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Abstract The scale effects on the global structural

response of fibre-reinforced concrete (FRC) beams

subjected to bending are discussed in the framework of

Fracture Mechanics by means of the Updated Bridged

Crack Model (UBCM). This model predicts different

post-cracking regimes depending on two dimension-

less numbers: the reinforcement brittleness number,

NP, which is related to the fibre volume fraction, Vf;

and the pull-out brittleness number, Nw, which is

related to the fibre embedment length, wc. Both these

dimensionless numbers depend on the beam depth, h,

which, keeping the other variables to be constant,

drives a ductile-to-brittle transition in the post-crack-

ing regime of the composite. The critical value of the

reinforcement brittleness number, NPC, allows for

prediction of the minimum (critical) specimen size,

hmin, which, analogously to the minimum fibre volume

fraction, Vf,min, is required to achieve a stable post-

cracking response. Numerical simulations are com-

pared to experimental results reported in the scientific

literature, in which FRC specimens, characterized by

the same fibre volume fraction but different sizes, are

tested in bending.

Keywords Fibre-reinforced concrete � Updated
Bridged Crack Model � Post-cracking regimes � Scale
effects � Minimum reinforcement condition

1 Introduction

During the last decades, extensive research, both

theoretical and experimental, was carried out in order

to investigate the different parameters affecting the

cracking behaviour of fibre-reinforced concrete (FRC)

structural elements.

Considering a FRC beam subjected to bending,

several experimental studies suggest describing the

flexural response, usually represented in terms of the

applied load vs deflection diagram, by sub-dividing it

into three different stages (Fig. 1). The structural

behaviour starts with a linear ascending branch (Stage

I), until the onset of the fracturing process. From this

point onwards, the post-cracking regime (Stage II)

takes place, which depends, among other parameters,

on the fibre volume fraction, Vf. A deflection-softening

or deflection-hardening behaviour can be observed,

leading to the definition of the so-called minimum (or

critical) fibre volume fraction, Vf,min, which is required

to guarantee a stable post-cracking branch. The latter

occurs when the maximum load experienced by the

specimen, i.e., the load bearing capacity, is equal to or

greater than the applied load at the onset of crack
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propagation. On the contrary, if the fibre volume

content is not sufficiently high, i.e., Vf\Vf,min, this

intermediate stage may not develop. Finally, the

flexural response is described by a descending tail

(Stage III) of the load vs deflection curve, which

represents the fibre pull-out or rupture.

In this framework, different experimental investi-

gations carried out so far indicate that the flexural

performance of FRC specimens is affected by: (i) the

fibre volume fraction, Vf (Almusallam et al. 2016; Barr

et al. 2003; Barros and Sena Cruz 2001; Barros et al.

2005; Bencardino et al. 2010; Fantilli et al. 2016;

Holschemacher et al. 2010; Mobasher et al. 2014;

Naaman 2008; Soetens and Matthys 2014); (ii) the

mechanical and geometrical properties of the rein-

forcing fibres (tensile strength, geometric profile, and

aspect ratio) and of the cementitious matrix (Aydin

2013; Choi et al. 2019; Sahin and Koksal 2011; Yoo

et al. 2015); (iii) the specimen size (Flàdr and Bily

2018; Jones et al. 2008; Paschalis and Lampropoulos

2015; Yoo et al. 2016).

In the latter case, recent experimental studies show

a systematic decrease in the composite flexural

strength—calculated with an elastic approach—by

increasing the specimen size (Flàdr and Bily 2018;

Paschalis and Lampropoulos 2015; Yoo et al. 2016).

This geometric effect, which can be also related to the

fibre distribution within the volume of the composite

(Lo Monte and Ferrara 2020), can be quantitatively

evaluated in the framework of Fracture Mechanics by

using the Multi-fractal Scaling Law (MFSL) for

initially uncracked specimens (Carpinteri 1994), or

the Size Effect Law (SEL) for initially cracked

specimens (Bažant 1984). These best-fitting laws

were extensively discussed in the case of quasi-brittle

materials.

The scale effects are also taken into account in the

latest RILEM Recommendations (RILEM TC 162-

TDF 2003) for the design of FRC structures, where the

residual flexural stresses (evaluated at a specific crack

mouth opening displacement, CMOD) are adjusted by

a coefficient, which decreases with the increase in the

specimen size.

In the present paper, size effects on the global post-

cracking behaviour of FRC beams are investigated in

the framework of Fracture Mechanics by means of the

Updated Bridged Crack Model (UBCM). This model,

originally proposed for steel-bar reinforced concrete

elements (Carpinteri 1981, 1984a, b), has been

adapted by some of the authors to the case of brittle-

matrix fibrous composites subjected to bending

(Bosco and Carpinteri 1995; Carpinteri and Massabò

Fig. 1 Typical

experimental load vs

deflection curves of FRC

beams
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1996, 1997a, b; Carpinteri and Puzzi 2007; Carpinteri

and Accornero 2019, 2020). More recently, further

applications of the model to the case of FRC beams

have been discussed in Accornero et al.

(2020, 2022a, b) and Rubino et al. (2021). In this

work, the focus is on the scale-dependent post-

cracking regimes predicted by the model, as a function

of two dimensionless numbers, NP and Nw. Moreover,

the critical value of the reinforcement brittleness

number, NPC, allows for prediction of the minimum

(critical) fibre volume fraction (Rubino et al. 2021),

Vf,min, or, equivalently, the critical specimen size,

hmin, required to guarantee a stable post-cracking

response. In the following sections, the main features

of the model will be recalled, and the related numerical

predictions will be validated on the basis of experi-

mental data reported in the scientific literature.

2 The Updated Bridged Crack Model (UBCM)

Considering a FRC beam element subjected to flexural

loading, the model is able to describe the evolution of

the fracturing process occurring in a notched rectan-

gular cross-section where the damage is localized. The

cross-section is characterized by the thickness, b, the

depth, h, the initial edge crack depth, a0, and it is

subjected to an external bending moment, M (Fig. 2).

On the left of Fig. 3, a schematic of the notched

cross-section subjected to bending is reported. Exper-

imental evidences lead to identify the following four

regions: (i) ligament in compression; (ii) uncracked

ligament in tension; (iii) fibre bridging zone, in which

the reinforcing fibres bridge the crack; (iv) stress-free

crack zone—generally noticeable for large crack

depths or very short fibres—where the bridging action

of the fibres has vanished.

These regions can be effectively interpreted in the

UBCM. The model assumes the composite as a bi-

phase material, in which the brittle matrix and the

reinforcing fibres represent its primary and secondary

phase, both contributing to the global toughness. The

matrix is assumed to be linear elastic, being neglected

other nonlinear contributions (nonlinear tensile and

compression behaviours). In agreement with Linear

Elastic Fracture Mechanics (LEFM), a singular stress

distribution is predicted at the crack tip (see the right

part of Fig. 3), and the matrix toughening contribution

is defined by its fracture toughness, KIC.

On the other hand, the bridging mechanism of the

secondary phase can be described by an appropriate

cohesive softening constitutive law, which takes into

account the progressive slippage of the fibre inside the

matrix. The corresponding toughening contribution

relates to the energy required to pull-out a single fibre

and it is predominant if compared to that of the matrix.

In the framework of UBCM, the bridging action of

the reinforcing fibres can be modelled by means of a

discontinuous (discrete) formulation or a continuous

one, which have been discussed in Carpinteri and

Massabò (1997a). In the present investigation, the

discontinuous version of the model is taken into

account, for which the reinforcing fibres are consid-

ered as discrete entities. This assumption requires the

following information: (i) the number of fibres in the

critical cross-section under investigation; (ii) the

Fig. 2 Fibre-reinforced brittle-matrix beam model
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position of the fibres; (iii) the bridging force of each

fibre.

The total number of fibres in the cross-section, n,

can be calculated as n = a Vfbh/Af, where Af is the

cross-sectional area of the single fibre, and a the

orientation factor. The coefficient a is defined as the

ratio of the actual number of fibres in the critical

section—obtained by investigating the specimen

fracture surface—to the theoretical one (Robins et al.

2003).

Regarding the fibre position, they are considered

evenly spaced in the ligament area, each one charac-

terized by the corresponding level arm, hi, measured

with respect to the bottom edge of the beam (see Fig. 2

and the right part of Fig. 3). The model disregards

other factors that can affect the actual distribution of

the fibres in the specimen volume, such as the casting

procedure, wall effect, etc.

The m\ n fibres crossing the actual crack are

considered as active and their bridging action is taken

into account by the closure forces, Fi, calculated as

Fi = bi rs Af, in which rs is the nominal stress of the i-

th reinforcing fibres adjusted by a coefficient bi. The
latter is useful to define an equivalent stress acting in

the fibre, which includes other phenomena as the

‘‘group effect’’ (the maximum pull-out force per fibre

decreases as the number of fibres increases) and the

‘‘snubbing effect’’ (the maximum pull-out force

changes due to the fibre orientation with respect to

the applied load) (Li et al. 1990). The influence of

these two parameters related to the fibre distribution, a
and b, will be discussed later in the paper.

Under these assumptions, the singular crack-tip

stress field is uniquely characterized by a global stress-

intensity factor, KI:

KI ¼ KIM �
Xm

i¼1

KIi ¼
M

bh3=2
YM � YFf gT Ff g

bh1=2
; ð1Þ

in which the contributions related to the applied

bending moment, KIM, and to the i-th reinforcing fibre,

KIi, appear. In agreement with the LEFM criterion, the

crack propagation occurs when the stress-intensity

factor, KI, reaches its critical value, KIC, i.e. the

fracture toughness of the plain matrix (unreinforced

material).

The bridging forces provided by the m active

reinforcing layers can be calculated by means of a

cohesive softening constitutive law, which takes into

account the slippage mechanism of the fibres from the

cementitious matrix. The latter is typically investi-

gated by means of pull-out tests carried out on the

single fibre. Namely, the pull-out response of a short

fibre in a cementitious matrix depends on several

factors, among which the fibre material (steel,

polypropylene, natural, etc.), the fibre geometry

(straight, crimped, twisted, with hooked ends, etc.),

the orientation of the fibre with respect to the pull-out

load, and the fibre embedment length (Abdallah et al.

2018).

In the following, the pull-out laws are defined for

steel fibres characterized by straight or hooked-end

profiles. In addition, the fibre is considered as aligned

with respect to the applied load, and slippage is the

main bridging mechanism. The fibre rupture, which

usually occurs in the case of high orientation angle

Fig. 3 Critical cross-section of FRC beams with the stress distribution predicted by the UBCM
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(Robins et al. 2002), or high-strength matrices coupled

with low resistance fibres (Aydin 2013; Choi et al.

2019; Sahin and Koksal 2011; Yoo et al. 2015), is here

excluded.

Under these assumptions, the pull-out response of a

straight fibre is characterized by an initial ascending

branch in which the bonding mechanism is due to the

chemical adhesion between the fibre and the sur-

rounding concrete. When the fibre is completely

debonded and the pull-out strength is reached, the

response is governed by the frictional mechanism,

leading to a decrease in the slippage load until the fibre

is entirely pulled-out from the matrix (Abdallah et al.

2018).

On the other hand, the pull-out response of an

hooked-end steel fibre is characterized by an interme-

diate stage which reflects the mechanical interlocking

of the fibre hooks. With respect to a straight fibre, this

additional mechanism leads to an increase in the

maximum pull-out load and to a variation in the shape

of the constitutive law, which is now characterized by

two horizontal plastic plateaux corresponding to the

hook straightening (Alwan et al. 1999).

Therefore, two different constitutive laws have

been implemented in UBCM (Fig. 4). In both cases,

the constitutive law is defined by two parameters: (i)

the slippage strength of the fibre, rs;max, beyond which

the fibre pull-out starts; (ii) the fibre embedment

length, wc, beyond which the fibre bridging action is

exhausted. The area subtended by the bridging laws

represents the contribution of the reinforcing fibres to

the global toughness of the composite.

Considering the experimental investigation

reported in the literature, a power-law (Fig. 5a;

n = 0.5) seems appropriate to describe the pull-out

behaviour of straight steel fibres. On the other hand, a

piecewise function, indicated as f in Fig. 4b, has been

recently suggested in the case of hooked-end steel

fibres (Abdallah and Rees 2019). The analytical

expressions of these constitutive laws can be found

in Accornero et al. (2022a), in which the effectiveness

of UBCM in reproducing the flexural response of FRC

members is discussed.

Finally, a set of compatibility conditions is intro-

duced to calculate the crack opening, wi, at each i-th

active reinforcement level as a function of the applied

bending moment, M, and of the m bridging forces, Fi.

In matrix form:

wf g ¼ kMf gM � k½ � Ff g; ð2Þ

where {w} is the crack opening vector, {kM} is the

vector of the local compliances due to the bending

moment, and [k] is the matrix of the local compliances

due to the bridging forces.

Summarizing, for a given crack depth, the problem

relies in the determination of the 2m ? 1 unknowns,

i.e., the fracturing moment,MF, the profile of the crack

opening displacements, {w}, and the corresponding

distribution of bridging forces, {F}. The solution

requires a numerical iterative procedure that leads to

the complete evaluation of the stress-block diagram as

schematically represented in Fig. 3.

At each loading step, i.e., for each crack length, the

local rotation of the notched cross-section can be

calculated as:

Fig. 4 Slippage law per unit

embedded length: a straight

fibre; b hooked-end fibre
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u ¼ kMMM � kMf gT Ff g: ð3Þ

The corresponding deflection of the FRC element,

d, can be obtained by applying the superposition

principle, according to which the total deflection takes

into account both the inelastic contribution related to

the fracturing process in the mid-span section (inelas-

tic hinge) and that related to the elastic behaviour of

the remaining part of the beam.

Under these assumptions, the UBCM is able to

predict the FRC different post-cracking regimes

ranging from softening to pseudo-hardening (Fig. 1)

as a function of two scale-dependent dimensionless

numbers, i.e., the reinforcement brittleness number,

NP, and the pull-out brittleness number, Nw:

NP ¼
Pn

i¼1 FP;i

KICbh1=2
¼ Vf

abrs;max

KIC

h1=2 ¼ Vf

rs;max

KIC

h1=2;

ð4Þ

Nw ¼ Ewc

KICh1=2
: ð5Þ

The reinforcement brittleness number, NP, repre-

sents the dimensionless maximum value of the bridg-

ing forces. It depends on the fibre volume fraction, Vf,

on the maximum value of the generalized slippage

strength of the fibre, ~rs;max—in which the parameters

of fibre distribution, a and b are included—on the

matrix fracture toughness, KIC, as well as on the beam

depth, h. On the other hand, Nw depends on the matrix

Fig. 5 Structural response of FRC beams (a0/h = 0.05) as a

function of NP, and for different values of Nw: a Nw = 548;

b Nw = 1370; c Nw = 2739. For each curve, the square marker

indicates the first cracking moment, whereas the circle one

indicates the ultimate moment

123

6 A. Carpinteri et al.



Young’s modulus, E, on the fibre embedment length,

wc, on the matrix fracture toughness, KIC, and on the

beam depth, h.

In Eq. (4), ~rs;max, is obtained as the product

between the orientation factor, a, the average value

of the coefficients bi (it is different for each fibre), b,
and the slippage strength of the fibre, rs;max. In this

sense, it is worth emphasizing that ~rs;max englobes the

information related to the actual distribution and

orientation of the fibres in the critical cross-section. As

a consequence, the analysis of the FRC structural

response does not require the determination of the

single values a and b; but only of ~rs;max, which can be

identified on the basis of experimental flexural tests.

In addition, it is worth noting that the product

between NP and Nw, which is equal to Vf ~rs;max wc E/

KIC
2, provides an information regarding the toughen-

ing contribution of the two constituent phases of the

composite. As a matter of fact, it is proportional to the

ratio between the toughening contribution provided by

the reinforcing secondary phase, which is calculated as

the area subtended by the bridging traction law

(Fig. 4), and the fracture energy of the brittle concrete

matrix, which is calculated as a function of KIC by

means of the Irwin’s relationship. This product is used

to thoroughly describe the post-cracking structural

behaviours of brittle-matrix fibrous composites (Mas-

sabò 2008).

3 Numerical simulations

Let us consider a FRC cross-section characterized by a

notch depth equal to 1/20 of the beam depth (a0/

h = 0.05), and reinforced with hooked-end steel fibres

(Fig. 4b). The critical cross-section is characterised by

a discrete number of reinforcing layers, n = 100,

which are considered to be evenly spaced in the

ligament area and orthogonal with respect to the crack

faces. In this sense, the coefficients a and bi have been
assumed equal to 1. By means of the UBCM, the

structural responses are plotted by varying the fibre

volume fraction, Vf, and the fibre embedment length,

wc, in order to highlight the influence of NP and Nw on

the post-cracking behaviour of the FRC beams.

In Fig. 5a–c, three sets of numerical curves are

represented, each of them referring to a constant value

of Nw, whereas NP ranges from 0 (unreinforced

material) to 2.

The three stages previously described (Fig. 1) can

be clearly identified in each numerical curve. The

elastic branch—valid until the first cracking moment

(red square marker) is reached ( eMcr= 0.39 for a0/

h = 0.05)—is the same for all the curves. When the

crack starts propagating, the response is characterized

by an intermediate stage (Stage II), in which the

ultimate bending moment of the cross-section, eMu, is

defined (circle markers). Depending on NP, the post-

cracking response could be unstable, when the

ultimate moment is smaller than the first cracking

moment (see red, orange, yellow, and green curves), or

stable, when the ultimate moment is greater than the

first cracking moment (see cyan, blue, violet, and

purple curves). This suggests to define the critical

value of the reinforcement brittleness number, NPC

(= 0.83 for a0/h = 0.05), which is required to guaran-

tee a stable post-cracking response (ultimate bending

moment equal to the first cracking moment) (Accor-

nero et al. 2022). In all cases, a decrement in the load is

observed in the final stage of the response (Stage III),

which is governed by Nw. The latter, when sufficiently

small (see Fig. 5a), provides the convergence of all the

curves to a unique final softening branch.

Similar conclusions can be drawn in the case of the

numerical simulations represented in Fig. 6a–c. In this

case, each of the three families of curves corresponds

to a constant value of NP, whereas Nw ranges from 274

to 2739. Consistent with the previous considerations,

the stability of the post-cracking response in the Stage

II—ranging from softening (Fig. 6a) to pseudo-hard-

ening (Fig. 6c)—is defined by NP. Then, for a given

value of NP, the numerical curves slip towards

different final softening branches depending on the

value of Nw, which has small influence on the ultimate

bending moment, although it defines the rotational

capacity at the cross-sectional level. The rotational

capacity is intended as the difference between the

local rotation occurring at the ultimate bending

moment (circle marker) and the local rotation related

to the first cracking moment (square marker).

It is worth noting that these transitions in the

flexural response hold even if a different value of the

initial notch depth, a0/h, is assumed. This parameter

affects the initial elastic branch of the response (Stage

I), thus leading to a different value of the first cracking
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moment, eMcr. More precisely, a decrease in a0/h

provides a nonlinear increase in eM cr, the latter tending

to infinity for an unnotched specimen (LEFM). On the

other hand, the initial notch depth has substantially no

influence on the post-cracking regime—which is

governed by NP in Stage II and Nw in Stage III,

respectively—thus leading to the same value of the

load bearing capacity, eMu. As a consequence, consid-

ering that the stability of the flexural response is

defined by eM cr and eMu, the numerical model predicts

an increase in the critical value of the reinforcement

brittleness number, NPC, with a decrease in the initial

notch depth, a0/h. Further quantitative information

regarding the influence of initial the notch depth on the

critical value of the reinforcement brittleness number

can be found in Accornero et al. (2022a).

Regarding size-scale effects, an increase in beam

depth, h, provides an increase in NP and a decrease in

Nw, consistently with Eqs. (4)–(5). Considering the

numerical simulation shown above, it implies a larger

stability in Stage II of the response, whereas a steeper

pull-out tail (Stage III) is observed.

When the specimen size is very large, the fracture

process zone—intended as the crack zone bridged by

the reinforcing fibres (see Fig. 3)—becomes indepen-

dent from the specimen geometry. By increasing the

structural scale, the flexural response tends towards a

LEFM limit condition, in which the toughening

contribution of the concrete matrix and of the

Fig. 6 Structural response of FRC beams (a0/h = 0.05) as a

function of Nw, and for different values of NP: a NP = 0.50;

b NP = 0.90; c NP = 1.30. For each curve, the square marker

indicates the first cracking moment, whereas the circle one

indicates the ultimate moment
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reinforcing fibres can be merged together by defining

an equivalent fracture toughness of the composite. On

the other hand, a further limit case can be observed

when the specimen size is very small: the crack

propagation process is mainly governed by the con-

crete matrix, whose nonlinearities cannot be

neglected, thus making LEFM not suitable (Massabò

2008).

4 Experimental validation

In this section, UBCM is used to calibrate the model

constitutive parameters on the basis of experimental

results reported in the literature. After calibration,

UBCM is used as a predictive tool in order to evaluate

the influence of the specimen size on the stability of

the FRC flexural response.

The experimental campaign under consideration

was carried out by Jones et al. (2008), who investi-

gated the flexural behaviour of FRC beams by means

of four-point bending tests on unnotched FRC spec-

imens characterized by a span of 500 mm, a thickness

of 100 mm, and variable depths ranging from 50 to

100 mm (Fig. 7).

The composite under investigation was made of a

concrete matrix characterized by a 28-days cubic

compression strength of 72 MPa, reinforced with

hooked-end steel fibres of 30 mm in length, lf, aspect

ratio kf = lf/df = 60, and tensile strength,

fu = 1100 MPa. The experimental program included:

(i) two fibre contents equal to 40 kg/m3 (Vf = 0.50%)

and 80 kg/m3 (Vf = 1.00%); (ii) three different spec-

imen depths as depicted in Fig. 7.

For each combination of fibre volume fraction and

specimen size, three specimens were tested in four-

point bending. Further information about the compo-

sition and the mechanical properties of the composite

mixture can be found in Jones et al. (2008).

4.1 Identification procedure

The numerical modelling has been carried out by

considering the reinforcing layers evenly spaced

within the ligament area. Since no information

regarding the fibre distribution are available from the

considered experimental tests, the orientation factor,

a, is assumed equal to one. The same assumption was

applied for the coefficient bi. Nevertheless, these

assumptions do not limit the application of the model

because, as explained above, they are included in the

equivalent slippage strength, ~rs;max, which can be

identified on the basis of the experimental curves.

Then, the bridging law represented in Fig. 4b has been

adopted for the analysis, since hooked-end steel fibres

are used in the experimental investigation. Finally, a

fictitious initial notch of depth a0/h = 0.05 has been

used to model the initially smooth specimen. The

influence of this choice on the obtained results will be

discussed later in this section.

For each of the six specimen series, three experi-

mental curves are averaged in order to obtain the

corresponding load vs mid-span deflection diagram.

Then, an identification procedure has been applied in

order to identify the mechanical parameters of the

matrix and of the reinforcing fibres, i.e., KIC, ~rs;max,

and wc, which cannot be known a priori. The matrix

fracture toughness, KIC, is determined as the first

parameter, being related to the first cracking moment

of the FRC specimen. In other words, KIC is found by

optimizing the difference between the first cracking

moment experienced by the specimen and that

predicted by the numerical model. On the other hand,

the other two parameters, ~rs;max and wc, relate to the

post-cracking behaviour of the composite, being

directly related to the abovementioned dimensionless

numbers, NP and Nw. In this case, ~rs;max and wc have

been selected by taking into account two parameters:

the maximum load, i.e., the load-bearing capacity of

the specimen, and the area under the load vs deflection

curve. For each pair of values (~rs;max, wc), the

Fig. 7 Test geometry

adopted in Jones et al.

(2008)
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comparison between a given experimental curve and

the related numerical prediction permits the evaluation

of the differences in terms of maximum load (DPmax)

and of the area under the curve (DArea), as schemat-

ically shown in Fig. 8a.

The problem consists in the optimization of mul-

tiple objectives by varying a set of multiple parame-

ters. It can be addressed by applying the Pareto’s

approach for the multi-objective optimization. Fol-

lowing this route, the objective functions are DPmax

and DArea, which need to be minimized in order to

find the best overlap between the experimental curve

and the numerical prediction. On the other hand, the

variable parameters are ~rs;max and wc, which must

satisfy the following constraining conditions: ~rs;max

must be greater than zero, whereas wc must be

included between zero and half fibre length.

Within these boundary conditions, each pair of

values (~rs;max, wc) constitutes an acceptable solution,

leading to the corresponding values of the two

objective functions, DArea and DPmax. This solution

can be represented by a point in the plane (DArea,
DPmax) (Fig. 8a). A solution is said to be ‘‘Pareto

efficient’’ if there is no variation able to produce

improvements in one objective function, without

deteriorating the other one. All the Pareto efficient

solutions constitute the set of the Pareto’s front

(marked black points in Fig. 8b). In this application,

the best-fitting solution has been chosen among the

points within the Pareto’s front as the one with the

minimum distance from the origin (Fig. 8b).

Following this route, it is possible to obtain the set

of three identifying parameters (KIC, ~rs;max, wc) for

each specimen series, which are summarized in

Table 1. The corresponding results are represented in

Fig. 9 where, for each specimen series, the experi-

mental curve is depicted together with the correspond-

ing numerical one.

Considering the identified parameters collected in

Table 1, it is worth noting that, in the case of small

specimens, the matrix fracture toughness,KIC, is found

to be significantly smaller than that obtained in the

other two cases (medium and large specimen). This

result, which appears unexpected at first sight, finds a

clear explanation in the framework of Fracture

Mechanics. In fact, by reducing the specimen size, a

transition from a crack propagation collapse, typical of

LEFM, to a plastic flow collapse at the concrete

ligament occurs. Consistently with the previous dis-

cussions, UBCM cannot capture this further transition,

which actually requires a cohesive-crack modelling.

On the basis of these considerations, the results

obtained in the case of the smallest specimens

(h = 50 mm) have not been considered for the iden-

tification of the mechanical properties of the compos-

ite, which are now calculated by averaging the results

obtained in the case of the medium and large

specimens (see Table 2).

4.2 Prediction of scale effects

When the mechanical properties of the composite are

obtained, the UBCM can be used as a predictive tool,

and the influence of the specimen size on the flexural

Fig. 8 a Schematic representation of DPmax and DArea;
bmulti-objective optimization following the Pareto’s procedure
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Table 1 Mechanical

parameters obtained by

identification

ID Vf (%) KIC (MPa mm1/2) ~rs;max(MPa) wc (mm)

50C (40) 0.50 14 292 9.6

75C (40) 0.50 21 359 9.6

100C (40) 0.50 23 351 11.1

50C (80) 1.00 18 273 6.9

75C (80) 1.00 23 290 8.7

100C (80) 1.00 25 283 9.0

Fig. 9 Identification of the

experimental curves:

a Vf = 0.50% (40 kg/m3);

b Vf = 1.00% (80 kg/m3)
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response can be investigated by varying the beam

depth, h, as the unique variable.

For each fibre volume fraction, numerical predic-

tions were performed by varying solely the structural

size in order to isolate the effect of the beam depth, h,

and then they have been compared to the correspond-

ing experimental curves. As shown in Fig. 10a and b,

the model is able to fully capture the post-cracking

response of the composite, which is ruled by NP and

Nw (Table 3). It is worth noting that, in the case of

Vf = 0.50% (40 kg/m3), NP increases from 0.70 to

0.81, but still remains lower than its critical value

(NPC = 0.83 for a0/h = 0.05), leading to a global

softening response. On the other hand, in the case of

Vf = 1.00% (80 kg/m3), NP increases from 1.03 to

1.19, and in all cases is greater than NPC, consistently

with the observed pseudo-hardening behaviour of the

FRC specimens.

In both cases, the prediction of the critical condi-

tion, i.e., the critical scale, hmin, corresponding to a

stable post-cracking response, can be provided.

For Vf = 0.50% (40 kg/m3):

hmin ¼ NPC a0=hð Þ KIC

Vfrs;max

� �2
¼ 0:83

22

0:50%ð Þ355

� �2

¼ 106mm:

ð6Þ

For Vf = 1.00% (80 kg/m3):

hmin ¼ NPC a0=hð Þ KIC

Vfrs;max

� �2

¼ 0:83
24

1:00%ð Þ286:5

� �2
¼ 48mm: ð7Þ

In the former case (Vf = 0.50%), the estimation of

hmin is effective, whereas in the latter case (Vf = 1.00),

hmin approaches the range in which LEFM was found

not suitable. It implies that, when NPC is characterised

by high fibre volume fractions and very small

structural sizes, the definition of hmin requires further

investigations.

It is worth noting that the value of hmin depends on

the mechanical parameters of the composite and on the

critical value of the reinforcement brittleness number,

NPC, which in turn are affected by the choice of a0/

h that is required to model a nominally unnotched

specimen. In this work, it has been assumed

a0 = 0.05 h.

As explained above, the initial crack depth mainly

affects the value of the first cracking moment, whereas

it has little influence on the post-cracking regime of

the structural response. As a consequence, a0/h affects

the identification of KIC, rather than that of the fibre

constitutive parameters, ~rs;max and wc. The correct

value of the first cracking moment can be captured by

means of different combinations of a0/h and KIC: an

increase in a0/h provides an increment in KIC. On the

other hand, an increase in a0/h provides a decrease in

NPC, as previously pointed out.

Therefore, different assumptions of a0/h lead to

different values of KIC and NPC, although it can be

shown that their product remains unchanged, leading

to the same prediction in terms of critical structural

size, hmin (see Eqs. 6, 7).

In conclusion, the key-point of the discussion is

that, within the limit of applicability of LEFM, a

consistent evaluation of the mechanical properties of

the composite (by means of the identification proce-

dure) leads to define the specimen size corresponding

to the critical condition (NP = NPC). This is analogous

to the determination of the minimum fibre volume

fraction of the composite (Carpinteri and Accornero

2020), Vf,min, being both Vf and h involved in the

reinforcement brittleness number, NP.

Table 2 Average

mechanical parameters used

to predict size effects

ID Vf (%) KIC (MPa mm1/2) ~rs;max(MPa) wc (mm)

75C (40) 0.50 21 359 9.6

100C (40) 0.50 23 351 11.1

Average (40) 0.50 22 355 10.35

75C (80) 1.00 23 290 8.7

100C (80) 1.00 25 283 9.0

Average (80) 1.00 24 286.5 8.85
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Fig. 10 Prediction of the

experimental curves:

a Vf = 0.50% (40 kg/m3);

b Vf = 1.00% (80 kg/m3)

Table 3 Brittleness

numbers NP and Nw

ID Vf (%) KIC (MPa mm1/2) ~rs;max(MPa) wc (mm) h (mm) NP Nw

75C (40) 0.50 22 355 10.35 75 0.70 2210

100C (40) 0.50 22 355 10.35 100 0.81 1914

75C (80) 1.00 24 286.5 8.85 75 1.03 1732

100C (80) 1.00 24 286.5 8.85 100 1.19 1500
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5 Conclusions

UBCM has been proposed as a Fracture Mechanics

nonlinear approach to capture and interpret the scale

effects in the structural behaviour of fibre-reinforced

concrete beams in bending. Within the model assump-

tions, the post-cracking behaviour of the composite is

governed by two dimensionless numbers, NP and Nw,

which are both scale-dependent. In this respect, due to

an increment in beam depth, h, a double brittle–

ductile–brittle transition can be predicted. The critical

value of the reinforcement brittleness number, NPC,

permits description of the conditions required to

guarantee a stable post-peak response, both in terms

of minimum fibre volume fraction or, analogously, of

minimum specimen depth. Numerical predictions are

compared to experimental results related to flexural

tests on FRC beams of different depths. In the first

step, the experimental data have been used to identify

the material mechanical properties. Once the mechan-

ical properties of the composite have been imple-

mented (average values), UBCM has proved its

potential applicability in predicting the effect of the

specimen size variation on the stability of the post-

cracking regime. The model allows prediction of the

critical size, hmin, for which a stable post-peak

response is obtained, analogously to the case of the

minimum fibre volume fraction, Vf,min.
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Carpinteri A, Massabò R (1997b) Reversal in failure scaling

transition of fibrous composites. J Eng Mech ASCE

123(2):107–114. https://doi.org/10.1061/(ASCE)0733-

9399(1997)123:2(107)

Carpinteri A, Puzzi S (2007) The bridged crack model for the

analysis of brittle matrix fibrous composites under repeated

bending loading. J Appl Mech ASME Trans

74(6):1239–1246. https://doi.org/10.1115/1.2744042

Choi W-C, Jung K-Y, Jang S-J, Yun H-D (2019) The influence

of steel fiber tensile strengths and aspect ratios on the

fracture properties of high-strength concrete. Materials

12(13):2105. https://doi.org/10.3390/ma12132105

Fantilli AP, Chiaia B, Gorino A (2016) Fiber volume fraction

and ductility Index of concrete beams. Cement Concr

Compos 65:139–149. https://doi.org/10.1016/j.

cemconcomp.2015.10.019
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