the same Author extended further his theory [8] introducing
a new characteristic of the internal loading: the bimoment. In 1945,
Timoshenko published an extensive paper [42] in which he analyzes
the open-section thin beam subject to torsional moment. The analytical
formulation, although presenting a different notation, has extensive
references to Vlasov’s Theory [8]. This work had a remarkable inter-
national success, since it was published in English (unlike the papers
by Vlasov, which were published in Russian) and thus accessible to
more researchers. From this moment on, the interest in the topic
2

Fig. 1. Thin-walled open-section beam.

increased significantly, to such an extent that The Israeli Program for
Scientific Translations, a government company focused onto translation
and publication of scientific and technical manuscripts from Russian
to English, recognized the importance of the work by Vlasov (who
died on August 7, 1958), publishing in 1961 the English translation of
his 1940 volume. This book, Thin-walled Elastic Beams [14], remains
a milestone in the scientific literature. The formulation of Vlasov’s
Theory has already been widely reported in various papers [38,43] and
in the book [44], and it is only summarized in the following.

Let us consider a thin-walled open-section beam, without symmetry
axes, located in a coordinate system with origin in the shear center
of the section (𝐼𝑥𝜔 = 𝐼𝜔𝑥 = 𝐼𝑦𝜔 = 𝐼𝜔𝑦 = 0) with axes 𝑋 and 𝑌
riented according to the principal directions (𝐼𝑥𝑦 = 𝐼𝑦𝑥 = 0), whereas
he 𝑍 axis is parallel to the longitudinal centroidal axis of the beam
Fig. 1). In addition, considering that the sectorial area is evaluated
ith respect to the sectorial centroid, the sectorial static moment 𝑆𝜔

s zero by definition [14,45]. The deformed shape can be defined
y means of three independent variables corresponding to the three
eneralized displacements of the cross-section: two translations 𝜉 and
in the 𝑋 and 𝑌 directions, respectively, and the rotation angle 𝜗

round the 𝑍 axis. Based on the Superposition Principle, the total axial
eformation can be reduced to the sum of four different contributions:
ne is purely axial, two are purely flexural, whilst the last is provided
y the bimoment [46]. In the last case, the section does not remain
lane (warping effect) and produces an additional axial stress with
espect to those due to axial force and flexural moments [47,48]. This
s related to the warping of the section [49]. The intensity of this
tress state cannot be neglected for thin-walled open-section beams and
he simple application of Saint Venant’s Theory could lead to gross
rrors [50]. In analytical terms, the bending moments, 𝑀𝑥 and 𝑀𝑦,
nd the bimoment 𝐵 are written as:

𝑥 = 𝑁𝑦𝐺 − 𝐸𝐼𝑥𝑥𝜂
′′ (1a)

𝑦 = 𝑁𝑥𝐺 − 𝐸𝐼𝑦𝑦𝜉
′′ (1b)

= −𝐸𝐼𝜔𝜔𝜗
′′ (1c)

where 𝐸 is the elastic modulus, 𝐼𝑥𝑥 and 𝐼𝑦𝑦 are the moments of inertia,
𝜔𝜔 is the sectorial moment of inertia, while the terms 𝑥𝐺 and 𝑦𝐺
ndicate the coordinates of the geometric center of gravity of the section
valuated with respect to its shear center. As can be observed, the
resence of the axial force 𝑁 does not allow a perfect diagonalization of
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Fig. 2. Loading system applied to the beam.

Vlasov’s Equations [38]. Finally, consider that Eq. (1b) would present
opposite algebraic sign on the right-hand side due to the assumed pos-
itive directions of the axes and to the positive anti-clockwise moments.
Nevertheless, we will adopt the conventions by Vlasov, which consider
positive bending moments when stretching the intrados.

3. Analytical formulation for stability analysis

Consider a slender thin-walled open-section beam, without symme-
try axes, constrained at both ends by cylindrical hinges. The right-
handed reference system is used, with origin in the shear center of the
section, and 𝑋, 𝑌 axes oriented according to the principal directions
i.e. the tensor of the moments of inertia, evaluated with respect to the
eference system with origin in the shear center, is a diagonal matrix)
nd with the 𝑍 axis parallel to the longitudinal centroidal axis of the

beam. It is pointed out that all parameters (static moments, moments of
inertia, etc.), as well as the loading directions and stresses mentioned
in the following equations, are evaluated with respect to this refer-
ence system. The loading system applied to the beam consists of two
distributed orthogonal forces 𝑝𝑥(𝑧) and 𝑝𝑦(𝑧), and by one distributed
torsional moment 𝑚𝑧(𝑧) along the axis of the beam. Furthermore, one
axial force 𝑁 and two bending moments �̄�𝑥 and �̄�𝑦 are applied at
the ends of the beam, as shown in Fig. 2. The assumptions behind the
formulation are the following:

• the shape of the cross-section remains unchanged after deforma-
tion;

• the element is deformable only by bending and twisting;
• Vlasov’s Theory is valid.

In the present formulation, the variational energy method is applied, by
which it is possible to determine the critical (metastable) equilibrium
conditions of the system by the annihilation of the variation of the
total potential energy of the beam (difference between the elastic
deformation energy and the work by external loads). By applying
Clapeyron’s Theorem and considering that the bending moments and
the bimoment are energetically orthogonal to each other, the elastic
deformation energy 𝛷 can be written as:

𝛷 = 1 𝐿
[

𝑀𝑦𝜉
′′ +𝑀𝑥𝜂

′′ + 𝐵𝜗′′ +𝑀𝑧𝜗
′]d𝑙 (2)
2 ∫0

3

As reported previously, the work of deformation given by bimoment
and torsional moment has also been considered in this equation, some-
thing that other Authors have neglected [13,14]. The primary torsional
moment 𝑀𝑧, according to Saint Venant’s Theory, can be written as:

𝑀𝑧 = ∫𝐴
{𝑟} ∧ {𝜏𝑧}d𝐴 = ∫𝐴

(

𝑥𝜏𝑧𝑦 − 𝑦𝜏𝑧𝑥
)

d𝐴 (3)

where 𝜏𝑧𝑦 and 𝜏𝑧𝑥 are the shearing stress components. Applying the
elastic constitutive equations [51], it is possible to obtain:

𝑀𝑧 = 𝐺𝐼𝑡𝜗
′ (4)

where 𝐺 is the shear elastic modulus, and 𝐼𝑡 is the torsional stiffness
factor. Inserting Eqs. (1) and (4) into Eq. (2), the elastic deformation
energy 𝛷 takes the following form:

𝛷 = 1
2 ∫

𝐿

0

[

𝑁𝑥𝐺𝜉
′′ − 𝐸𝐼𝑦𝑦𝜉

′′2 +𝑁𝑦𝐺𝜂
′′ − 𝐸𝐼𝑥𝑥𝜂

′′2 − 𝐸𝐼𝜔𝜔𝜗
′′2+

+ 𝐺𝐼𝑡𝜗
′2
]

d𝑙 (5)

ts variation is equal to:

𝛷 = ∫

𝐿

0

[

1
2
𝑁𝑥𝐺𝛿𝜉

′′ − 𝐸𝐼𝑦𝑦𝜉
′′𝛿𝜉′′ + 1

2
𝑁𝑦𝐺𝛿𝜂

′′ − 𝐸𝐼𝑥𝑥𝜂
′′𝛿𝜂′′+

− 𝐸𝐼𝜔𝜔𝜗
′′𝛿𝜗′′ + 𝐺𝐼𝑡𝜗

′𝛿𝜗′
]

d𝑙
(6)

hich integrated by parts provides:

𝛷 =
[

1
2
𝑁
(

𝑥𝐺𝛿𝜉
′ + 𝑦𝐺𝛿𝜂

′) − 𝐸𝐼𝑦𝑦
(

𝜉′′𝛿𝜉′ − 𝜉′′′𝛿𝜉
)

+

−𝐸𝐼𝑥𝑥
(

𝜂′′𝛿𝜂′ − 𝜂′′′𝛿𝜂
)

− 𝐸𝐼𝜔𝜔
(

𝜗′′𝛿𝜗′ − 𝜗′′′𝛿𝜗
)

+ 𝐺𝐼𝑡𝜗
′𝛿𝜗

]𝐿

0
+

+ ∫

𝐿

0

(

𝐸𝐼𝑦𝑦𝜉
𝐼𝑉 𝛿𝜉 + 𝐸𝐼𝑥𝑥𝜂

𝐼𝑉 𝛿𝜂 + 𝐸𝐼𝜔𝜔𝜗
𝐼𝑉 𝛿𝜗 − 𝐺𝐼𝑡𝜗

′′𝛿𝜗
)

d𝑙

(7)

o evaluate the work by concentrated loads 𝑁 , �̄�𝑥, and �̄�𝑦, an axial
trip of the beam with an infinitesimal area d𝐴 is considered, as shown
n Fig. 3. By replacing the loads with a statically equivalent stress field,
valuated by Navier’s formula, it is possible to write the equation of
he work done by external forces in relation to an infinitesimal strip of
eam. Integrating on the entire area, the total work by concentrated
oads is obtained. With reference to the generic beam strip, whose
osition is identified by the coordinates (𝑥, 𝑦), the axial stress 𝜎𝑧,
quivalent to a concentrated external load applied at the end of the
eam, is equal to:

𝑧 =
𝑁
𝐴

+
�̄�𝑥
𝐼𝑥𝑥

(

𝑦 − 𝑦𝐺
)

+
�̄�𝑦

𝐼𝑦𝑦

(

𝑥 − 𝑥𝐺
)

(8)

The total work by the concentrated external loads can be written as:

𝐿𝑒 = ∫𝐴

(

𝜎𝑧𝛥𝐿
)

d𝐴 = ∫𝐴
𝜎𝑧

[

∫

𝐿

0
𝜀𝑒𝑞d𝑙

]

d𝐴 (9)

where the term

𝜀𝑒𝑞d𝑙 = d𝑙 − d𝑧 (10)

expresses the axial displacement of the point of application of the force
𝑁 due to the beam inflection with respect to the 𝑥 and 𝑦 axes, as shown
in Fig. 4. The displacement

𝛥𝐿 = ∫

𝐿

0
𝜀𝑒𝑞d𝑙 (11)

can be evaluated as a function of the first derivatives of transverse
displacements 𝜉 and 𝜂, and must be calculated as the vectorial sum of
he two displacement components 𝛥𝐿𝑦𝑧 and 𝛥𝐿𝑥𝑧 on the [𝑦𝑧] and [𝑥𝑧]

planes:

𝛥𝐿 = 𝛥𝐿𝑦𝑧 + 𝛥𝐿𝑥𝑧 (12)

The displacement component 𝛥𝐿𝑦𝑧 can be written as:
( )
𝛥𝐿𝑦𝑧 = d𝑙 − d𝑧𝑦 = d𝑙 − d𝑙cos𝜑𝑥 = 1 − cos𝜑𝑥 d𝑙 (13)
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Expanding the cos𝜑𝑥 function in the Taylor series, we get:

cos𝜑𝑥 ≅ 1 −
𝜑2
𝑥
2

(14)

Carrying out similar considerations also for the displacement compo-
nent 𝛥𝐿𝑥𝑧 and performing the appropriate substitutions, the displace-
ment components can be rewritten in the following form:

𝛥𝐿𝑦𝑧 ≅

(

1 − 1 +
𝜑2
𝑥
2

)

d𝑙 = 1
2
𝜑2
𝑥d𝑙 = 1

2
𝜉′2d𝑙 (15a)

𝐿𝑥𝑧 ≅

(

1 − 1 +
𝜑2
𝑦

2

)

d𝑙 = 1
2
𝜑2
𝑦d𝑙 =

1
2
𝜂′2d𝑙 (15b)

Finally, by replacing Eqs. (15) into Eq. (12), the total displacement can
e written as:

𝐿 = 1
2

[

𝜉′2 + 𝜂′2
]

d𝑙 (16)

ince we are considering a generic beam strip, which does not com-
only correspond to the shear center of the section, Eq. (16) then

eneralizes as:

𝐿 = 1
2

[(

d𝑢
d𝑧

)2
+
(

d𝑣
d𝑧

)2]

d𝑙 (17)

n which the displacements 𝑢 and 𝑣 are respectively:

= 𝜉 − 𝜗𝑦 (18a)

= 𝜂 + 𝜗𝑥 (18b)

The axial displacement of the point of application of the axial force 𝑁
an be written as:

𝐿 = 1
2

[

(

𝜉′ − 𝜗′𝑦
)2 +

(

𝜂′ + 𝜗′𝑥
)2
]

d𝑙 =

=
[

1
2
(

𝜉′2 + 𝜂′2
)

+ 1
2
(

𝑦2 + 𝑥2
)

𝜗′2 − 𝜉′𝜗′𝑦 + 𝜂′𝜗′𝑥
]

d𝑙
(19)

y inserting Eqs. (19) and (8) into Eq. (9), the deformation work due
o concentrated external loads 𝑁 , �̄�𝑥, and �̄�𝑦, can be written as:

𝑒 =∫

𝐿

0 ∫𝐴

[ (

𝑁
𝐴

+
�̄�𝑥
𝐼𝑥𝑥

(

𝑦 − 𝑦𝐺
)

+
�̄�𝑦

𝐼𝑦𝑦

(

𝑥 − 𝑥𝐺
)

)

×

×
(

1
2
(

𝜉′2 + 𝜂′2
)

+ 1
2
(

𝑦2 + 𝑥2
)

𝜗′2 − 𝜉′𝜗′𝑦 + 𝜂′𝜗′𝑥
) ]

d𝐴d𝑙
(20)

or simplicity of exposure, the contributions of 𝑁 , �̄�𝑥, and �̄�𝑦, are
alculated separately, obtaining the following results.

The work by the axial force 𝑁 is:

𝑁 =∫

𝐿

0

[

∫𝐴
1
2
𝑁
𝐴
(

𝜉′2 + 𝜂′2
)

d𝐴 + ∫𝐴
1
2
𝑁
𝐴
𝜗′2

(

𝑦2 + 𝑥2
)

d𝐴+

− ∫𝐴
𝑁
𝐴
𝜉′𝜗′𝑦d𝐴 + ∫𝐴

𝑁
𝐴
𝜂′𝜗′𝑥d𝐴

]

d𝑙 =

= ∫

𝐿

0

[

𝑁
2
(

𝜉′2 + 𝜂′2
)

+ 𝑁
2𝐴

𝐼𝑃 𝜗
′2 − 𝑁

𝐴
𝑆𝑥𝜉

′𝜗′ + 𝑁
𝐴
𝑆𝑦𝜂

′𝜗′
]

d𝑙

(21)

he variation of 𝐿𝑁 is:

𝐿𝑁 =∫

𝐿

0
𝑁

(

𝜉′𝛿𝜉′ + 𝜂′𝛿𝜂′
)

d𝑙 + ∫

𝐿

0

𝑁
𝐴
𝐼𝑃 𝜗

′𝛿𝜗′d𝑙+

− ∫

𝐿

0

𝑁
𝐴
𝑆𝑥

(

𝛿𝜉′𝜗′ + 𝜉′𝛿𝜗′
)

d𝑙 + ∫

𝐿

0

𝑁
𝐴
𝑆𝑦

(

𝛿𝜂′𝜗′ + 𝜂′𝛿𝜗′
)

d𝑙

(22)
4

Fig. 3. Infinitesimal strip in a thin-walled open-section beam.

Fig. 4. Graphical representation of the term 𝛥𝐿.

which integrated by parts provides:

𝛿𝐿𝑁 =
[

𝑁𝜉′𝛿𝜉 +𝑁𝜂′𝛿𝜂 + 𝑁
𝐴

(

𝐼𝑃 𝜗
′𝛿𝜗 − 𝑆𝑥𝜗

′𝛿𝜉 − 𝑆𝑥𝜉
′𝛿𝜗 + 𝑆𝑦𝜗

′𝛿𝜂+

+𝑆𝑦𝜂
′𝛿𝜗

)]𝐿

0
− ∫

𝐿

0

[

𝑁𝜉′′𝛿𝜉 +𝑁𝜂′′𝛿𝜂+

+ 𝑁
𝐴

(

𝐼𝑃 𝜗
′′𝛿𝜗 − 𝑆𝑥𝜗

′′𝛿𝜉 − 𝑆𝑥𝜉
′′𝛿𝜗 + 𝑆𝑦𝜗

′′𝛿𝜂 + 𝑆𝑦𝜂
′′𝛿𝜗

) ]

d𝑙

(23)

The work by the bending moment �̄�𝑥 is:

�̄�𝑥
=∫

𝐿

0

[

∫𝐴
1
2
�̄�𝑥
𝐼𝑥𝑥

(

𝑦 − 𝑦𝐺
) (

𝜉′2 + 𝜂′2
)

d𝐴+

+ ∫𝐴
1
2
�̄�𝑥
𝐼𝑥𝑥

(

𝑦 − 𝑦𝐺
) (

𝑦2 + 𝑥2
)

𝜗′2d𝐴+

−
�̄�𝑥 (

𝑦 − 𝑦𝐺
)

𝜉′𝜗′𝑦d𝐴 +
�̄�𝑥 (

𝑦 − 𝑦𝐺
)

𝜂′𝜗′𝑥d𝐴
]

d𝑙

(24)
∫𝐴 𝐼𝑥𝑥 ∫𝐴 𝐼𝑥𝑥
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∫

∫

∫

T

𝛿

w

𝛿

E

𝐿

∫

∫

∫

T

𝛿

w

𝛿

A

𝛿

+

−

+

+

If the following terms depending only on the geometry of the cross-
section are defined:

∫𝐴
𝑦 − 𝑦𝐺
𝐼𝑥𝑥

d𝐴 = 𝑎𝑥 = 0 (25a)

𝐴

𝑦 − 𝑦𝐺
𝐼𝑥𝑥

𝑥d𝐴 = 𝑏𝑥 (25b)

𝐴

𝑦 − 𝑦𝐺
𝐼𝑥𝑥

𝑦d𝐴 = 𝑐𝑥 (25c)

𝐴

𝑦 − 𝑦𝐺
𝐼𝑥𝑥

(

𝑦2 + 𝑥2
)

d𝐴 = 𝑑𝑥 (25d)

it is possible to write:

𝐿�̄�𝑥
=�̄�𝑥 ∫

𝐿

0

[

1
2
𝑑𝑥𝜗

′2 − 𝑐𝑥𝜉
′𝜗′ + 𝑏𝑥𝜂

′𝜗′
]

d𝑙 (26)

he variation of 𝐿�̄�𝑥
is:

𝐿�̄�𝑥
= �̄�𝑥 ∫

𝐿

0

[

𝑑𝑥𝜗
′𝛿𝜗′ − 𝑐𝑥

(

𝜉′𝛿𝜗′ + 𝜗′𝛿𝜉′
)

+ 𝑏𝑥
(

𝜂′𝛿𝜗′ + 𝜗′𝛿𝜂′
)

]

d𝑙 (27)

hich integrated by parts provides:

𝐿�̄�𝑥
=�̄�𝑥

{ [

𝑑𝑥𝜗
′𝛿𝜗 − 𝑐𝑥

(

𝜗′𝛿𝜉 + 𝜉′𝛿𝜗
)

+ 𝑏𝑥
(

𝜗′𝛿𝜂 + 𝜂′𝛿𝜗
)

]𝐿

0
+

− ∫

𝐿

0

[

𝑑𝑥𝜗
′′𝛿𝜗 − 𝑐𝑥

(

𝜗′′𝛿𝜉 + 𝜉′′𝛿𝜗
)

+ 𝑏𝑥
(

𝜗′′𝛿𝜂 + 𝜂′′𝛿𝜗
)

]

d𝑙
}

(28)

ventually, the work by the bending moment �̄�𝑦 is:

�̄�𝑦
=∫

𝐿

0

[

∫𝐴
1
2
�̄�𝑦

𝐼𝑦𝑦

(

𝑥 − 𝑥𝐺
) (

𝜉′2 + 𝜂′2
)

d𝐴+

+ ∫𝐴
1
2
�̄�𝑦

𝐼𝑦𝑦

(

𝑥 − 𝑥𝐺
) (

𝑦2 + 𝑥2
)

𝜗′2d𝐴+

− ∫𝐴

�̄�𝑦

𝐼𝑦𝑦

(

𝑥 − 𝑥𝐺
)

𝜉′𝜗′𝑦d𝐴 + ∫𝐴

�̄�𝑦

𝐼𝑦𝑦

(

𝑥 − 𝑥𝐺
)

𝜂′𝜗′𝑥d𝐴
]

d𝑙

(29)

If the following terms depending only on the geometry of the cross-
section are defined:

∫𝐴
𝑥 − 𝑥𝐺
𝐼𝑦𝑦

d𝐴 = 𝑎𝑦 = 0 (30a)

𝐴

𝑥 − 𝑥𝐺
𝐼𝑦𝑦

𝑥d𝐴 = 𝑏𝑦 (30b)

𝐴

𝑥 − 𝑥𝐺
𝐼𝑦𝑦

𝑦d𝐴 = 𝑐𝑦 (30c)

𝐴

𝑥 − 𝑥𝐺
𝐼𝑦𝑦

(

𝑦2 + 𝑥2
)

d𝐴 = 𝑑𝑦 (30d)

it is possible to write:

𝐿�̄�𝑦
= �̄�𝑦 ∫

𝐿

0

[

1
2
𝑑𝑦𝜗

′2 − 𝑐𝑦𝜉
′𝜗′ + 𝑏𝑦𝜂

′𝜗′
]

d𝑙 (31)

he variation of 𝐿�̄�𝑦
is:

𝐿�̄�𝑦
= �̄�𝑦 ∫

𝐿

0

[

𝑑𝑦𝜗
′𝛿𝜗′ − 𝑐𝑦

(

𝜉′𝛿𝜗′ + 𝜗′𝛿𝜉′
)

+ 𝑏𝑦
(

𝜂′𝛿𝜗′ + 𝜗′𝛿𝜂′
)

]

d𝑙 (32)

hich integrated by parts provides:

𝐿�̄�𝑦
=�̄�𝑦

{ [

𝑑𝑦𝜗
′𝛿𝜗 − 𝑐𝑦

(

𝜗′𝛿𝜉 + 𝜉′𝛿𝜗
)

− 𝑏𝑦
(

𝜗′𝛿𝜂 + 𝜂′𝛿𝜗
)

]𝐿

0
+

+ ∫

𝐿

0

[

𝑑𝑦𝜗
′′𝛿𝜗 + 𝑐𝑦

(

𝜗′′𝛿𝜉 + 𝜉′′𝛿𝜗
)

− 𝑏𝑦
(

𝜗′′𝛿𝜂 + 𝜂′′𝛿𝜗
)

]

d𝑙
}

(33)
5

dding all the variations 𝛿𝐿𝑁 , 𝛿𝐿�̄�𝑥
, and 𝛿𝐿�̄�𝑦

:

𝐿𝑒 = 𝛿𝐿𝑁 + 𝛿𝐿�̄�𝑥
+ 𝛿𝐿�̄�𝑦

=

=
[

𝑁𝜉′𝛿𝜉 +𝑁𝜂′𝛿𝜂+

𝑁
𝐴
(

𝐼𝑃 𝜗
′𝛿𝜗 − 𝑆𝑥𝜗

′𝛿𝜉 − 𝑆𝑥𝜉
′𝛿𝜗 + 𝑆𝑦𝜗

′𝛿𝜂 + 𝑆𝑦𝜂
′𝛿𝜗

)

]𝐿

0
+

+ �̄�𝑥

{[

𝑑𝑥𝜗
′𝛿𝜗 − 𝑐𝑥

(

𝜗′𝛿𝜉 + 𝜉′𝛿𝜗
)

+ 𝑏𝑥
(

𝜗′𝛿𝜂 + 𝜂′𝛿𝜗
)

]𝐿

0

}

+

+ �̄�𝑦

{[

𝑑𝑦𝜗
′𝛿𝜗 + 𝑐𝑦

(

𝜗′𝛿𝜉 + 𝜉′𝛿𝜗
)

− 𝑏𝑦
(

𝜗′𝛿𝜂 + 𝜂′𝛿𝜗
)

]𝐿

0

}

+

− ∫

𝐿

0

[

𝑁𝜉′′𝛿𝜉 +𝑁𝜂′′𝛿𝜂+

+ 𝑁
𝐴
(

𝐼𝑃 𝜗
′′𝛿𝜗 − 𝑆𝑥𝜗

′′𝛿𝜉 − 𝑆𝑥𝜉
′′𝛿𝜗 + 𝑆𝑦𝜗

′′𝛿𝜂 + 𝑆𝑦𝜂
′′𝛿𝜗

)

]

d𝑙+

− �̄�𝑥

{

∫

𝐿

0

[

𝑑𝑥𝜗
′′𝛿𝜗 − 𝑐𝑥

(

𝜗′′𝛿𝜉 + 𝜉′′𝛿𝜗
)

+ 𝑏𝑥
(

𝜗′′𝛿𝜂 + 𝜂′′𝛿𝜗
)

]

d𝑙
}

+

+ �̄�𝑦

{

∫

𝐿

0

[

𝑑𝑦𝜗
′′𝛿𝜗 + 𝑐𝑦

(

𝜗′′𝛿𝜉 + 𝜉′′𝛿𝜗
)

− 𝑏𝑦
(

𝜗′′𝛿𝜂 + 𝜂′′𝛿𝜗
)

]

d𝑙
}

(34)

The work by the distributed external loads 𝑝𝑥, 𝑝𝑦, and 𝑚𝑧, is:

𝐿𝑑𝑖𝑠𝑡𝑟 = ∫

𝐿

0

(

𝑝𝑥𝜉 + 𝑝𝑦𝜂 + 𝑚𝑧𝜗
)

d𝑙 (35)

and the related variation is:

𝛿𝐿𝑑𝑖𝑠𝑡𝑟 = ∫

𝐿

0

(

𝑝𝑥𝛿𝜉 + 𝑝𝑦𝛿𝜂 + 𝑚𝑧𝛿𝜗
)

d𝑙 (36)

The variation of the total potential energy of the beam can be deter-

mined and set equal to zero:

𝛿𝑊 = 𝛿𝛷 − 𝛿𝐿𝑒 − 𝛿𝐿𝑑𝑖𝑠𝑡𝑟 = 0 (37)

By inserting Eqs. (7), (34), and (36) into Eq. (37), two equations are

obtained which must be satisfied. The first equation contains the finite

terms and is verified at the end points of the beam (constrained points),

that is for 𝑧 = 0, 𝐿:

[

1
2
𝑁
(

𝑦𝐺𝛿𝜂
′ + 𝑥𝐺𝛿𝜉

′) − 𝐸𝐼𝑦𝑦
(

𝜉′′𝛿𝜉′ − 𝜉′′′𝛿𝜉
)

− 𝐸𝐼𝑥𝑥
(

𝜂′′𝛿𝜂′ − 𝜂′′′𝛿𝜂
)

+

𝐸𝐼𝜔𝜔
(

𝜗′′𝛿𝜗′ − 𝜗′′′𝛿𝜗
)

+ 𝐺𝐼𝑡𝜗
′𝛿𝜗

]𝐿

0
+

[

𝑁𝜉′𝛿𝜉 +𝑁𝜂′𝛿𝜂+

𝑁
𝐴

(

𝐼𝑃 𝜗
′𝛿𝜗 − 𝑆𝑥𝜗

′𝛿𝜉 − 𝑆𝑥𝜉
′𝛿𝜗 + 𝑆𝑦𝜗

′𝛿𝜂 + 𝑆𝑦𝜂
′𝛿𝜗

) ]𝐿

0
+

+ �̄�𝑥

{[

𝑑𝑥𝜗
′𝛿𝜗 − 𝑐𝑥

(

𝜗′𝛿𝜉 + 𝜉′𝛿𝜗
)

+ 𝑏𝑥

(

𝜗′𝛿𝜂 + 𝜂′𝛿𝜗
)]𝐿

0

}

+

+ �̄�𝑦

{[

𝑑𝑦𝜗
′𝛿𝜗 + 𝑐𝑦

(

𝜗′𝛿𝜉 + 𝜉′𝛿𝜗
)

− 𝑏𝑦

(

𝜗′𝛿𝜂 + 𝜂′𝛿𝜗
)]𝐿

0

}

= 0

(38)
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O

B
𝛿
u

𝐸

𝐸

f

𝐸

w

[

[

{

{

[
a
M
o
p
c
o

[𝑁] =

⎡

⎢

⎢

⎢

⎣

𝑁 0 −𝑁 𝑆𝑥
𝐴 − �̄�𝑥𝑐𝑥 − �̄�𝑦𝑐𝑦

0 𝑁 𝑁
𝑆𝑦
𝐴 + �̄�𝑥𝑏𝑥 + �̄�𝑦𝑏𝑦

−𝑁 𝑆𝑥
𝐴 − �̄�𝑥𝑐𝑥 − �̄�𝑦𝑐𝑦 𝑁

𝑆𝑦
𝐴 + �̄�𝑥𝑏𝑥 + �̄�𝑦𝑏𝑦 𝑁 𝐼𝑃

𝐴 + �̄�𝑥𝑑𝑥 + �̄�𝑦𝑑𝑦

⎤

⎥

⎥

⎥

⎦

(42c)

Box I.
𝐻

𝐹

4
b

t
c
c
f

T
w

𝐸

i
e

m
f

C

𝜉

n the other hand, the second equation is integral:

∫

𝐿

0

(

𝐸𝐼𝑦𝑦𝜉
𝐼𝑉 𝛿𝜉 + 𝐸𝐼𝑥𝑥𝜂

𝐼𝑉 𝛿𝜂 + 𝐸𝐼𝜔𝜔𝜗
𝐼𝑉 𝛿𝜗 − 𝐺𝐼𝑡𝜗

′′𝛿𝜗
)

d𝑙+

+ ∫

𝐿

0

[

𝑁𝜉′′𝛿𝜉 +𝑁𝜂′′𝛿𝜂+

+ 𝑁
𝐴

(

𝐼𝑃 𝜗
′′𝛿𝜗 − 𝑆𝑥𝜗

′′𝛿𝜉 − 𝑆𝑥𝜉
′′𝛿𝜗 + 𝑆𝑦𝜗

′′𝛿𝜂 + 𝑆𝑦𝜂
′′𝛿𝜗

) ]

d𝑙+

− �̄�𝑥

{

∫

𝐿

0

[

𝑑𝑥𝜗
′′𝛿𝜗 − 𝑐𝑥

(

𝜗′′𝛿𝜉 + 𝜉′′𝛿𝜗
)

+ 𝑏𝑥

(

𝜗′′𝛿𝜂 + 𝜂′′𝛿𝜗
)]

d𝑙
}

+

+ �̄�𝑦

{

∫

𝐿

0

[

𝑑𝑦𝜗
′′𝛿𝜗 + 𝑐𝑦

(

𝜗′′𝛿𝜉 + 𝜉′′𝛿𝜗
)

− 𝑏𝑦

(

𝜗′′𝛿𝜂 + 𝜂′′𝛿𝜗
)]

d𝑙
}

+

− ∫

𝐿

0

(

𝑝𝑥𝛿𝜉 + 𝑝𝑦𝛿𝜂 + 𝑚𝑧𝛿𝜗
)

d𝑙 = 0

(39)

y separating the terms of Eq. (39) in relation to their variation 𝛿𝜉,
𝜂, or 𝛿𝜗, it is possible to write a system of three equations in three
nknowns:

𝐼𝑦𝑦𝜉
𝐼𝑉 +𝑁𝜉′′ − 𝑁

𝐴
𝑆𝑥𝜗

′′ − �̄�𝑥𝑐𝑥𝜗
′′ − �̄�𝑦𝑐𝑦𝜗

′′ = 𝑝𝑥 (40a)

𝐼𝑥𝑥𝜂
𝐼𝑉 +𝑁𝜂′′ + 𝑁

𝐴
𝑆𝑦𝜗

′′ + �̄�𝑥𝑏𝑥𝜗
′′ + �̄�𝑦𝑏𝑦𝜗

′′ = 𝑝𝑦 (40b)

𝐸𝐼𝜔𝜔𝜗
𝐼𝑉 − 𝐺𝐼𝑡𝜗

′′ + 𝑁
𝐴
𝐼𝑃 𝜗

′′ − 𝑁
𝐴
𝑆𝑥𝜉

′′ + 𝑁
𝐴
𝑆𝑦𝜂

′′ + �̄�𝑥𝑑𝑥𝜗
′′+

− �̄�𝑥𝑐𝑥𝜉
′′ + �̄�𝑥𝑏𝑥𝜂

′′ + �̄�𝑦𝑑𝑦𝜗
′′ − �̄�𝑦𝑐𝑦𝜉

′′ + �̄�𝑦𝑏𝑦𝜂
′′ = 𝑚𝑧

(40c)

The previous system of three equations can be rewritten in a compact
orm:

[𝐼]
{

𝛿𝐼𝑉
}

+ 𝐺
[

𝐼𝑡
] {

𝛿′′
}

+ [𝑁]
{

𝛿′′
}

= {𝐹 } (41)

here the matrices are defined as follows (see Box I for Eq. 42c):

𝐼] =
⎡

⎢

⎢

⎣

𝐼𝑦𝑦 0 0
0 𝐼𝑥𝑥 0
0 0 𝐼𝜔𝜔

⎤

⎥

⎥

⎦

(42a)

𝐼𝑡
]

=
⎡

⎢

⎢

⎣

0 0 0
0 0 0
0 0 −𝐼𝑡

⎤

⎥

⎥

⎦

(42b)

𝐹 } =

⎧

⎪

⎨

⎪

⎩

𝑝𝑥
𝑝𝑦
𝑚𝑧

⎫

⎪

⎬

⎪

⎭

(42d)

𝛿} =

⎧

⎪

⎨

⎪

⎩

𝜉
𝜂
𝜗

⎫

⎪

⎬

⎪

⎭

(42e)

Matrix [𝐼] is the tensor of the moments of inertia, whereas matrix
𝐼𝑡] contains only the term related to the torsional stiffness factor
nd describes the primary torsion according to Saint Venant’s Theory.
atrix [𝑁] contains the values of concentrated loads acting at the ends

f the beam (these terms can be interpreted as the eigenvalues of the
roblem) multiplied by the geometric coefficients that describe the
ross-section of the beam. The {𝐹 } and {𝛿} vectors contain the values

f the transverse distributed external loads and of the generalized

6

displacements of the beam, respectively. In conclusion, by imposing the
boundary conditions, it is possible to define the values of the critical
loads that determine the instability of the beam. For each of the two
ends of the beam, it is possible to identify six boundary conditions
which may be static or kinematic. In particular, depending on the type
of constraint, we can impose:

𝐶𝑙𝑎𝑚𝑝𝑒𝑑 𝑒𝑛𝑑 ⟹

𝜉 = 0
𝜂 = 0
𝜗 = 0

;
𝜉′ = 0
𝜂′ = 0
𝜗′ = 0

(43a)

𝑖𝑛𝑔𝑒𝑑 𝑒𝑛𝑑 ⟹

𝜉 = 0
𝜂 = 0
𝜗 = 0

;
𝜉′′ = 0
𝜂′′ = 0
𝜗′′ = 0

(43b)

𝑟𝑒𝑒 𝑒𝑛𝑑 ⟹

𝜉′′ = 0
𝜂′′ = 0
𝜗′′ = 0

;
𝜉′′′ = 0
𝜂′′′ = 0
𝐸𝐼𝜔𝜔𝜗′′′ − 𝐺𝐼𝑡𝜗′ = 0

(43c)

. Equation of the non-uniform torsion with lateral–torsional
uckling effects

The equations written so far are absolutely general. We intend now
o emphasize two particular cases due to geometry and/or loading
onditions. Consider a thin-walled open-section beam without the loads
oncentrated at its ends, that is 𝑁 = �̄�𝑥 = �̄�𝑦 = 0. Eq. (41) takes the
ollowing form:

⎡

⎢

⎢

⎣

𝐸𝐼𝑦𝑦 0 0
0 𝐸𝐼𝑥𝑥 0
0 0 𝐸𝐼𝜔𝜔

⎤

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

𝜉𝐼𝑉

𝜂𝐼𝑉

𝜗𝐼𝑉

⎫

⎪

⎬

⎪

⎭

+
⎡

⎢

⎢

⎣

0 0 0
0 0 0
0 0 −𝐺𝐼𝑡

⎤

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

𝜉′′

𝜂′′

𝜗′′

⎫

⎪

⎬

⎪

⎭

=

=

⎧

⎪

⎨

⎪

⎩

𝑝𝑥
𝑝𝑦
𝑚𝑧

⎫

⎪

⎬

⎪

⎭

(44)

he first two scalar equations are the usual equations of the elastic line,
hereas the third,

𝐼𝜔𝜔𝜗
𝐼𝑉 − 𝐺𝐼𝑡𝜗

′′ = 𝑚𝑧 (45)

s the equation of the non-uniform torsion obtained by the variational
nergy method, and not by the static method proposed by Vlasov.

Consider now that the only load acting on the beam is the bending
oment �̄�𝑥 (𝑁 = �̄�𝑦 = 𝑝𝑥 = 𝑝𝑦 = 𝑚𝑧 = 0). Eq. (41) takes the following

orm:

⎡

⎢

⎢

⎣

𝐸𝐼𝑦𝑦 0 0
0 𝐸𝐼𝑥𝑥 0
0 0 𝐸𝐼𝜔𝜔

⎤

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

𝜉𝐼𝑉

𝜂𝐼𝑉

𝜗𝐼𝑉

⎫

⎪

⎬

⎪

⎭

+
⎡

⎢

⎢

⎣

0 0 0
0 0 0
0 0 −𝐺𝐼𝑡

⎤

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

𝜉′′

𝜂′′

𝜗′′

⎫

⎪

⎬

⎪

⎭

+

+
⎡

⎢

⎢

⎣

0 0 −�̄�𝑥
0 0 0

−�̄�𝑥 0 0

⎤

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

𝜉′′

𝜂′′

𝜗′′

⎫

⎪

⎬

⎪

⎭

=

⎧

⎪

⎨

⎪

⎩

0
0
0

⎫

⎪

⎬

⎪

⎭

(46)

onsidering that:

′′ = −
�̄�𝑥 𝜗 (47)

𝐸𝐼𝑦𝑦
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𝑧

Fig. 5. Cross-section of the beam, 𝐶 and 𝐺 indicate the shear center and the gravity
center, respectively (dimensions in mm).

the third equation of system (46) can be written as:

𝐸𝐼𝜔𝜔𝜗
𝐼𝑉 − 𝐺𝐼𝑡𝜗

′′ −
�̄�2

𝑥
𝐸𝐼𝑦𝑦

𝜗 = 0 (48)

and represents the equation of the non-uniform torsion with lateral–
torsional buckling effects. This equation can also be obtained concep-
tually, considering the overlapping of the effects of the non-uniform
torsion Eq. (45) and of the equation of the lateral–torsional instability
by Prandtl:

𝜗𝐼𝑉 +
�̄�2

𝑥
𝐸𝐺𝐼𝑦𝑦𝐼𝑡

𝜗′′ = 0 (49)

In the present section, it has been shown how the remarkable cases
present in the literature (Euler’s problem, Prandtl’s problem, Non-
uniform Torsion theory) are all included within Eq. (41), which proves
to be very general.

5. Numerical example

The results obtained investigating the stability of a simple cantilever
beam are illustrated in the present section. Observe that the cross-
section geometry does not present any symmetry, Fig. 5. Based on
the geometrical and mechanical characteristics of the beam, which are
shown in Table 1, the beam stability domain is obtained. Since it is a
cantilever beam, the boundary conditions are:

𝑧 = 0
(

𝐶𝑙𝑎𝑚𝑝𝑒𝑑 𝑒𝑛𝑑
)

⟹

𝜉 = 0
𝜂 = 0
𝜗 = 0

;
𝜉′ = 0
𝜂′ = 0
𝜗′ = 0

(50a)

= 𝐿
(

𝐹𝑟𝑒𝑒 𝑒𝑛𝑑
)

⟹

𝜉′′ = 0
𝜂′′ = 0
𝜗′′ = 0

;
𝜉′′′ = 0
𝜂′′′ = 0
𝐸𝐼𝜔𝜔𝜗′′′ − 𝐺𝐼𝑡𝜗′ = 0

(50b)

The stability domain of the beam is a function of the axial force
𝑁 , and of the bending moments 𝑀𝑥 and 𝑀𝑦. They represent the
eigenvalues of the stability problem, as shown in Eq. (41). Since the
computational solution of the system of Eqs. (41) is rather complex,
only the intersections of the stability domain with the 𝑁 − 𝑀𝑥 and
𝑁 − 𝑀𝑦 planes are determined. This result is obtained by imposing
in Eq. (41) 𝑀𝑦 = 0 (to obtain the 𝑁−𝑀𝑥 domain) or 𝑀𝑥 = 0 (to obtain

the 𝑁 −𝑀𝑦 domain). Then, using the Mathworks Matlab software, the
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Table 1
Geometrical and mechanical characteristics of the beam.

Description Symbol Magnitude Unit

Beam length 𝐿 3,000 mm
Beam thickness 𝑡 5 mm
Normal elastic modulus 𝐸 2.1 × 105 N∕mm2

Shear elastic modulus 𝐺 8 × 104 N∕mm2

Cross-section area 𝐴 1,250 mm2

Moment of inertia with respect to the 𝑥-axis 𝐼𝑥𝑥 2, 454, 873 mm4

Moment of inertia with respect to the 𝑦-axis 𝐼𝑦𝑦 4, 243, 609 mm4

Sectorial moment of inertia 𝐼𝜔𝜔 8.4 × 108 mm6

Fig. 6. Buckling domain of the beam.

numerical solution of Eq. (41) is obtained. This solution is achieved
in discrete form by imposing the values of 𝑁 , varying between 0 and
the value of the Euler critical load, and computing the value of 𝑀𝑥 (or
𝑀𝑦) that satisfies the system of equations. The graphs of the buckling
domain in the 𝑁 vs 𝑀 plane are shown in Fig. 6 . Using these graphs,
and known the value of the acting axial force, it is possible to determine
the corresponding value of the critical buckling bending moment that
leads to collapse due to instability of the beam. As can be seen, if 𝑁
= 0, we obtain the value of Prandtl’s critical moment. On the other
hand, if 𝑁 = 𝑁𝑐𝑟, the value of 𝑀 is equal to zero. Finally, it is noted
that the buckling domains described in this example provide the critical
loads that determine the coupled buckling collapse of the beam. These
values could be compared to the limit values that determine the plastic
deformation of the material and consequently the plastic collapse of the
beam, but this is out of the objectives of this paper.

6. Conclusions

In this paper, a complete and original analytical formulation is
developed for the stability of thin-walled open-section beams. Such
a complex three-dimensional formulation, based on Vlasov’s Theory,
turns out to be absolutely general and, therefore, can be used to
evaluate the stability of a beam with any constraint typology and
loading conditions. The compactness of the final expressions, made
even more evident by the matrix formulation, allows us for a con-
venient use in the case of automatic computations. The formulation
presented in this paper is complete in that the effect of axial force,
bending moments, and, especially, bimoment are considered in calcu-
lating the elastic strain energy. Differently from papers published in
the past years by other Authors concerning similar formulations, the
equation of non-uniform torsion with lateral–torsional buckling effects
is obtained. In this fourth-order differential equation, containing only



A. Carpinteri and G. Nitti International Journal of Non-Linear Mechanics 154 (2023) 104432
even derivatives, Vlasov’s theory (thin-walled open-sections beams)
and Prandtl’s theory (flexural–torsional buckling) are combined into a
single equation. In addition, in this paper the formulation is written by
using a reference system with the axes 𝑋 and 𝑌 oriented according to
the principal directions. This choice makes the equations simpler than
those proposed by other Authors [24,32,33], who have preferred using
a generic coordinate system.
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