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Abstract: By using complex potentials, some light is shed on the analogy between the singularity prob-

lems arising in fluid and fracture mechanics—in particular, those concerning plane irrotational flows 

around sharp obstacles and plane elasticity in cracked bodies. Applications to two equivalent geome-

tries are shown: a thin plate transversally immersed in a uniform flow and a crack subjected to uniform 

out-of-plane shearing stress at infinity (Mode III). The matching between the fluid velocity field and 

the shearing stress field is consistent with the hydrodynamic analogy. Aside from the Reynolds crite-

rion for the natural laminar-to-turbulent transition, a velocity-intensity factor criterion is defined to 

predict the forced turbulent-to-vortex-shedding fluid-flow transition (forced transitional flow) gener-

ated by a transversal plate obstacle. It is interesting to remark that the velocity-intensity factor presents 

physical dimensions intermediate between those of a velocity and a kinematic viscosity. In addition, 

it will be demonstrated that size affects the occurrence of natural-to-forced transitional phenomena in 

fluids, in a strict analogy to the scale-dependent ductile-to-brittle failure transitions in solids. 

Keywords: hydrodynamic analogy; stress intensification; velocity intensification;  

ductile-to-brittle failure transition; turbulent-to-vortex shedding flow transition; scale effects 

 

1. Introduction 

The analogy between plane elasticity and incompressible plane flow problems is 

well-known—both phenomena being governed by analogous field equations [1,2]. From 

a different point of view, dimensional analysis [3] allows one to define dimensionless 

numbers both in hydraulics and in fracture mechanics: as the Reynolds number, ��, pre-

dicts the laminar-to-turbulent transition in different fluid-flow situations [4], so the brit-

tleness number, �, governs the ductile-to-brittle transition in solids [5]. 

Concerning the analogy between plane problems, viscous flows can be regarded as 

the fluid dynamics equivalent of nonlinear phenomena in solid mechanics. In the case of 

extreme ductility, i.e., when �∗ � → 0⁄  (�∗ being the Young’s modulus of the hardening 

material and E the Young’s modulus of the elastic material), the stress-function represent-

ing the yielded region becomes biharmonic [6,7]. Such perfectly plastic behavior appears 

to be similar to that of plane creeping flows―dominated by viscous forces―where a bi-

harmonic equation for the stream function comes from assuming very small Reynolds 

numbers, �� → 0, in the Navier–Stokes equation [8,9]. 

On the other hand, anti-plane shear problems in linear elasticity are governed by the 

Laplace equation [10]. Something analogous happens at the other extreme of plane flow, 

i.e., for irrotational and inviscid flows, where a velocity potential fulfilling the Laplace 

equation can be defined [11]. The outlined analogy has been further emphasized by the 

hydrodynamic analogy between potential flow and elastic torsion problems, where the 
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shearing stress field of a linear elastic beam is represented by the velocity field of an ideal 

fluid, i.e., inviscid and incompressible, over its cross-section [12]. 

In this context, the hydrodynamic analogy can represent a heuristic device for visu-

alizing the stress intensification around the tips of cracks or sharp re-entrant corners. In 

other terms, a thin or sharp-edged obstacle transversally immersed in a plane potential 

flow corresponds to a Griffith crack subjected to an anti-plane mode of deformation. 

There are crack problems where yielding and inelastic effects are confined to a small-

scale region (compared to crack and body sizes) around the crack tip [6,7,10,13]. Under 

these conditions, linear elastic fracture mechanics is adequate to address the problem of 

stress redistribution in the cracked body. Similarly, in low-viscosity flows after an obsta-

cle, viscous effects such as vorticity―a prerequisite for turbulence―are confined to a thin 

boundary layer around the surface of the object, and to a wake behind it. Outside such 

boundary layers and wakes, the flow is treated as inviscid and irrotational, being accu-

rately described by potential flow theory [1,14,15]. 

When a certain critical condition is reached, stressed bodies collapse, whereas lami-

nar flows transit to turbulence. In both cases, there is a phase change or medium separa-

tion, in the form of newly created fracture surfaces in solids and breakdown of stream-

lines, leading to an eventual transition to turbulence in fluid flows. 

When a structure is initially uncracked or crack-insensitive, failure by plastic-flow col-

lapse intervenes when the applied stress reaches the material yield strength. Fracture, or sep-

aration collapse, occurs instead in a cracked structure, where lower applied stresses are suffi-

cient to extend the crack due to the stress intensification near the crack tip [3,10,13]. 

As regards pipe flows, the laminar-to-turbulent transition occurs ‘naturally’, i.e., 

without any forcing obstacle, when a critical Reynolds number, ���, is reached (experi-

mental observations show that ��� = 2300 [4]). However, the laminar-to-turbulent tran-

sition can be also forced at low Reynolds numbers, i.e., for �� < ��� , by obstacles intro-

duced into the flow [16,17]. Namely, low inlet velocities are sufficient to trigger a local 

transition to turbulence behind an obstacle for nominally laminar flows. 

Although flow instabilities may occur in the wake behind obstacles of any shape, the 

presence of sharp edges gives rise to sudden fluid accelerations and decelerations, where 

the inertia of the moving fluid will favor a consequent fluid separation and vortex shed-

ding from the bluff body. Analogously to the lines of force near the crack tip, streamlines 

converge and diverge rapidly around sharp-edged obstructions, resulting in a locally in-

tensified fluid velocity. Hence, a velocity-intensity factor, �, may be properly introduced 

using a fracture mechanics approach. It is expected that, above a certain limit value ��, 

the inertial forces due to sudden changes in the flow direction cause the breakdown of 

streamlines, and consequently, vortex shedding. Such a critical value, �� , may be re-

garded as analogous to the fracture toughness. 

The purpose of the present paper is to emphasize the analogy between the two prob-

lems of linear elastic fracture mechanics and of potential flow illustrated in Figure 1, 

namely, the uniform flow past a transversal thin plate and the plane cracking under uni-

form out-of-plane loading. By this strong analogy, a new dimensionless number emerges 

in the following, which can govern the turbulent-to-vortex-shedding fluid-flow transition. 
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Figure 1. Uniform plane flow of remote velocity �� past a transversal flat plate (a); crack subjected 

to uniform out-of-plane shearing stress τ at infinity (b). 

2. Potential Flow around a Transversal Thin Plate 

Let us consider the sourceless and irrotational plane flow of an ideal fluid of density 

�, whose velocity vector is � = �� �� + �� ��. Recall that, for a sourceless incompressible 

plane fluid flow of velocity �, the continuity equation �̇ + ∇ ⋅ (��) = 0 reduces to 

� ��

��
+

� ��

��
= 0        ⟺          �� =

��

��
;  �� = −

��

��
    (1)

where � is the stream function representing the trajectories of particles in the flow. 

In addition, let us recall that a plane flow is called irrotational, or potential, provided 

that 

� =
� ��

��
−

� ��

��
= 0        ⟺        �� =

��

��
;  �� =

��

��
   (2)

where � is the vorticity and � is the velocity potential. 

Hence, for the sourceless and irrotational plane flow of an ideal fluid, both � and � 

exist and fulfill the Cauchy–Riemann conditions for analytic functions [18]: 

��

��
=

��

��
 ;              

��

��
= −

��

��
  (3)

Therefore, the calculation of such a flow field is reduced to finding the associated 

complex potential �(�) ≡ �(�, �) + i�(�, �) fulfilling appropriate boundary conditions 

(the complex number � = � + i � identifies the position vector � = ��� + ���). 

The velocity components are straightforwardly obtained by exploiting the complex 

differentiability of the complex potential: 

d�

d�
≡ �′ =

��

��
+ i

��

��
= �� − i�� (4)

�′ being the complex conjugate velocity, whence �� = Re �′ and �� = −Im ��. 

Although the complex potential theory seems to be a simplification, it applies to the 

external inviscid flow around solid surfaces for laminar flows of low-viscosity fluids (e.g., 

air and water), whereas vorticity and other viscous effects are confined to a thin boundary 

layer and to the wake. 
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Let us consider a plane flow past a transversal thin plate installed in a straight chan-

nel (Figure 2a). The fluid domain is represented by the strip −� < � < � between the 

channel walls at � = ±�, excluding a segment −� < � < �, for � = 0, occupied by the 

extremely thin transversal plate. The fluid flows in the positive �-direction with inlet ve-

locity ��. 

The complex potential associated with the external flow around the plate is found to 

be [19] 

� = −i����� − ��  (5)

The boundary condition at the surface of the plate is stated as an impenetrability 

condition: 

� ∙ � = �� = 0 for � = 0, −� < � < �  (6)

where �� = � is the unit vector normal to the plate surface. 

Let us recall that the no-slip condition for fluid layers adherent to the plate, � = 0, 

cannot be applied, since the complex potential theory treats the flow as inviscid, i.e., fric-

tionless. 

At large distances from the plate, the flow must be asymptotic to the uniform stream. 

Hence, 

�� = 0, �� = �� for |�| → ∞  (7)

The complex conjugate velocity 

�′ = −
i���

(�� − ��)� �⁄
   (8)

fulfills the boundary condition (6), since �′ is real for � = 0 and −� < � < �, and there-

fore, �� = −Im �� vanishes. The boundary condition at infinity (7) is met as well, being 

�′ ≅ −i��, and then �� = Re �′ = 0, �� = −Im �� = �� for |�| ≫ �. Therefore, Equation 

(5) is really the complex potential associated with the flow field shown in Figure 2b. 
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Figure 2. Sketch of the transversal thin plate installed in a straight channel (a); potential flow around 

the plate: the velocity intensification near the edges is illustrated by the reduced spacing between 

streamlines (b). 

Function �′ in Equation (8) is singular at � = ±�, leading to unbounded flow veloc-

ities at both plate extremities. Therefore, the study of the velocity field in the extreme vi-

cinity becomes very important, since it may be related to vortex shedding in the wake 

behind the plate. 

By placing the origin of the coordinate system at the plate edge � = � through the 

transformation � = � − �, Equation (8) takes the form 

�′ = −
i��(� + �)

[�(� + 2�)]� �⁄
  (9)

The flow field near the edge is obtained from the limit expression of �′ as |�| → 0 

�′ = −
i� 

�2��
   (10)

where 

� = ��√π�   (11)

Using polar coordinates, � = �e��, the near-edge solution (10) can be written as 
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�′ =
� 

√2��
�− sin

�

2
− i cos

�

2
�   (12)

Then, the velocity components (Figure 3) exhibit the expected ��� �⁄  singularity at 

sharp edges [20,21]: 

�� = Re �′ = −
� 

√2��
sin

�

2
   (13a)

        �� = −Im �� =
� 

√2��
cos

�

2
    (13b)

 

Figure 3. Flow near a plate edge: fluid velocity components along a streamline. 

3. Turbulent-to-Vortex-Shedding Fluid-Flow Transition 

The continuity equation for incompressible flows imposes the deviation of streamlines 

around the impenetrable plate, which results in a velocity intensification at the extremities. 

Hence, the velocity-intensity factor, �, is a likely candidate to rule the local turbulent-to-vor-

tex-shedding transition. It is worth noting that the velocity-intensity factor (Equation (11)) pre-

sents the following physical dimensions: [K] = [L]3/2 [T]−1, which are intermediate between 

those of a velocity, [�] = [L] [T]−1, and a kinematic viscosity, [μ] = [L]2 [T]−1. 

Noticeably, the inviscid flow solution (Equation (5)) is found to be symmetrical up-

stream and downstream with respect to the plate (Figure 4a), whereas, as a viscosity effect, 

the real fluid is no longer able to follow the plate’s contour, resulting in an asymmetric 

flow pattern featured by large-scale eddies downstream from the plate: this region of ed-

dying motion is usually known as the wake. However, the singularity r−1/2 and the ampli-

fying factor � of the near-edge field are expected to be still valid for real fluids. 

When the values of � are sufficiently small, the inertial forces are negligible and the 

streamlines converge behind the plate. However, the boundary layer separates symmet-

rically from both sides of the plate, and two eddies are formed, which rotate in opposite 
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directions and remain unchanged in position. In the current condition, the length of the 

wake is limited. Behind it, the main streamlines converge as depicted in Figure 4b. 

Above a certain critical value, � = �� , the arrangement becomes unstable: vortex 

shedding is expected to take place, where vortices are created at the back of the plate and 

detach periodically from either side, thereby forming the so-called von Karman vortex 

street illustrated in Figure 4c. 

 

Figure 4. Potential flow solution for a inviscid fluid (a); real flow with vorticity within the boundary 

layer and the wake (b); turbulent-to-vortex-shedding transition for � ≥ �� (c). 

The critical value �� would denote a fluid property to be determined by specific 

experiments and could be identified as shedding toughness, which is analogous to the 

well-known fracture toughness for solids. Based on Equation (11), the inlet flow velocity 

��
�� for the onset of vortex shedding is predictable by a Griffith-like criterion: 
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��
�� =

��

√��
  (14)

In other terms, the critical velocity ��
��  required to force the transition to vortex 

shedding at low Reynolds numbers, �� < ��� , i.e., in nominally laminar flows, is in-

versely proportional to the square root of the plate half-width, ��
�� ∝ ��� �⁄ . In reality, such 

behavior would be unphysical, since turbulence starts to develop naturally when the crit-

ical Reynolds number ��� is reached. 

The variation in the critical velocity versus plate width is illustrated in Figure 5 by 

the solid curve, that separates laminar from turbulent flow conditions in the domain 

(�, ��). The horizontal straight line represents the critical velocity ��
�

 for the onset of 

Reynolds turbulence: 

��
�

=
����

�
  (15)

where � is the kinematic viscosity and � = 2� is the channel width. 

The intersection of the curves given by Equations (14) and (15) defines a transition 

length: 

�� =
1

�
�

���

����
�

�

  (16)

ruling out the competition between Reynolds turbulence and vortex shedding. 

For � < ��, when the ��
�� curve overcomes the horizontal line ��

�
, Reynolds turbu-

lence precedes vortex shedding behind the plate. As a matter of fact, the flow does not 

sense plates of size smaller than ��, and only Reynolds turbulence is possible. The limit 

plate size �� that a laminar flow can sustain safely represents the obstacle sensitivity, i.e., 

the smaller is ��, the more obstacle-sensitive is the flow. Thus, the flow is sensitive to the 

presence of plates with � > ��, which can drive the transition to vortex shedding at criti-

cal velocities ��
�� lower than ��

�
, i.e., for Reynolds numbers �� lower than ���. 

From Equation (16), we can see that a decrease in the channel width, D, provides a 

decrease in the limit value ��. Namely, bringing the channel walls closer to the plate en-

hances the vortex formation and shedding behind the plate, whereas the Reynolds turbu-

lence tends to anticipating the vortex shedding if the channel is sufficiently wide. This 

confinement effect seems to be analogous to the wall effect, as reported in numerical stud-

ies on the flow past a bluff body installed in a channel [17,22,23]. Those investigations 

show that reduced separation between the body and the channel wall facilitates the ap-

pearance of twin vortices in the wake. 
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Figure 5. Turbulent-to-vortex-shedding transition in the space of parameters (inlet flow velocity v∞ 

versus plate half-width a): for a > a0, vortex shedding precedes Reynolds turbulence (which takes 

place for a < a0). 

It can be said that the scale effect highlighted by Equation (16) is due to the mismatch 

between two fluid properties with different physical dimensions: the kinematic viscosity, 
[�] = [�]�[�]��, and the shedding toughness, [��] = [�]� �⁄ [�]��. A strong analogy with 

fracture mechanics exists, where scale effects in fracture testing are mainly due to the co-

existence of two generalized forces with different physical dimensions: the stress, [�] =
[�][�]��, and the stress-intensity factor, [�] = [�][�]�� �⁄  [5,7]. 

4. Effect of the Channel Width 

The complex potential of Equation (5) is associated with an unbounded flow velocity 

around the plate edge, implying that channel walls are supposed to be far enough from 

the plate not to affect the flow around it. Namely, confinement effects have been so far 

considered solely via the Reynolds number. As a matter of fact, when the channel shrinks 

or when the plate size increases, the walls exert an enhanced influence on the flow field 

near the plate edges. In such a case, some corrections to the flow solution may be properly 

introduced. 

The wall proximity effect due to the channel width can be considered by including a 

shape factor � in the � solution: 

� =  ���√π�  (17)

such that � approaches the value of Equation (12) as � � → 0⁄ , i.e., for a channel width 

much larger than the plate width, and it diverges as � � → 1⁄ . 

The shape factor � is a dimensionless function of the � �⁄  ratio that can be obtained 

by numerical investigations. 

Equation (17) can be expressed in the form 

� = ���2b �(� �⁄ ) (18)

where � �
�

�
� = �

��

��
�

� �⁄

�. 

Equation (18) provides a critical inlet velocity to force the transition to vortex shed-

ding, where the wall effects are explicitly taken into account: 
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��
�� =

��

�(� �⁄ ) √2�
 (19)

By exploiting Equation (15), Equation (19) takes a dimensionless form: 

��
��

��
� =

�

�(� �⁄ ) 
 (20)

where the dimensionless number 

� =   
����/�

�  
 (21)

can be called the shedding number, in full analogy with the brittleness number that governs 

the ductile-to-brittle transition in elastic–plastic cracked bodies [5,22]. In this case, two differ-

ent failure modes are possible: (i) plastic collapse of the solid, when the strength of the mate-

rial, τP, is overcome and the crack is considered as a weakening of the body’s cross-section 

without including any local effect; (ii) crack propagation determined by the achievement of 

the fracture toughness, KIIIC, of the material. For the brittleness number, � =
�����

�� �
�/�, both the 

mechanical properties of the material and the characteristic size of the solid are relevant. It is 

possible to demonstrate that brittle failure occurs only with relatively low fracture toughness 

values, high material strengths, and/or large structural sizes [5,23]. 

On the other hand, by considering the shedding number (Equation (21)), a reverse 

scale effect becomes manifest: vortex shedding occurs only with relatively low shedding 

toughness values, high kinematic viscosities, and/or small channel widths. 

The competition between natural and forced (turbulent to vortex shedding) transi-

tions is investigated as a function of the blockage ratio, � = � �⁄ . The condition for vortex 

shedding is represented by a set of curves in the (�, �) diagram―� = �� ��
�⁄  being the 

normalized inlet velocity―by varying the shedding number � in Equation (20), whereas 

the condition for Reynolds turbulence is represented by a single horizontal straight line 

� = 1 (see Figure 6). 

 

Figure 6. Turbulent-to-vortex-shedding transitions as a function of the blockage ratio ξ = a/b (a); 

scale effect changing the shedding number � (b). The curves were plotted using the shape factor Y 

= [sec(πa/2b)]1/2. 

These curves separate distinct regions, each corresponding to a different flow regime. 

It is evident that vortex shedding occurs only for blockage ratios above the limit value ξ0 

(see Figure 6a). 

As is shown in Figure 6b, the diverging vortex-shedding curves overcome the hori-

zontal line � = 1 for most blockage ratios � = � �⁄ , when � is sufficiently high. This 
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means that the Reynolds turbulence tends to anticipate and obscure the vortex shedding 

even for high � �⁄  ratios, if the channel width � is sufficiently large. 

This scale effect is also revealed by the quadratic scaling of the obstacle sensitivity 

(Equation (16)) with the channel width, �� ∝ ��, whereby for fixed ratios � �⁄  and by 

increasing � , the Reynolds turbulence tends to become the dominating mechanism 

[22,24]. 

5. Viscosity at the Edges of the Obstacle 

Considering real fluids, potential flow solutions must take into account the effects of vis-

cosity within the boundary layer, where a velocity profile develops and truncates the singu-

larity near sharp edges [25]. This is analogous to considering, in the framework of fracture 

mechanics, the plastic phenomena occurring at small distances from the crack tip, which re-

lieve the elastic singularity. Hence, the concept of plastic-zone extension resembles that of 

boundary-layer thickness [26], defined as the distance of the solid surface to the boundary 

between viscous flow and external flow. An alternative parameter is the boundary layer dis-

placement, �, which is defined as the distance at which the potential flow has to translate to 

produce the same mass flow rate as the real fluid [27,28]. Due to the slowing down of the real 

fluid in the boundary layer, this ideal flow essentially encounters an effective obstacle larger 

by �, namely, an extended fictitious plate with ���� = � + �. 

Hereafter, an Irwin-like approach [29] is proposed to estimate the critical boundary-

layer thickness ahead of the edge of the plate. The singular velocity distribution ��(� = 0) 

given by Equation (13b) is truncated by viscosity, and a flat profile �� = �� for � ≤ � is 

simply assumed (Figure 7a). Consequently, the condition �� = �� = � (2��)� �⁄⁄  gives 

the first approximation of the boundary layer’s thickness. 

� =
1

2�
�

�

��
�

�

 (22)

This estimate is not strictly correct because the conservation of mass rate appears to 

be violated. When the effect of viscosity is considered, velocities must redistribute in order 

to satisfy the conservation of mass rate. Namely, the singular velocity distribution is trans-

lated along the x-axis, so that the integral of the redistributed velocities (curve ABCD in 

Figure 7b) is equal to the integral of the aforementioned singular distribution. The integral 

of �� between the plate edge and the point � = � gives 

� �d� √2�� = 2���⁄
�

�

 (23)

where Equation (22) is exploited. 

Therefore, the left-hand hatched area of Figure 7b is ��� . Additionally, the right-

hand hatched area, obtained with a translation by � , is equal to that of the rectangle 

A’ABB’, since both of them are complementary to the area underneath the curve BD, so 

that the conservation of mass is satisfied. Thus, a more accurate evaluation of the thickness 

of the boundary layer is �� = 2�. Finally, we obtain the following expression for the thick-

ness of the boundary layer when vortex shedding starts: 

��� =
1

�
�

��

��
�

�

  (24)
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Figure 7. Ideal �� velocity distribution truncated by viscosity (solid line) ahead of the plate edge 

with first-order estimate � of the boundary layer thickness (a); real �� velocity distribution (ABCD 

curve) with second-order estimate �� = 2� of the boundary layer thickness: The cross-hatched areas 

represent the mass flow rate redistribution, resulting in a fictitious plate wider by � (b). 

Furthermore, if it is assumed �� = ��
�

, ��� comes to coincide with the obstacle sensi-

tivity �� (see Equation (16)): 

���  = �� =
1

�
�

���

����
�

�

 (25)

This correspondence is analogous to that emerging in fracture mechanics between 

the size of the characteristic microcrack for the material and the size of the plastic zone at 

crack propagation [30]. 

Finally, considering the two problems represented in Figure 1, the aforementioned 

analogies are summarized in Table 1. 

Table 1. Summary of the main analogies. 

Linear elastic constitutive laws: 

��� = �
��

�� 

��� = �
��

�� 

                 

� = displacement along the z-axis 

Potential flow 

(outside boundary layers and wakes): 

�� =
∂�

∂�

�� =
��

��

                        

� = velocity potential 

Indefinite equilibrium equation: 
����

�� 
+

����

�� 
= 0        

Continuity equation: 
���

�� 
+

���

�� 
= 0          

Combining the above equations gives: 

∇�� = 0 ⇒  � =Im ���� �⁄  

where ���� is an analytic function 

From the constitutive laws, it follows: 

��� = Im ����
�  

��� = Re ����
�  

 

Combining the above equations gives: 

∇�� = 0 ⇒  � = Re � 

where � is an analytic function 

From the velocity potential, it follows: 

�� = Re �� 

�� = −Im �� 

 

Boundary conditions: Boundary conditions: 
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Stress-free crack surfaces: 

��� = 0   for � = 0, −� < � < � 

Boundary conditions at infinity: 

��� = 0,  ��� = �    for |�| → ∞ 

 

Impenetrable plate surfaces: 

�� = 0   for � = 0, −� < � < � 

Boundary conditions at infinity: 

�� = 0,   �� = ��   for |�| → ∞ 

 

Westergaard solution: 

���� = ���� − ��      ⟹ ����
� = �� (�� − ��)� �⁄⁄  

Complex potential: 

� = −i ��√�� − ��  ⟹ �′ = −i ��� (�� − ��)� �⁄⁄  

Stress field near the crack tip: 

��� = −
���� 

√2��
sin

�

2
 

��� =
���� 

√2��
cos

�

2
 

where ���� =  �√�� 

Flow field near the plate edge: 

�� =
� 

√2��
sin

�

2
 

�� = −
� 

√2��
cos

�

2
 

where � =  ��√π� 

Fracture sensitivity: 

�� = �����
� ���

�⁄  

Obstacle sensitivity: 

�� = ����
� ������

�⁄  

Plastic flow collapse: 

� = ��   for � < �� 

Crack propagation: 

���� = ����� for � ≥ �� 

Reynolds turbulence: 

�� = ��� for � < �� 

Vortex shedding: 

� = �� for � ≥ �� 

Size-scale effects of interacting failure modes 

(��� = critical applied stress for crack propagation): 
���

��
=

�

�(� �⁄ )
 

Brittleness number � =
�����

�� ��/� 

Size-scale effects of interacting transitional flows 

(��
�� = critical inlet velocity for vortex shedding): 

��
��

��
� =

�

�(� �⁄ )
 

Shedding number � =  
�� ��/�

� 
  

6. Conclusions 

The solutions to plane elasticity or to plane fluid-flow problems are often reduced to 

find the associated complex potentials that satisfy the appropriate boundary conditions. 

In the framework of the hydrodynamic analogy, calculating the linear elastic stress field 

associated with Mode III crack loading and the potential flow field past a transversal thin 

plate represent two equivalent problems. 

Furthermore, in both cases, a phase change―either ductile-to-brittle or turbulent-to-

vortex-shedding transition―intervenes at a critical point, when a sort of driving force ex-

ceeds its critical value. 

Failure by general yielding occurs when the applied uniform out-of-plane shearing 

stress at infinity � exceeds the material yield strength ��. This failure mode is analogous 

to the laminar-to-turbulent transition of pipe flows, which begins when the Reynolds 

number �� exceeds its critical value ��� = 2300. This analogy appears between �� and 

the critical inlet velocity, ��
�

= ���� �⁄ . If the strip or the channel width is fixed, the anal-

ogy can be expressed in terms of material or fluid properties, as the ability of the material 

to sustain applied stresses or the ability of the fluid to sustain laminar flows. 

On the other hand, unstable crack propagation from a pre-existing defect occurs 

when the stress-intensity factor is equal to the Mode III fracture toughness, ���� = �����. 

Analogously, vortex shedding is expected to take place in fluid flow when the velocity-

intensity factor is equal to the shedding toughness, � = ��, thereby forming the so-called 

von Karman vortex street. As Mode III fracture toughness, �����, expresses the ability of 

the material to resist fracture in the presence of cracks, so the shedding toughness, ��, 

would express the ability of the fluid to resist generation and shedding of vortices behind 

obstacles. In addition, as the dimensional mismatch between strength and toughness in-

volves a scale-dependent ductile-to-brittle failure transition in solids, so a scale-dependent 

turbulent-to-vortex-shedding fluid flow transition is driven by the difference in physical 

dimensions between the kinematic viscosity and the shedding toughness. 
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Future research work might concern the experimental measurement of ��, which 

could be helpful, together with the shedding number �, in investigating the competition 

between different mechanisms in the turbulent-to-vortex-shedding transition. In this 

framework, it is interesting to recall that, by considering the shedding number, vortex 

shedding occurs only with relatively low shedding toughness values, high kinematic vis-

cosities, and/or small channel sizes. This scale effect in fluid mechanics turned out to be 

the reverse of the scale effect that can be detected in solid mechanics by considering the 

brittleness number: in fact, a truly brittle failure occurs only for relatively low fracture 

toughness values, high material strengths, and/or large structural sizes. 
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